Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 1;65(Pt 8):m860. doi: 10.1107/S1600536809024490

Dichlorido(2,9-dieth­oxy-1,10-phenanthroline-κ2 N,N′)zinc(II)

Cao-Yuan Niu a,*, Yu-Li Dang a, Xin-Sheng Wan a, Chun-Hong Kou a
PMCID: PMC2977366  PMID: 21583328

Abstract

All non-H atoms except for the Cl atoms lie on a mirror plane in the title complex, [ZnCl2(C16H16N2O2)]. The ZnII ion is coordinated by two N atoms from a bis-chelating 2,9-dieth­oxy-1,10-phenanthroline ligand and two symmetry-related Cl atoms in a distorted tetra­hedral environment. The two Zn—N bond lengths are significantly different from each other and the N—Zn—N angle is acute. In the crystal structure, there are weak but significant π–π stacking inter­actions between phenanthroline rings, with a centroid–centroid distance of 3.764 (1) Å.

Related literature

For background information, see: Majumder et al. (2006); Bie et al. (2006). For synthetic details, see: Pijper et al. (1984).graphic file with name e-65-0m860-scheme1.jpg

Experimental

Crystal data

  • [ZnCl2(C16H16N2O2)]

  • M r = 404.58

  • Orthorhombic, Inline graphic

  • a = 13.255 (3) Å

  • b = 7.4403 (15) Å

  • c = 17.874 (4) Å

  • V = 1762.7 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.71 mm−1

  • T = 291 K

  • 0.20 × 0.18 × 0.17 mm

Data collection

  • Bruker APEX-II CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.727, T max = 0.760

  • 5148 measured reflections

  • 1741 independent reflections

  • 1303 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.089

  • S = 1.08

  • 1741 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.58 e Å−3

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXL97 and DIAMOND (Brandenburg, 2005); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809024490/lh2850sup1.cif

e-65-0m860-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024490/lh2850Isup2.hkl

e-65-0m860-Isup2.hkl (85.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Zn1—N1 2.065 (3)
Zn1—N2 2.118 (4)
Zn1—Cl1 2.2022 (10)
Zn1—Cl1i 2.2022 (10)
N1—Zn1—N2 79.43 (13)
N1—Zn1—Cl1 112.53 (5)
N2—Zn1—Cl1 112.90 (4)
N1—Zn1—Cl1i 112.53 (5)
N2—Zn1—Cl1i 112.90 (4)
Cl1—Zn1—Cl1i 119.74 (6)

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to Mrs Li for her assistance with the X-ray crystallographic analysis.

supplementary crystallographic information

Comment

The compound 1,10-phenanthroline has been reported as used to synthesize some potential strong luminescent materials with d10 metals. It was predicted that the title compound which is composed of a derivative of 1,10-phenanthroline and a d10 metal would possess strong ligand to ligand or metal perturbed ligand to ligand emissions (Majumder et al., 2006; Bie, et al., 2006). The ligand 2,9-Diethoxy-1,10-phenanthroline as a derivative of 1,10-phenanthroline was synthesized at an earlier time and possesses antimycoplasmal activity in the presence of copper (Pijper, et al., 1984).

The title mononuclear zinc(II) complex is shown in Fig. 1. All non-hydrogen atoms, execpt for the Cl atoms, lie on a mirror plane. The ZnII ion is four coordinated by two nitrogen atoms from the 1,10-phenanthroline ring system (N1 and N2) and two chlorine atoms [Cl1, Cl1i. Symmetry code: (i) x, -y + 1/2, z], defining a disotorted tetrahedral coordination environment. In the crystal structure there are weak but significant π–π stacking interactions between phenanthroline rings (Fig. 2) with a centroid-to-centroid distance of 3.764 (1) Å.

Experimental

The organic ligand 2,9-diethoxy-1,10-phenanthroline was prepared according to the procedure of literature (Pijper, et al., 1984). The slow evaporation of mixture of the ligand (0.024 g, 0.1 mmol) and zinc dichloride (0.014 g, 0.1 mmol) in 30 ml me thanol afforded suitable colourless block crystals in about 7 days (yield 60%).

Refinement

Carbon-bound H atoms were positioned geometrically and refined using a riding model [C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic H atoms; C—H = 0.97 Å and Uiso(H) = 1.2 Ueq(C) for methylene H atoms; C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl H atoms;]. The final difference Fourier map had a highest peak at 1.17 Å from atom Zn1 and a deepest hole at 1.04 Å from atom Zn1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title complex, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) x, -y + 1/2, z.]

Fig. 2.

Fig. 2.

Part of the crystal structure showing a π–π interaction (purple dotted line). All H atoms have been omitted for clarity.

Crystal data

[ZnCl2(C16H16N2O2)] F(000) = 824
Mr = 404.58 Dx = 1.524 Mg m3
Orthorhombic, Pnma Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2n Cell parameters from 398 reflections
a = 13.255 (3) Å θ = 2–25.1°
b = 7.4403 (15) Å µ = 1.71 mm1
c = 17.874 (4) Å T = 291 K
V = 1762.7 (6) Å3 Prismatic, colorless
Z = 4 0.20 × 0.18 × 0.17 mm

Data collection

Bruker APEX-II CCD detector diffractometer 1741 independent reflections
Radiation source: fine-focus sealed tube 1303 reflections with I > 2σ(I)
graphite Rint = 0.052
Detector resolution: 0 pixels mm-1 θmax = 25.5°, θmin = 1.9°
Oscillation frames scans h = −16→0
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −8→8
Tmin = 0.727, Tmax = 0.760 l = −21→21
5148 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089 H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.042P)2] where P = (Fo2 + 2Fc2)/3
1741 reflections (Δ/σ)max < 0.001
136 parameters Δρmax = 0.34 e Å3
0 restraints Δρmin = −0.58 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 −0.76441 (4) 0.2500 0.40645 (3) 0.03224 (18)
Cl1 −0.72431 (7) −0.00599 (12) 0.35222 (5) 0.0513 (3)
O1 −0.9753 (2) 0.2500 0.33493 (19) 0.0549 (10)
O2 −0.5679 (2) 0.2500 0.51182 (18) 0.0441 (9)
N1 −0.9098 (2) 0.2500 0.4479 (2) 0.0326 (9)
N2 −0.7355 (2) 0.2500 0.5230 (2) 0.0330 (9)
C1 −0.9938 (3) 0.2500 0.4084 (3) 0.0409 (12)
C2 −1.0897 (3) 0.2500 0.4426 (3) 0.0464 (14)
H2A −1.1480 0.2500 0.4136 0.056*
C3 −1.0957 (4) 0.2500 0.5183 (3) 0.0512 (15)
H3A −1.1585 0.2500 0.5415 0.061*
C4 −1.0068 (4) 0.2500 0.5625 (3) 0.0425 (13)
C5 −0.9155 (3) 0.2500 0.5242 (3) 0.0325 (11)
C6 −0.8217 (3) 0.2500 0.5640 (3) 0.0327 (11)
C7 −0.8228 (4) 0.2500 0.6423 (3) 0.0411 (12)
C8 −0.7279 (4) 0.2500 0.6775 (3) 0.0530 (14)
H8A −0.7244 0.2500 0.7295 0.064*
C9 −0.6412 (4) 0.2500 0.6367 (3) 0.0489 (15)
H9A −0.5787 0.2500 0.6604 0.059*
C10 −0.6474 (3) 0.2500 0.5576 (3) 0.0382 (13)
C11 −1.0056 (4) 0.2500 0.6427 (3) 0.0576 (16)
H11A −1.0663 0.2500 0.6689 0.069*
C12 −0.9174 (4) 0.2500 0.6808 (3) 0.0537 (15)
H12A −0.9183 0.2500 0.7329 0.064*
C13 −1.0535 (4) 0.2500 0.2795 (3) 0.0527 (15)
H13A −1.0956 0.3561 0.2843 0.063* 0.50
H13B −1.0956 0.1439 0.2843 0.063* 0.50
C14 −0.9988 (4) 0.2500 0.2065 (3) 0.081 (2)
H14A −1.0468 0.2500 0.1663 0.122*
H14B −0.9572 0.1446 0.2032 0.122* 0.50
H14C −0.9572 0.3554 0.2032 0.122* 0.50
C15 −0.4675 (3) 0.2500 0.5431 (3) 0.0578 (17)
H15A −0.4576 0.1442 0.5740 0.069* 0.50
H15B −0.4576 0.3558 0.5740 0.069* 0.50
C16 −0.3943 (4) 0.2500 0.4794 (3) 0.0608 (17)
H16A −0.3266 0.2500 0.4987 0.091*
H16B −0.4046 0.3554 0.4494 0.091* 0.50
H16C −0.4046 0.1446 0.4494 0.091* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0278 (3) 0.0404 (3) 0.0285 (3) 0.000 0.0007 (2) 0.000
Cl1 0.0576 (6) 0.0440 (6) 0.0523 (6) 0.0023 (5) 0.0032 (5) −0.0099 (5)
O1 0.0288 (18) 0.102 (3) 0.034 (2) 0.000 −0.0083 (16) 0.000
O2 0.0246 (17) 0.070 (3) 0.038 (2) 0.000 −0.0068 (15) 0.000
N1 0.024 (2) 0.042 (3) 0.031 (2) 0.000 −0.0012 (17) 0.000
N2 0.030 (2) 0.040 (2) 0.029 (2) 0.000 −0.0015 (19) 0.000
C1 0.030 (2) 0.045 (3) 0.048 (3) 0.000 0.000 (3) 0.000
C2 0.023 (2) 0.064 (4) 0.052 (4) 0.000 −0.006 (2) 0.000
C3 0.030 (3) 0.058 (4) 0.065 (4) 0.000 0.013 (3) 0.000
C4 0.036 (3) 0.047 (3) 0.044 (3) 0.000 0.009 (2) 0.000
C5 0.030 (2) 0.030 (3) 0.037 (3) 0.000 0.008 (2) 0.000
C6 0.034 (3) 0.035 (3) 0.029 (3) 0.000 0.005 (2) 0.000
C7 0.052 (3) 0.044 (3) 0.027 (3) 0.000 0.002 (2) 0.000
C8 0.062 (4) 0.072 (4) 0.025 (3) 0.000 −0.009 (3) 0.000
C9 0.040 (3) 0.072 (4) 0.034 (3) 0.000 −0.009 (3) 0.000
C10 0.033 (3) 0.049 (4) 0.033 (3) 0.000 −0.006 (2) 0.000
C11 0.048 (3) 0.076 (5) 0.048 (4) 0.000 0.025 (3) 0.000
C12 0.054 (3) 0.077 (5) 0.029 (3) 0.000 0.008 (3) 0.000
C13 0.038 (3) 0.069 (4) 0.050 (4) 0.000 −0.017 (3) 0.000
C14 0.051 (4) 0.149 (7) 0.044 (4) 0.000 −0.013 (3) 0.000
C15 0.030 (3) 0.096 (5) 0.047 (4) 0.000 −0.011 (3) 0.000
C16 0.034 (3) 0.093 (5) 0.056 (4) 0.000 −0.003 (3) 0.000

Geometric parameters (Å, °)

Zn1—N1 2.065 (3) C7—C8 1.406 (7)
Zn1—N2 2.118 (4) C7—C12 1.431 (7)
Zn1—Cl1 2.2022 (10) C8—C9 1.362 (7)
Zn1—Cl1i 2.2022 (10) C8—H8A 0.9300
O1—C1 1.336 (6) C9—C10 1.415 (6)
O1—C13 1.434 (5) C9—H9A 0.9300
O2—C10 1.335 (5) C11—C12 1.353 (7)
O2—C15 1.443 (5) C11—H11A 0.9300
N1—C1 1.318 (5) C12—H12A 0.9300
N1—C5 1.366 (6) C13—C14 1.493 (7)
N2—C10 1.322 (5) C13—H13A 0.9700
N2—C6 1.358 (5) C13—H13B 0.9700
C1—C2 1.410 (6) C14—H14A 0.9600
C2—C3 1.356 (7) C14—H14B 0.9600
C2—H2A 0.9300 C14—H14C 0.9600
C3—C4 1.418 (7) C15—C16 1.496 (7)
C3—H3A 0.9300 C15—H15A 0.9700
C4—C5 1.390 (6) C15—H15B 0.9700
C4—C11 1.434 (7) C16—H16A 0.9600
C5—C6 1.433 (6) C16—H16B 0.9600
C6—C7 1.400 (6) C16—H16C 0.9600
N1—Zn1—N2 79.43 (13) C7—C8—H8A 119.5
N1—Zn1—Cl1 112.53 (5) C8—C9—C10 119.1 (5)
N2—Zn1—Cl1 112.90 (4) C8—C9—H9A 120.5
N1—Zn1—Cl1i 112.53 (5) C10—C9—H9A 120.5
N2—Zn1—Cl1i 112.90 (4) N2—C10—O2 114.2 (4)
Cl1—Zn1—Cl1i 119.74 (6) N2—C10—C9 121.3 (4)
C1—O1—C13 123.1 (4) O2—C10—C9 124.5 (4)
C10—O2—C15 119.3 (4) C12—C11—C4 120.8 (5)
C1—N1—C5 119.2 (4) C12—C11—H11A 119.6
C1—N1—Zn1 126.6 (3) C4—C11—H11A 119.6
C5—N1—Zn1 114.2 (3) C11—C12—C7 121.0 (5)
C10—N2—C6 119.4 (4) C11—C12—H12A 119.5
C10—N2—Zn1 128.4 (3) C7—C12—H12A 119.5
C6—N2—Zn1 112.3 (3) O1—C13—C14 104.6 (4)
N1—C1—O1 111.8 (4) O1—C13—H13A 110.8
N1—C1—C2 122.0 (5) C14—C13—H13A 110.8
O1—C1—C2 126.3 (4) O1—C13—H13B 110.8
C3—C2—C1 119.0 (5) C14—C13—H13B 110.8
C3—C2—H2A 120.5 H13A—C13—H13B 108.9
C1—C2—H2A 120.5 C13—C14—H14A 109.5
C2—C3—C4 120.5 (5) C13—C14—H14B 109.5
C2—C3—H3A 119.7 H14A—C14—H14B 109.5
C4—C3—H3A 119.7 C13—C14—H14C 109.5
C5—C4—C3 116.6 (5) H14A—C14—H14C 109.5
C5—C4—C11 118.9 (5) H14B—C14—H14C 109.5
C3—C4—C11 124.5 (5) O2—C15—C16 107.6 (4)
N1—C5—C4 122.7 (4) O2—C15—H15A 110.2
N1—C5—C6 116.6 (4) C16—C15—H15A 110.2
C4—C5—C6 120.7 (5) O2—C15—H15B 110.2
N2—C6—C7 123.3 (4) C16—C15—H15B 110.2
N2—C6—C5 117.5 (4) H15A—C15—H15B 108.5
C7—C6—C5 119.2 (4) C15—C16—H16A 109.5
C6—C7—C8 116.0 (4) C15—C16—H16B 109.5
C6—C7—C12 119.3 (5) H16A—C16—H16B 109.5
C8—C7—C12 124.6 (5) C15—C16—H16C 109.5
C9—C8—C7 121.0 (4) H16A—C16—H16C 109.5
C9—C8—H8A 119.5 H16B—C16—H16C 109.5
N2—Zn1—N1—C1 180.0 C10—N2—C6—C7 0.000 (1)
Cl1—Zn1—N1—C1 −69.44 (5) Zn1—N2—C6—C7 180.0
Cl1i—Zn1—N1—C1 69.44 (5) C10—N2—C6—C5 180.0
N2—Zn1—N1—C5 0.0 Zn1—N2—C6—C5 0.0
Cl1—Zn1—N1—C5 110.56 (5) N1—C5—C6—N2 0.0
Cl1i—Zn1—N1—C5 −110.56 (5) C4—C5—C6—N2 180.0
N1—Zn1—N2—C10 180.0 N1—C5—C6—C7 180.000 (1)
Cl1—Zn1—N2—C10 69.87 (5) C4—C5—C6—C7 0.000 (1)
Cl1i—Zn1—N2—C10 −69.87 (5) N2—C6—C7—C8 0.000 (1)
N1—Zn1—N2—C6 0.0 C5—C6—C7—C8 180.000 (1)
Cl1—Zn1—N2—C6 −110.13 (5) N2—C6—C7—C12 180.000 (1)
Cl1i—Zn1—N2—C6 110.13 (5) C5—C6—C7—C12 0.000 (1)
C5—N1—C1—O1 180.0 C6—C7—C8—C9 0.000 (1)
Zn1—N1—C1—O1 0.0 C12—C7—C8—C9 180.000 (1)
C5—N1—C1—C2 0.0 C7—C8—C9—C10 0.000 (1)
Zn1—N1—C1—C2 180.0 C6—N2—C10—O2 180.0
C13—O1—C1—N1 180.0 Zn1—N2—C10—O2 0.0
C13—O1—C1—C2 0.0 C6—N2—C10—C9 0.000 (1)
N1—C1—C2—C3 0.000 (1) Zn1—N2—C10—C9 180.0
O1—C1—C2—C3 180.0 C15—O2—C10—N2 180.0
C1—C2—C3—C4 0.000 (1) C15—O2—C10—C9 0.000 (1)
C2—C3—C4—C5 0.000 (1) C8—C9—C10—N2 0.000 (1)
C2—C3—C4—C11 180.000 (1) C8—C9—C10—O2 180.000 (1)
C1—N1—C5—C4 0.000 (1) C5—C4—C11—C12 0.000 (1)
Zn1—N1—C5—C4 180.0 C3—C4—C11—C12 180.000 (1)
C1—N1—C5—C6 180.0 C4—C11—C12—C7 0.000 (2)
Zn1—N1—C5—C6 0.0 C6—C7—C12—C11 0.000 (2)
C3—C4—C5—N1 0.0 C8—C7—C12—C11 180.000 (1)
C11—C4—C5—N1 180.0 C1—O1—C13—C14 180.0
C3—C4—C5—C6 180.0 C10—O2—C15—C16 180.0
C11—C4—C5—C6 0.000 (1)

Symmetry codes: (i) x, −y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2850).

References

  1. Bie, H. Y., Wei, J., Yu, J. H., Wang, T. G., Lu, J. & Xu, J. Q. (2006). Mater. Lett.60, 2475–2479.
  2. Brandenburg, K. (2005). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Majumder, A., Westerhausen, M., Kneifel, A. N., Sutter, J.-P., Daro, N. & Mitra, S. (2006). Inorg. Chim. Acta, 359, 3841–3846.
  4. Pijper, P. L., Van der Goot, H., Timmerman, H. & Nauta, W. T. (1984). Eur. J. Med. Chem 19, 399–404.
  5. Sheldrick, G. M. (1996). SADABS . University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Siemens (1994). SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  8. Siemens (1996). SMART Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809024490/lh2850sup1.cif

e-65-0m860-sup1.cif (20.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024490/lh2850Isup2.hkl

e-65-0m860-Isup2.hkl (85.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES