Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 29;65(Pt 8):o2034. doi: 10.1107/S1600536809028633

N-Phenyl-tert-butane­sulfinamide

Mritunjoy Datta a, Alan J Buglass a,*, Mark R J Elsegood b
PMCID: PMC2977387  PMID: 21583700

Abstract

In the racemic title compound, C10H15NOS, the packing exhibits centrosymmetric pairs of mol­ecules linked by N—H⋯O=S hydrogen bonds in a head-to-tail fashion. The N—Car­yl bond [1.4083 (12) Å] is considerably shorter than the N—Calk­yl bonds typically found in N-alkyl­alkanesulfinamides (1.470–1.530 Å).

Related literature

For N-aryl­alkanesulfinamides, see: Datta et al. (2008) and for cyclic N-aryl­alkanesulfinamides (sultims), see: Schulze et al. (2005). For N-alkyl­alkanesulfinamides, see: Sato et al. (1975); Schuckmann et al. (1978); Ferreira et al. (2005). For the synthesis, see: Stretter et al. (1969).graphic file with name e-65-o2034-scheme1.jpg

Experimental

Crystal data

  • C10H15NOS

  • M r = 197.29

  • Monoclinic, Inline graphic

  • a = 7.4822 (3) Å

  • b = 15.7881 (6) Å

  • c = 8.8333 (4) Å

  • β = 99.3865 (6)°

  • V = 1029.50 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 150 K

  • 0.54 × 0.49 × 0.39 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007) T min = 0.866, T max = 0.900

  • 12022 measured reflections

  • 3150 independent reflections

  • 2861 reflections with I > 2σ(I)

  • R int = 0.020

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.092

  • S = 1.05

  • 3150 reflections

  • 125 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.36 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL and local programs.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028633/zs2002sup1.cif

e-65-o2034-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028633/zs2002Isup2.hkl

e-65-o2034-Isup2.hkl (154.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.808 (12) 2.085 (12) 2.8882 (11) 173.1 (14)

Symmetry code: (i) Inline graphic.

Acknowledgments

MD and AJB thank KAIST for financial support.

supplementary crystallographic information

Comment

The molecular structure of (I) (Fig. 1) exhibits a short N—(aryl)C Bond (1.4083 (12) Å), like that in N-phenyladamantane-1-sulfinamide (1.409 (2) Å) (Datta et al., 2008), and in contrast with N—(alkyl)C bonds in N-alkylalkanesulfinamides (1.470–1.530 Å) (Sato et al., 1975; Schuckmann et al., 1978; Ferreira et al., 2005). Otherwise, molecular geometry is similar to other sulfinamides. The molecules of (I) in the crystal lattice are linked by pairs of N—H···O=S hydrogen bonds (Fig. 2 and Table 1). There is no evidence of weak intermolecular C—H···O=S hydrogen bonds, as in the packing of N-phenyladamantane-1-sulfinamide (Datta et al., 2008). The crystal system and space group for (I) and N-phenyladamantane-1-sulfinamide are the same (namely monoclinic and P21/c, respectively).

Experimental

Compound (I) was prepared by the method of Stretter et al. (1969), using tert-butanesulfinyl chloride (702.5 mg, 5 mmol) and aniline (930 mg, 10 mmol) in dry chloroform (30 ml). After 6 h (with TLC monitoring) the white solid amine salt was filtered off and the solvent was removed under reduced pressure. Column chromatography (silica gel, dichloromethane) provided (I) as white crystals (950 mg, 96%), m.p. 376–377 K. Single crystals suitable for X-ray analysis were obtained by evaporation of a solution of (I) in dichloromethane at room temperature. Spectroscopic analysis: FTIR (KBr) (cm-1) 3015, 2599, 2330, 1496, 1469, 1420, 1370, 1274, 1068,1026, 888, 859. 1H NMR (400 MHz, CDCl3 p.p.m. with respect to TMS) δ 7.26–7.22 (m, 2H), 7.00–6.98 (m, 3H), 5.48 (bs, 1H), 1.30 (s, 9H). 13C NMR (100 MHz, CDCl3 p.p.m. with respect to TMS) δ 142.0, 129.4, 123.0, 118.4, 56.5, 22.4. EIMS m/z (%) 197 (M+, 18) 141 (100), 140 (M+-tBu, 28), 105 (M+—PhNH, 86), 92 (M+-tBuSO, 72), 78 (77), 57 (93).

Refinement

H atoms were located in a difference Fourier map and refined geometrically using a riding model except for NHfor which the coordinates were freely refined. Bond lengths and displacement parameters were constrained as follows: C—H = 0.95–0.98 Å and Uiso(H) = 1.2 (1.5 for CH3) times Ueq(C, N).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), with atom labels and 50% probablility displacement ellipsoids for non-H atoms.

Fig. 2.

Fig. 2.

Intermolecular hydrogen bonding between a pair of opposite enantiomers of (I) in the crystal packing. Symmetry code i = -x, -y + 1, -z + 1.

Crystal data

C10H15NOS F(000) = 424
Mr = 197.29 Dx = 1.273 Mg m3
Monoclinic, P21/c Melting point = 376–377 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 7.4822 (3) Å Cell parameters from 6597 reflections
b = 15.7881 (6) Å θ = 2.3–30.5°
c = 8.8333 (4) Å µ = 0.28 mm1
β = 99.3865 (6)° T = 150 K
V = 1029.50 (7) Å3 Block, colourless
Z = 4 0.54 × 0.49 × 0.39 mm

Data collection

Bruker APEXII CCD diffractometer 3150 independent reflections
Radiation source: fine-focus sealed tube 2861 reflections with I > 2σ(I)
graphite Rint = 0.020
ω rotation with narrow frames scans θmax = 30.6°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2007) h = −10→10
Tmin = 0.866, Tmax = 0.900 k = −22→22
12022 measured reflections l = −12→12

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0516P)2 + 0.2529P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.002
3150 reflections Δρmax = 0.38 e Å3
125 parameters Δρmin = −0.36 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.020 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.06049 (10) 0.60738 (4) 0.41648 (9) 0.02295 (16)
S1 0.10835 (3) 0.601595 (13) 0.34614 (3) 0.01896 (9)
N1 0.17155 (13) 0.50050 (5) 0.35165 (10) 0.02446 (18)
H1 0.1463 (19) 0.4727 (9) 0.4219 (15) 0.029*
C1 0.19492 (12) 0.45439 (6) 0.21979 (11) 0.01998 (18)
C2 0.24483 (16) 0.49296 (7) 0.09080 (12) 0.0281 (2)
H2 0.2589 0.5527 0.0877 0.034*
C3 0.27381 (17) 0.44344 (7) −0.03327 (13) 0.0318 (2)
H3 0.3053 0.4700 −0.1218 0.038*
C4 0.25757 (15) 0.35617 (7) −0.02991 (13) 0.0295 (2)
H4 0.2790 0.3230 −0.1148 0.035*
C5 0.20955 (14) 0.31769 (6) 0.09922 (12) 0.0257 (2)
H5 0.1990 0.2578 0.1029 0.031*
C6 0.17690 (13) 0.36629 (6) 0.22303 (11) 0.02134 (18)
H6 0.1422 0.3396 0.3101 0.026*
C7 0.29072 (13) 0.64579 (6) 0.48984 (11) 0.02172 (18)
C8 0.24368 (16) 0.73950 (7) 0.50283 (14) 0.0316 (2)
H8A 0.3444 0.7687 0.5668 0.047*
H8B 0.1342 0.7448 0.5497 0.047*
H8C 0.2223 0.7650 0.4003 0.047*
C9 0.46486 (15) 0.63537 (8) 0.42278 (14) 0.0312 (2)
H9A 0.5658 0.6613 0.4919 0.047*
H9B 0.4512 0.6632 0.3224 0.047*
H9C 0.4894 0.5750 0.4110 0.047*
C10 0.30068 (15) 0.60073 (6) 0.64357 (12) 0.0265 (2)
H10A 0.3290 0.5408 0.6314 0.040*
H10B 0.1839 0.6057 0.6794 0.040*
H10C 0.3956 0.6267 0.7188 0.040*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0218 (3) 0.0215 (3) 0.0264 (4) 0.0011 (2) 0.0067 (3) 0.0021 (2)
S1 0.02263 (13) 0.01561 (12) 0.01895 (13) 0.00052 (7) 0.00429 (8) 0.00155 (7)
N1 0.0397 (5) 0.0153 (3) 0.0206 (4) 0.0013 (3) 0.0114 (3) 0.0012 (3)
C1 0.0214 (4) 0.0187 (4) 0.0202 (4) 0.0003 (3) 0.0045 (3) −0.0011 (3)
C2 0.0397 (6) 0.0210 (4) 0.0254 (5) −0.0014 (4) 0.0112 (4) 0.0010 (4)
C3 0.0422 (6) 0.0327 (6) 0.0224 (5) 0.0011 (4) 0.0111 (4) 0.0006 (4)
C4 0.0324 (5) 0.0316 (5) 0.0251 (5) 0.0014 (4) 0.0063 (4) −0.0080 (4)
C5 0.0247 (5) 0.0218 (4) 0.0304 (5) −0.0010 (3) 0.0043 (4) −0.0060 (4)
C6 0.0207 (4) 0.0186 (4) 0.0252 (4) −0.0012 (3) 0.0053 (3) −0.0006 (3)
C7 0.0218 (4) 0.0186 (4) 0.0242 (4) 0.0006 (3) 0.0022 (3) −0.0001 (3)
C8 0.0352 (5) 0.0183 (4) 0.0387 (6) −0.0002 (4) −0.0013 (4) −0.0037 (4)
C9 0.0230 (5) 0.0366 (6) 0.0346 (6) 0.0004 (4) 0.0065 (4) 0.0042 (4)
C10 0.0290 (5) 0.0278 (5) 0.0220 (5) 0.0026 (4) 0.0020 (4) 0.0006 (3)

Geometric parameters (Å, °)

O1—S1 1.4988 (7) C5—H5 0.9500
S1—N1 1.6632 (9) C6—H6 0.9500
S1—C7 1.8426 (10) C7—C10 1.5241 (14)
N1—C1 1.4083 (12) C7—C9 1.5255 (14)
N1—H1 0.808 (12) C7—C8 1.5294 (14)
C1—C2 1.3954 (13) C8—H8A 0.9800
C1—C6 1.3982 (12) C8—H8B 0.9800
C2—C3 1.3918 (15) C8—H8C 0.9800
C2—H2 0.9500 C9—H9A 0.9800
C3—C4 1.3838 (17) C9—H9B 0.9800
C3—H3 0.9500 C9—H9C 0.9800
C4—C5 1.3903 (15) C10—H10A 0.9800
C4—H4 0.9500 C10—H10B 0.9800
C5—C6 1.3898 (13) C10—H10C 0.9800
O1—S1—N1 107.53 (4) C10—C7—C9 112.02 (8)
O1—S1—C7 105.72 (4) C10—C7—C8 111.29 (9)
N1—S1—C7 99.69 (5) C9—C7—C8 110.80 (9)
C1—N1—S1 123.02 (7) C10—C7—S1 111.11 (7)
C1—N1—H1 115.5 (10) C9—C7—S1 105.97 (7)
S1—N1—H1 116.3 (10) C8—C7—S1 105.33 (7)
C2—C1—C6 119.36 (9) C7—C8—H8A 109.5
C2—C1—N1 122.39 (8) C7—C8—H8B 109.5
C6—C1—N1 118.16 (8) H8A—C8—H8B 109.5
C3—C2—C1 119.65 (10) C7—C8—H8C 109.5
C3—C2—H2 120.2 H8A—C8—H8C 109.5
C1—C2—H2 120.2 H8B—C8—H8C 109.5
C4—C3—C2 121.12 (10) C7—C9—H9A 109.5
C4—C3—H3 119.4 C7—C9—H9B 109.5
C2—C3—H3 119.4 H9A—C9—H9B 109.5
C3—C4—C5 119.21 (9) C7—C9—H9C 109.5
C3—C4—H4 120.4 H9A—C9—H9C 109.5
C5—C4—H4 120.4 H9B—C9—H9C 109.5
C6—C5—C4 120.43 (9) C7—C10—H10A 109.5
C6—C5—H5 119.8 C7—C10—H10B 109.5
C4—C5—H5 119.8 H10A—C10—H10B 109.5
C5—C6—C1 120.21 (9) C7—C10—H10C 109.5
C5—C6—H6 119.9 H10A—C10—H10C 109.5
C1—C6—H6 119.9 H10B—C10—H10C 109.5
O1—S1—N1—C1 123.13 (8) C4—C5—C6—C1 −1.02 (15)
C7—S1—N1—C1 −126.86 (8) C2—C1—C6—C5 0.40 (14)
S1—N1—C1—C2 28.58 (14) N1—C1—C6—C5 −176.09 (9)
S1—N1—C1—C6 −155.05 (8) O1—S1—C7—C10 54.89 (8)
C6—C1—C2—C3 0.76 (16) N1—S1—C7—C10 −56.55 (8)
N1—C1—C2—C3 177.09 (10) O1—S1—C7—C9 176.79 (7)
C1—C2—C3—C4 −1.32 (18) N1—S1—C7—C9 65.35 (7)
C2—C3—C4—C5 0.70 (17) O1—S1—C7—C8 −65.73 (8)
C3—C4—C5—C6 0.48 (16) N1—S1—C7—C8 −177.17 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.81 (1) 2.09 (1) 2.8882 (11) 173 (1)

Symmetry codes: (i) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2002).

References

  1. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Datta, M., Buglass, A. J., Hong, C. S. & Lim, J. H. (2008). Acta Cryst. E64, o1393. [DOI] [PMC free article] [PubMed]
  3. Ferreira, F., Audoin, M. & Chemla, F. (2005). Chem. Eur. J.11, 5269–5278. [DOI] [PubMed]
  4. Sato, S., Yoshioka, T. & Tamura, C. (1975). Acta Cryst. B31, 1385–1392.
  5. Schuckmann, W., Fuess, H., Mösinger, O. & Ried, W. (1978). Acta Cryst. B34, 1516–1520.
  6. Schulze, B., Taubert, K., Siegemund, A., Freysoldt, T. H. E. & Sieler, J. (2005). Z. Naturforsch. Teil B, 60, 41–47.
  7. Sheldrick, G. M. (2007). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Stretter, H., Krause, M. & Last, W.-D. (1969). Chem. Ber.102, 3357–3363.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028633/zs2002sup1.cif

e-65-o2034-sup1.cif (16KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028633/zs2002Isup2.hkl

e-65-o2034-Isup2.hkl (154.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES