Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 11;65(Pt 8):m900. doi: 10.1107/S1600536809025896

Di-μ-benzoato-κ3 O,O′:O3 O:O,O′-bis­[(acetato-κO)(1,10-phenanthroline-κ2 N,N′)lead(II)] dihydrate

Junli Gao a, Xiaopeng Xuan a,*
PMCID: PMC2977393  PMID: 21583360

Abstract

The title compound, [Pb2(CH3COO)2(C7H5O2)2(C12H8N2)2]·2H2O, consists of dimeric units built up around a crystallographic centre of symmetry and two non-coordinating water mol­ecules. Each PbII unit is six-coordinated by a bidentate 1,10-phenanthroline (phen) ligand, a monodentate acetate anion and a bidentate benzoate anion, which also acts as a bridge linking the two PbII atoms. The crystal packing is stabilized by O—H⋯O hydrogen bonds and by π–π inter­actions between the phen rings of neighboring mol­ecules, with a centroid–centroid distance of 3.577 (3) Å.

Related literature

For information on the coordination chemistry of lead, see: Shimoni-Livny et al. (1998). For related structures, see: Li & Yang (2004); Xuan et al. (2008); Xuan & Zhao (2007); Zhao et al. (2007); Zhu et al. (2004). graphic file with name e-65-0m900-scheme1.jpg

Experimental

Crystal data

  • [Pb2(C2H3O2)2(C7H5O2)2(C12H8N2)2]·2H2O

  • M r = 1171.15

  • Monoclinic, Inline graphic

  • a = 11.809 (4) Å

  • b = 13.910 (5) Å

  • c = 12.290 (4) Å

  • β = 107.392 (4)°

  • V = 1926.5 (11) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 8.79 mm−1

  • T = 294 K

  • 0.11 × 0.07 × 0.05 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1997) T min = 0.445, T max = 0.668

  • 16820 measured reflections

  • 4417 independent reflections

  • 3343 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029

  • wR(F 2) = 0.057

  • S = 1.03

  • 4417 reflections

  • 263 parameters

  • 18 restraints

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.85 e Å−3

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809025896/sj2634sup1.cif

e-65-0m900-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025896/sj2634Isup2.hkl

e-65-0m900-Isup2.hkl (216.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Pb1—O3 2.399 (3)
Pb1—O2 2.426 (3)
Pb1—O1 2.565 (3)
Pb1—O1i 2.828 (3)
Pb1—N2 2.619 (4)
Pb1—N1 2.688 (4)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H2W⋯O3ii 0.83 2.15 2.958 (5) 166
O5—H1W⋯O4 0.83 2.11 2.928 (5) 169

Symmetry code: (ii) Inline graphic.

Acknowledgments

We are grateful to the Youth Natural Science Foundation of Henan Normal University for financial support.

supplementary crystallographic information

Comment

Because of the increasing impact of the toxic heavy metal lead on the natural environment, the coordination behavior of lead ion has received more and more attention. Lead(II) is capable of exhibiting a variable coordination number and geometry with or without a stereochemically active lone pair of electrons (Shimoni-Livny et al. 1998). Among such compounds, a number of centrosymmetric dinuclear lead(II) compounds with 1,10-phenanthroline (phen) or its derivatives and oxygen donor ligands have been structurally characterized (Li & Yang, 2004, Xuan et al. 2008, Xuan & Zhao, 2007, Zhao et al. 2007, Zhu et al. 2004,). Recently, we obtained the title lead(II) complex containing two different kinds of anions, by the reaction of lead acetate, sodium benzoate and phen in ethanol/water mixtures.

The crystal structure of the title compound consists of dimeric units [Pb2(C2H3O2)2(C7H5O2)2(C12H8N2)2], related by a crystallographic inversion centre (Fig. 1), and two uncoordinated water molecules. Both the acetate and benzoate anions are coordinated to each Pb(II) atom and a carboxylate oxygen of each benzoate anion forms a bridge between the two inversion related lead atoms. Each lead atom is chelated by the two N atoms of phen with Pb—N distances of 2.619 (4), and 2.688 (4) Å, three carbonyl oxygen atoms of two benzoate anions and one carbonyl oxygen atoms of an acetate anion. The weak Pb—O bridging interactions form a four-membered Pb2O2 quadrilateral with a Pb—Pb separation of 4.289 (5) Å.

The crystal structure is stabilized by intermolecular O—H···O hydrogen bonds (Table 1 and Figure 2). The uncoordinated water molecules participate in hydrogen bonding to oxygen atoms of the acetate anions. The crystal packing is further stabilized by π-π stacking interactions between adjacent phen molecules. The centroid-centroid distance between Cg1 (N1/C8—C11/C19) and Cg2 (N2/C14—C18)[symmetry code: 1 - x, -y, 1 - z] is 3.575 (3) Å.

Experimental

A solution (10 ml) of ethanol containing 1,10-phenanthroline (0.5 mmol) and sodium benzoate (1 mmol) was added slowly to a aqueous solution (10 ml) containing lead acetate trihydrate (0.5 mmol). The mixture was refluxed for 5 h and the resulting white precipitate was filtered. Block-like single crystals were obtained by slow evaporation of the filtrate at room temperature after five days.

Refinement

The carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C aromatic). The water H atoms were restrained at O—H = 0.83 Å with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms. [Symmetry code for atoms labelled A: -x, -y, 1 - z].

Fig. 2.

Fig. 2.

Part of the crystal structure of (I), showing the hydrogen-bonding (dashed lines) interactions.

Fig. 3.

Fig. 3.

π-π interactions between the aromatic rings of the title compound.

Crystal data

[Pb2(C2H3O2)2(C7H5O2)2(C12H8N2)2]·2H2O F(000) = 1120
Mr = 1171.15 Dx = 2.019 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3638 reflections
a = 11.809 (4) Å θ = 2.3–23.1°
b = 13.910 (5) Å µ = 8.79 mm1
c = 12.290 (4) Å T = 294 K
β = 107.392 (4)° Block, colourless
V = 1926.5 (11) Å3 0.11 × 0.07 × 0.05 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 4417 independent reflections
Radiation source: fine-focus sealed tube 3343 reflections with I > 2σ(I)
graphite Rint = 0.044
φ and ω scans θmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 1997) h = −15→15
Tmin = 0.445, Tmax = 0.668 k = −18→18
16820 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.057 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0213P)2] where P = (Fo2 + 2Fc2)/3
4417 reflections (Δ/σ)max = 0.001
263 parameters Δρmax = 0.73 e Å3
18 restraints Δρmin = −0.85 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Pb1 0.173727 (14) 0.043850 (12) 0.498903 (14) 0.03372 (6)
N1 0.2720 (3) −0.0825 (3) 0.3883 (3) 0.0359 (9)
N2 0.3507 (3) 0.1041 (3) 0.4296 (3) 0.0311 (8)
O1 −0.0112 (3) −0.0419 (2) 0.3725 (3) 0.0457 (8)
O2 0.0805 (3) 0.0648 (2) 0.2958 (3) 0.0423 (8)
O3 0.0861 (3) 0.2009 (2) 0.4678 (3) 0.0518 (7)
O4 0.2321 (3) 0.2249 (2) 0.6272 (3) 0.0544 (8)
O5 0.3305 (3) 0.3221 (3) 0.8466 (3) 0.0727 (12)
H1W 0.3119 0.2922 0.7852 0.109*
H2W 0.4037 0.3247 0.8745 0.109*
C1 −0.0917 (4) −0.0099 (3) 0.1737 (4) 0.0316 (10)
C2 −0.0902 (4) 0.0467 (4) 0.0825 (4) 0.0496 (13)
H2 −0.0340 0.0953 0.0923 0.059*
C3 −0.1716 (5) 0.0322 (4) −0.0240 (4) 0.0610 (16)
H3 −0.1702 0.0710 −0.0852 0.073*
C4 −0.2551 (5) −0.0405 (4) −0.0383 (5) 0.0591 (15)
H4 −0.3101 −0.0508 −0.1094 0.071*
C5 −0.2564 (4) −0.0974 (4) 0.0529 (4) 0.0517 (14)
H5 −0.3130 −0.1457 0.0433 0.062*
C6 −0.1751 (4) −0.0836 (3) 0.1580 (4) 0.0408 (12)
H6 −0.1757 −0.1233 0.2187 0.049*
C7 −0.0022 (4) 0.0053 (3) 0.2875 (4) 0.0358 (11)
C8 0.2340 (5) −0.1718 (4) 0.3670 (4) 0.0478 (13)
H8 0.1693 −0.1909 0.3903 0.057*
C9 0.2844 (5) −0.2388 (4) 0.3123 (4) 0.0555 (15)
H9 0.2538 −0.3008 0.2992 0.067*
C10 0.3789 (5) −0.2130 (4) 0.2779 (4) 0.0510 (14)
H10 0.4144 −0.2572 0.2415 0.061*
C11 0.4235 (4) −0.1176 (4) 0.2979 (4) 0.0408 (12)
C12 0.5245 (5) −0.0854 (4) 0.2670 (4) 0.0493 (14)
H12 0.5628 −0.1274 0.2307 0.059*
C13 0.5649 (4) 0.0053 (4) 0.2898 (4) 0.0467 (13)
H13 0.6318 0.0242 0.2703 0.056*
C14 0.5072 (4) 0.0736 (3) 0.3438 (4) 0.0342 (11)
C15 0.5469 (4) 0.1678 (4) 0.3670 (4) 0.0426 (12)
H15 0.6125 0.1896 0.3471 0.051*
C16 0.4878 (4) 0.2280 (4) 0.4197 (4) 0.0429 (12)
H16 0.5116 0.2917 0.4345 0.051*
C17 0.3918 (4) 0.1927 (3) 0.4507 (4) 0.0367 (11)
H17 0.3542 0.2338 0.4885 0.044*
C18 0.4080 (4) 0.0436 (3) 0.3760 (4) 0.0306 (10)
C19 0.3653 (4) −0.0553 (3) 0.3537 (4) 0.0329 (10)
C20 0.1402 (5) 0.2519 (4) 0.5538 (4) 0.0513 (7)
C21 0.0877 (5) 0.3482 (4) 0.5642 (4) 0.0572 (11)
H21A 0.0272 0.3411 0.6012 0.086*
H21B 0.0535 0.3751 0.4896 0.086*
H21C 0.1487 0.3902 0.6084 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Pb1 0.02875 (9) 0.04061 (11) 0.03074 (10) −0.00348 (9) 0.00726 (7) −0.00015 (9)
N1 0.036 (2) 0.031 (2) 0.038 (2) −0.0030 (17) 0.0064 (18) −0.0009 (17)
N2 0.030 (2) 0.033 (2) 0.030 (2) −0.0017 (17) 0.0089 (16) 0.0002 (16)
O1 0.0395 (19) 0.065 (2) 0.0321 (18) −0.0089 (17) 0.0104 (15) 0.0032 (17)
O2 0.043 (2) 0.039 (2) 0.0392 (19) −0.0107 (15) 0.0051 (16) 0.0036 (15)
O3 0.0595 (17) 0.0502 (16) 0.0416 (15) 0.0045 (13) 0.0091 (13) −0.0036 (13)
O4 0.0521 (18) 0.0559 (18) 0.0500 (17) 0.0017 (15) 0.0074 (14) 0.0008 (15)
O5 0.052 (2) 0.087 (3) 0.085 (3) −0.006 (2) 0.029 (2) −0.008 (2)
C1 0.028 (2) 0.035 (2) 0.030 (2) 0.004 (2) 0.007 (2) −0.001 (2)
C2 0.046 (3) 0.056 (3) 0.040 (3) −0.010 (3) 0.004 (2) 0.007 (3)
C3 0.067 (4) 0.073 (4) 0.037 (3) −0.004 (3) 0.007 (3) 0.010 (3)
C4 0.058 (4) 0.062 (4) 0.041 (3) 0.003 (3) −0.010 (3) −0.006 (3)
C5 0.041 (3) 0.047 (3) 0.055 (3) −0.005 (2) −0.004 (3) −0.007 (3)
C6 0.039 (3) 0.038 (3) 0.043 (3) 0.000 (2) 0.009 (2) 0.003 (2)
C7 0.036 (3) 0.038 (3) 0.034 (3) 0.004 (2) 0.011 (2) −0.004 (2)
C8 0.050 (3) 0.043 (3) 0.045 (3) −0.011 (3) 0.007 (3) 0.000 (2)
C9 0.075 (4) 0.033 (3) 0.048 (3) −0.002 (3) 0.002 (3) −0.007 (3)
C10 0.071 (4) 0.045 (3) 0.031 (3) 0.013 (3) 0.007 (3) −0.008 (2)
C11 0.047 (3) 0.046 (3) 0.025 (2) 0.015 (2) 0.005 (2) 0.002 (2)
C12 0.051 (3) 0.059 (4) 0.040 (3) 0.025 (3) 0.017 (3) 0.005 (3)
C13 0.039 (3) 0.068 (4) 0.038 (3) 0.018 (3) 0.019 (2) 0.017 (3)
C14 0.024 (2) 0.050 (3) 0.027 (2) 0.006 (2) 0.0062 (19) 0.013 (2)
C15 0.029 (3) 0.057 (3) 0.039 (3) −0.007 (2) 0.007 (2) 0.013 (2)
C16 0.038 (3) 0.043 (3) 0.047 (3) −0.012 (2) 0.011 (2) 0.000 (2)
C17 0.034 (3) 0.039 (3) 0.036 (3) −0.004 (2) 0.009 (2) −0.002 (2)
C18 0.027 (2) 0.034 (2) 0.027 (2) 0.003 (2) 0.0023 (18) 0.002 (2)
C19 0.035 (2) 0.035 (3) 0.023 (2) 0.007 (2) −0.0002 (19) 0.005 (2)
C20 0.0571 (16) 0.0509 (16) 0.0431 (15) 0.0041 (13) 0.0105 (13) −0.0033 (12)
C21 0.062 (2) 0.055 (2) 0.049 (2) 0.0080 (19) 0.0087 (18) −0.0094 (18)

Geometric parameters (Å, °)

Pb1—O3 2.399 (3) C5—H5 0.9300
Pb1—O2 2.426 (3) C6—H6 0.9300
Pb1—O1 2.565 (3) C8—C9 1.384 (7)
Pb1—O1i 2.828 (3) C8—H8 0.9300
Pb1—N2 2.619 (4) C9—C10 1.355 (7)
Pb1—N1 2.688 (4) C9—H9 0.9300
Pb1—C7 2.851 (5) C10—C11 1.421 (7)
N1—C8 1.320 (6) C10—H10 0.9300
N1—C19 1.349 (6) C11—C19 1.405 (6)
N2—C17 1.321 (5) C11—C12 1.428 (7)
N2—C18 1.366 (5) C12—C13 1.348 (7)
O1—C7 1.264 (5) C12—H12 0.9300
O2—C7 1.261 (5) C13—C14 1.442 (7)
O3—C20 1.273 (6) C13—H13 0.9300
O4—C20 1.244 (6) C14—C15 1.393 (6)
O5—H1W 0.8317 C14—C18 1.407 (6)
O5—H2W 0.8295 C15—C16 1.370 (6)
C1—C2 1.375 (6) C15—H15 0.9300
C1—C6 1.394 (6) C16—C17 1.390 (6)
C1—C7 1.495 (6) C16—H16 0.9300
C2—C3 1.387 (7) C17—H17 0.9300
C2—H2 0.9300 C18—C19 1.463 (6)
C3—C4 1.387 (7) C20—C21 1.498 (7)
C3—H3 0.9300 C21—H21A 0.9600
C4—C5 1.377 (7) C21—H21B 0.9600
C4—H4 0.9300 C21—H21C 0.9600
C5—C6 1.373 (6)
O3—Pb1—O2 71.68 (11) O1—C7—Pb1 64.1 (2)
O3—Pb1—O1 94.51 (11) C1—C7—Pb1 176.6 (4)
O2—Pb1—O1 52.41 (10) N1—C8—C9 124.1 (5)
O3—Pb1—N2 90.27 (12) N1—C8—H8 118.0
O2—Pb1—N2 77.74 (11) C9—C8—H8 118.0
O1—Pb1—N2 124.72 (10) C10—C9—C8 119.2 (5)
O3—Pb1—N1 138.24 (11) C10—C9—H9 120.4
O2—Pb1—N1 71.93 (11) C8—C9—H9 120.4
O1—Pb1—N1 78.91 (11) C9—C10—C11 119.3 (5)
N2—Pb1—N1 62.48 (11) C9—C10—H10 120.3
O3—Pb1—C7 82.19 (12) C11—C10—H10 120.3
O2—Pb1—C7 26.08 (12) C19—C11—C10 116.8 (5)
O1—Pb1—C7 26.33 (11) C19—C11—C12 120.4 (5)
N2—Pb1—C7 101.47 (13) C10—C11—C12 122.8 (5)
N1—Pb1—C7 73.94 (12) C13—C12—C11 120.7 (5)
C8—N1—C19 117.6 (4) C13—C12—H12 119.7
C8—N1—Pb1 122.9 (3) C11—C12—H12 119.7
C19—N1—Pb1 119.5 (3) C12—C13—C14 121.8 (5)
C17—N2—C18 117.6 (4) C12—C13—H13 119.1
C17—N2—Pb1 121.1 (3) C14—C13—H13 119.1
C18—N2—Pb1 121.2 (3) C15—C14—C18 118.6 (4)
C7—O1—Pb1 89.6 (3) C15—C14—C13 122.6 (5)
C7—O2—Pb1 96.1 (3) C18—C14—C13 118.8 (5)
C20—O3—Pb1 106.8 (3) C16—C15—C14 119.0 (4)
H1W—O5—H2W 110.9 C16—C15—H15 120.5
C2—C1—C6 119.3 (4) C14—C15—H15 120.5
C2—C1—C7 120.2 (4) C15—C16—C17 119.1 (5)
C6—C1—C7 120.5 (4) C15—C16—H16 120.5
C1—C2—C3 120.8 (5) C17—C16—H16 120.5
C1—C2—H2 119.6 N2—C17—C16 124.0 (4)
C3—C2—H2 119.6 N2—C17—H17 118.0
C4—C3—C2 119.4 (5) C16—C17—H17 118.0
C4—C3—H3 120.3 N2—C18—C14 121.8 (4)
C2—C3—H3 120.3 N2—C18—C19 118.5 (4)
C5—C4—C3 119.7 (5) C14—C18—C19 119.7 (4)
C5—C4—H4 120.1 N1—C19—C11 123.1 (4)
C3—C4—H4 120.1 N1—C19—C18 118.2 (4)
C6—C5—C4 120.8 (5) C11—C19—C18 118.7 (4)
C6—C5—H5 119.6 O4—C20—O3 123.1 (5)
C4—C5—H5 119.6 O4—C20—C21 120.1 (5)
C5—C6—C1 119.9 (5) O3—C20—C21 116.8 (5)
C5—C6—H6 120.0 C20—C21—H21A 109.5
C1—C6—H6 120.0 C20—C21—H21B 109.5
O2—C7—O1 121.9 (4) H21A—C21—H21B 109.5
O2—C7—C1 118.9 (4) C20—C21—H21C 109.5
O1—C7—C1 119.2 (4) H21A—C21—H21C 109.5
O2—C7—Pb1 57.8 (2) H21B—C21—H21C 109.5
O3—Pb1—N1—C8 −124.4 (3) C6—C1—C7—O1 −8.0 (7)
O2—Pb1—N1—C8 −93.9 (4) O3—Pb1—C7—O2 63.8 (3)
O1—Pb1—N1—C8 −40.1 (3) O1—Pb1—C7—O2 −179.1 (5)
N2—Pb1—N1—C8 −179.2 (4) N2—Pb1—C7—O2 −24.9 (3)
C7—Pb1—N1—C8 −66.7 (4) N1—Pb1—C7—O2 −81.6 (3)
O3—Pb1—N1—C19 56.5 (4) O3—Pb1—C7—O1 −117.1 (3)
O2—Pb1—N1—C19 87.0 (3) O2—Pb1—C7—O1 179.1 (5)
O1—Pb1—N1—C19 140.8 (3) N2—Pb1—C7—O1 154.2 (3)
N2—Pb1—N1—C19 1.7 (3) N1—Pb1—C7—O1 97.5 (3)
C7—Pb1—N1—C19 114.2 (3) C19—N1—C8—C9 0.4 (7)
O3—Pb1—N2—C17 34.5 (3) Pb1—N1—C8—C9 −178.7 (4)
O2—Pb1—N2—C17 105.7 (3) N1—C8—C9—C10 0.2 (8)
O1—Pb1—N2—C17 130.2 (3) C8—C9—C10—C11 −0.5 (7)
N1—Pb1—N2—C17 −178.5 (3) C9—C10—C11—C19 0.2 (7)
C7—Pb1—N2—C17 116.6 (3) C9—C10—C11—C12 178.4 (5)
O3—Pb1—N2—C18 −149.1 (3) C19—C11—C12—C13 −0.6 (7)
O2—Pb1—N2—C18 −77.9 (3) C10—C11—C12—C13 −178.6 (4)
O1—Pb1—N2—C18 −53.4 (3) C11—C12—C13—C14 −1.3 (7)
N1—Pb1—N2—C18 −2.1 (3) C12—C13—C14—C15 −179.3 (4)
C7—Pb1—N2—C18 −67.0 (3) C12—C13—C14—C18 1.7 (7)
O3—Pb1—O1—C7 62.2 (3) C18—C14—C15—C16 −0.3 (6)
O2—Pb1—O1—C7 −0.5 (3) C13—C14—C15—C16 −179.3 (4)
N2—Pb1—O1—C7 −31.3 (3) C14—C15—C16—C17 1.5 (7)
N1—Pb1—O1—C7 −76.1 (3) C18—N2—C17—C16 1.3 (6)
O3—Pb1—O2—C7 −110.5 (3) Pb1—N2—C17—C16 177.8 (3)
O1—Pb1—O2—C7 0.5 (3) C15—C16—C17—N2 −2.0 (7)
N2—Pb1—O2—C7 155.0 (3) C17—N2—C18—C14 −0.1 (6)
N1—Pb1—O2—C7 90.3 (3) Pb1—N2—C18—C14 −176.5 (3)
O2—Pb1—O3—C20 −157.3 (4) C17—N2—C18—C19 178.9 (4)
O1—Pb1—O3—C20 154.8 (3) Pb1—N2—C18—C19 2.5 (5)
N2—Pb1—O3—C20 −80.3 (3) C15—C14—C18—N2 −0.4 (6)
N1—Pb1—O3—C20 −126.8 (3) C13—C14—C18—N2 178.6 (4)
C7—Pb1—O3—C20 178.1 (4) C15—C14—C18—C19 −179.4 (4)
C6—C1—C2—C3 1.0 (8) C13—C14—C18—C19 −0.3 (6)
C7—C1—C2—C3 178.9 (5) C8—N1—C19—C11 −0.7 (6)
C1—C2—C3—C4 −0.2 (9) Pb1—N1—C19—C11 178.4 (3)
C2—C3—C4—C5 0.0 (9) C8—N1—C19—C18 179.6 (4)
C3—C4—C5—C6 −0.6 (9) Pb1—N1—C19—C18 −1.2 (5)
C4—C5—C6—C1 1.4 (8) C10—C11—C19—N1 0.4 (6)
C2—C1—C6—C5 −1.6 (7) C12—C11—C19—N1 −177.7 (4)
C7—C1—C6—C5 −179.5 (4) C10—C11—C19—C18 −180.0 (4)
Pb1—O2—C7—O1 −1.0 (5) C12—C11—C19—C18 1.9 (6)
Pb1—O2—C7—C1 179.3 (4) N2—C18—C19—N1 −0.8 (6)
Pb1—O1—C7—O2 0.9 (5) C14—C18—C19—N1 178.2 (4)
Pb1—O1—C7—C1 −179.4 (4) N2—C18—C19—C11 179.6 (4)
C2—C1—C7—O2 −6.3 (7) C14—C18—C19—C11 −1.4 (6)
C6—C1—C7—O2 171.7 (4) Pb1—O3—C20—O4 10.0 (7)
C2—C1—C7—O1 174.0 (4) Pb1—O3—C20—C21 −169.7 (4)

Symmetry codes: (i) −x, −y, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H2W···O3ii 0.83 2.15 2.958 (5) 166
O5—H1W···O4 0.83 2.11 2.928 (5) 169

Symmetry codes: (ii) x+1/2, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2634).

References

  1. Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Li, X.-H. & Yang, S.-Z. (2004). Acta Cryst. C60, m423–m425. [DOI] [PubMed]
  3. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  4. Shimoni-Livny, L., Glusker, J. P. & Bock, C. W. (1998). Inorg. Chem 37, 1853–1867.
  5. Westrip, S. P. (2009). publCIF In preparation.
  6. Xuan, X.-P. & Zhao, P.-Z. (2007). Acta Cryst. E63, m2678.
  7. Xuan, X.-P., Zhao, P.-Z. & Zhang, S.-X. (2008). Acta Cryst E64, m152–m153. [DOI] [PMC free article] [PubMed]
  8. Zhao, P.-Z., Xuan, X.-P. & Tang, Q.-H. (2007). Acta Cryst. E63, m3042–m3043.
  9. Zhu, N.-W., An, P. & Wang, X.-Z. (2004). Z. Kristallogr. New Cryst. Struct.219, 271–272.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809025896/sj2634sup1.cif

e-65-0m900-sup1.cif (22.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025896/sj2634Isup2.hkl

e-65-0m900-Isup2.hkl (216.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES