Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 4;65(Pt 8):o1776. doi: 10.1107/S160053680902460X

6,7,8,9,10,11-Hexahydro-13H-azocino[2,1-b]quinazolin-13-one

Rasul Ya Okmanov a,*, Zafir U Samarov a, Kambarali K Turgunov a, Bakhodir Tashkhodjaev a, Khusniddin M Shakhidoyatov a
PMCID: PMC2977403  PMID: 21583484

Abstract

The title compound, C14H16N2O, is a synthetic analogue of quinazolone alkaloids with pyrrilo, pyrido and azopino rings. The quinazolinic part of the mol­ecule is generally planar within 0.037 (3) Å; the eight-membered ring exhibits an inter­mediate conformation between the chair and boat forms as it is typical for cyclo­octene rings. An ethyl­ene group of the azopino ring is disordered over two positions with a refined occupancy ratio of 0.910 (7):0.090 (7). In the crystal, the H atoms of the aromatic rings form weak C—H⋯O and C—H⋯N hydrogen bonds. One C—H⋯O hydrogen bond leads to the formation of a one-dimensional chain. Another C—H⋯O and a C—H⋯N bond link these chains, generating a three-dimensional network.

Related literature

For the synthesis of the title compound, see: Shakhidoyatov et al. (1976). For its physiological activity, see: Shakhidoyatov (1988). For crystal structures of pyrido-quinazolone and azopino-quinazolone, see: Tashkhodzhaev et al. (1995). For spectroscopic data and the chemical structures of pyrido-quinazoline and -quinazolone alkaloids, see: Turgunov et al. (1995). For cyclo­octene ring conformations, see: Barnes et al. (1992). For weak hydrogen bonds in alkaloids, see: Rajnikant et al. (2005).graphic file with name e-65-o1776-scheme1.jpg

Experimental

Crystal data

  • C14H16N2O

  • M r = 228.29

  • Orthorhombic, Inline graphic

  • a = 9.5490 (19) Å

  • b = 10.584 (2) Å

  • c = 11.693 (2) Å

  • V = 1181.8 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 300 K

  • 0.60 × 0.42 × 0.35 mm

Data collection

  • Stoe Stadi-4 four-circle diffractometer

  • Absorption correction: none

  • 1229 measured reflections

  • 1208 independent reflections

  • 1061 reflections with I > 2σ(I)

  • 3 standard reflections frequency: 60 min intensity decay: 3.9%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.079

  • S = 1.17

  • 1208 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.11 e Å−3

Data collection: STADI4 (Stoe & Cie, 1997); cell refinement: STADI4; data reduction: X-RED (Stoe & Cie, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902460X/zl2205sup1.cif

e-65-o1776-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902460X/zl2205Isup2.hkl

e-65-o1776-Isup2.hkl (59.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8A⋯O1i 0.93 2.64 3.490 (3) 153
C9—H9A⋯N7ii 0.93 2.74 3.660 (3) 170
C10—H10A⋯O1iii 0.93 2.71 3.599 (3) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

We thank the Academy of Sciences of the Republic of Uzbekistan for supporting this study (grant MP-34).

supplementary crystallographic information

Comment

Tricyclic quinazolin-4-ones with polymethylenic fragments and their analogues are widely spread in plants and possess various physiological activities (Shakhidoyatov, 1988). With this in mind the title compound was synthesized (Shakhidoyatov et al., 1976) and its crystal structure has been investigated by single crystal X-ray diffraction.

Figure 1 shows an ortep style plot of the molecular structure of the title compound. An ethylene group of the molecule is disordered over two positions (C3, C3', C4, C4'). Refinement of the structure yielded an occupancy ratio of the disordered atoms (i.e. two conformers) of 0.910 (7):0.090 (7).

The quinazoline part of the molecule is a generally flat within a standard deviation of ±0.037 Å. The electronic system of the N7—C14—N15—C12 fragment of the pyrymidinic ring is delocalized as reflected by the bond lengths. The length of the formal double bond N7═C14 and the single bond C14—N15 in the structure of the title compound are 1.297 (3) and 1.383 (3) Å, respectively, which is in agreement with the range observed in crystals of pyrrilo, pyrido, and azopino quinazolones (Turgunov et al., 1995; Tashkhodzhaev et al., 1995). The length of the C═O bond (1.227 (3) Å) is also compareable to those observed in above mentioned analogues. The eight-membered ring has taken on an intermediate form between a chair and boat conformation typical for cycloectene rings (Barnes et al., 1992).

In the crystal structure of the title compound weak intermolecular C-H···X hydrogen bonds are observed as it is often the case in alkaloids (Rajnikant et al., 2005). The hydrogen bond C8–H8A···O1i leads to the formation of a one dimensional chain. Another C–H···O and a C–H···N bond (C10–H10A···O1iii and a C9–H9A···N7ii) link these chains to generate a three-dimensional network (Fig. 2 and 3; for numerical values and symmetry operators see Table 1).

Experimental

The title compound was synthesized on the basis of a well–known method (Shakhidoyatov, et al., 1976). Powder of title compound was dissolved in hot aqueous ethanol and from the solution yellow prismatic crystals were obtained during slow evaporation in a thermostat at a temperature of 313 K.

Refinement

In the absence of anomalous scatteres and using molybdenum radiation Friedel pairs were merged prior to refinement. The C3 and C4 atoms of the molecule are disordered over two positions (C3, C3', C4, C4'). Refinement of the structure by using a free variable for the occupancy led to a ratio for the disordered atoms of 0.910 (7):0.090 (7). The bond lengths of the disordfered hexamethylenic fragment were restrained to be the same within a standard deviation of 0.02 Å.

The H atoms bonded to C atoms were placed geometrically (with C—H distances of 0.97 Å for CH2 and 0.93 Å for Car) and included in the refinement with a riding motion approximation with Uiso = 1.2Ueq(C) [Uiso = 1.5Ueq(C) for methyl H atoms].

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with 50% probability displacement ellipsoids (bonds of the minor disordered moiety are represented by dashed lines).

Fig. 2.

Fig. 2.

The H-bonding networks in the crystal of the title compound. Minor moiety disordered atoms are omitted for clarity.

Fig. 3.

Fig. 3.

Schematic showing the weak hydrogen bonds (dashed lines).

Crystal data

C14H16N2O Dx = 1.283 Mg m3
Mr = 228.29 Melting point: 391(3) K
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 12 reflections
a = 9.5490 (19) Å θ = 10–15°
b = 10.584 (2) Å µ = 0.08 mm1
c = 11.693 (2) Å T = 300 K
V = 1181.8 (4) Å3 Prizmatic, yellow
Z = 4 0.60 × 0.42 × 0.35 mm
F(000) = 488

Data collection

Stoe Stadi-4 four-circle diffractometer Rint = 0.0000
Radiation source: fine-focus sealed tube θmax = 25.0°, θmin = 2.6°
graphite h = 0→11
ω/2θ scans k = 0→12
1229 measured reflections l = 0→13
1208 independent reflections 3 standard reflections every 60 min
1061 reflections with I > 2σ(I) intensity decay: 3.9%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0252P)2 + 0.261P] where P = (Fo2 + 2Fc2)/3
S = 1.17 (Δ/σ)max < 0.001
1208 reflections Δρmax = 0.14 e Å3
174 parameters Δρmin = −0.10 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.040 (3)

Special details

Experimental. Scan width (omega) = 1.56 - 1.68, scan ratio 2theta:omega = 1.00 I(Net) and sigma(I) calculated according to Blessing, (1987).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.48619 (19) 0.50852 (16) 0.48326 (16) 0.0541 (5)
C1 0.4342 (3) 0.7278 (3) 0.3757 (2) 0.0501 (7)
H1A 0.3555 0.6703 0.3823 0.060*
H1B 0.4167 0.7825 0.3107 0.060*
C2 0.4418 (3) 0.8074 (3) 0.4824 (3) 0.0626 (8)
H2A 0.4389 0.7519 0.5483 0.075*
H2B 0.3593 0.8608 0.4855 0.075*
C3 0.5710 (4) 0.8909 (3) 0.4918 (3) 0.0625 (11) 0.910 (7)
H3A 0.6529 0.8373 0.4990 0.075* 0.910 (7)
H3B 0.5639 0.9409 0.5611 0.075* 0.910 (7)
C4 0.5920 (5) 0.9800 (3) 0.3902 (4) 0.0672 (12) 0.910 (7)
H4A 0.5024 0.9930 0.3530 0.081* 0.910 (7)
H4B 0.6234 1.0612 0.4188 0.081* 0.910 (7)
C3' 0.492 (4) 0.938 (3) 0.437 (4) 0.076 (16) 0.090 (7)
H3C 0.4513 0.9551 0.3629 0.091* 0.090 (7)
H3D 0.4626 1.0046 0.4895 0.091* 0.090 (7)
C4' 0.654 (3) 0.934 (5) 0.429 (3) 0.057 (11) 0.090 (7)
H4C 0.6935 1.0078 0.4666 0.068* 0.090 (7)
H4D 0.6892 0.8593 0.4667 0.068* 0.090 (7)
C5 0.6969 (3) 0.9334 (3) 0.3012 (3) 0.0659 (9)
H5A 0.7816 0.9085 0.3411 0.079*
H5B 0.7209 1.0042 0.2523 0.079*
C6 0.6522 (3) 0.8230 (3) 0.2240 (2) 0.0556 (8)
H6A 0.5559 0.8366 0.2007 0.067*
H6B 0.7095 0.8247 0.1555 0.067*
N7 0.7692 (2) 0.62498 (19) 0.24573 (17) 0.0431 (5)
C8 0.8961 (3) 0.4294 (3) 0.2602 (2) 0.0504 (7)
H8A 0.9545 0.4558 0.2012 0.061*
C9 0.9186 (3) 0.3150 (3) 0.3122 (3) 0.0563 (8)
H9A 0.9923 0.2642 0.2880 0.068*
C10 0.8327 (3) 0.2743 (3) 0.4005 (3) 0.0562 (8)
H10A 0.8505 0.1974 0.4361 0.067*
C11 0.7218 (3) 0.3469 (2) 0.4355 (2) 0.0485 (7)
H11A 0.6638 0.3192 0.4943 0.058*
C12 0.5754 (3) 0.5395 (2) 0.4132 (2) 0.0377 (6)
C13 0.6967 (2) 0.4634 (2) 0.38186 (19) 0.0366 (6)
C14 0.6629 (3) 0.6936 (2) 0.2763 (2) 0.0400 (6)
N15 0.5625 (2) 0.65339 (18) 0.35342 (16) 0.0385 (5)
C16 0.7848 (2) 0.5065 (2) 0.2960 (2) 0.0379 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0525 (11) 0.0515 (11) 0.0582 (11) −0.0064 (10) 0.0185 (10) 0.0010 (10)
C1 0.0372 (13) 0.0490 (15) 0.0642 (17) 0.0079 (12) 0.0023 (13) −0.0053 (14)
C2 0.0607 (18) 0.0529 (16) 0.0743 (19) 0.0055 (16) 0.0161 (17) −0.0140 (16)
C3 0.063 (2) 0.058 (2) 0.067 (2) 0.006 (2) −0.007 (2) −0.0217 (19)
C4 0.069 (3) 0.0387 (19) 0.094 (3) 0.002 (2) −0.002 (3) −0.007 (2)
C3' 0.11 (4) 0.035 (18) 0.08 (3) 0.01 (2) 0.05 (3) −0.010 (19)
C4' 0.04 (2) 0.08 (3) 0.04 (2) 0.00 (2) −0.016 (17) 0.022 (19)
C5 0.0635 (19) 0.0414 (15) 0.093 (2) 0.0014 (15) 0.0113 (18) 0.0164 (17)
C6 0.0584 (17) 0.0541 (17) 0.0543 (16) 0.0136 (15) 0.0060 (14) 0.0176 (14)
N7 0.0404 (11) 0.0434 (12) 0.0456 (12) 0.0009 (10) 0.0059 (10) 0.0035 (10)
C8 0.0415 (15) 0.0526 (16) 0.0572 (17) 0.0040 (13) 0.0082 (14) −0.0044 (15)
C9 0.0487 (16) 0.0490 (16) 0.0713 (19) 0.0148 (15) −0.0032 (15) −0.0076 (15)
C10 0.0618 (17) 0.0392 (14) 0.0674 (18) 0.0080 (14) −0.0075 (17) 0.0010 (15)
C11 0.0537 (16) 0.0396 (14) 0.0523 (16) −0.0029 (14) −0.0010 (13) 0.0034 (12)
C12 0.0398 (13) 0.0368 (13) 0.0365 (12) −0.0059 (11) 0.0001 (13) −0.0044 (11)
C13 0.0368 (13) 0.0353 (12) 0.0377 (13) −0.0032 (11) −0.0011 (11) −0.0058 (10)
C14 0.0418 (14) 0.0417 (14) 0.0366 (13) 0.0020 (12) −0.0008 (12) 0.0004 (12)
N15 0.0362 (11) 0.0390 (11) 0.0401 (10) 0.0020 (10) 0.0014 (10) −0.0052 (9)
C16 0.0382 (14) 0.0363 (12) 0.0392 (12) −0.0005 (12) −0.0027 (11) −0.0030 (11)

Geometric parameters (Å, °)

O1—C12 1.227 (3) C5—C6 1.537 (4)
C1—N15 1.480 (3) C5—H5A 0.9700
C1—C2 1.507 (4) C5—H5B 0.9700
C1—H1A 0.9700 C6—C14 1.503 (4)
C1—H1B 0.9700 C6—H6A 0.9700
C2—C3 1.521 (4) C6—H6B 0.9700
C2—C3' 1.56 (3) N7—C14 1.298 (3)
C2—H2A 0.9700 N7—C16 1.393 (3)
C2—H2B 0.9700 C8—C9 1.371 (4)
C3—C4 1.530 (6) C8—C16 1.404 (3)
C3—H3A 0.9700 C8—H8A 0.9300
C3—H3B 0.9700 C9—C10 1.387 (4)
C4—C5 1.526 (5) C9—H9A 0.9300
C4—H4A 0.9700 C10—C11 1.371 (4)
C4—H4B 0.9700 C10—H10A 0.9300
C3'—C4' 1.55 (3) C11—C13 1.404 (3)
C3'—H3C 0.9700 C11—H11A 0.9300
C3'—H3D 0.9700 C12—N15 1.398 (3)
C4'—C5 1.55 (3) C12—C13 1.458 (3)
C4'—H4C 0.9700 C13—C16 1.387 (3)
C4'—H4D 0.9700 C14—N15 1.383 (3)
N15—C1—C2 113.8 (2) C4—C5—H5A 107.9
N15—C1—H1A 108.8 C6—C5—H5A 107.9
C2—C1—H1A 108.8 C4'—C5—H5A 76.1
N15—C1—H1B 108.8 C4—C5—H5B 107.9
C2—C1—H1B 108.8 C6—C5—H5B 107.9
H1A—C1—H1B 107.7 C4'—C5—H5B 128.7
C1—C2—C3 115.1 (2) H5A—C5—H5B 107.2
C1—C2—C3' 103.5 (16) C14—C6—C5 115.8 (2)
C1—C2—H2A 108.5 C14—C6—H6A 108.3
C3—C2—H2A 108.5 C5—C6—H6A 108.3
C3'—C2—H2A 144.7 C14—C6—H6B 108.3
C1—C2—H2B 108.5 C5—C6—H6B 108.3
C3—C2—H2B 108.5 H6A—C6—H6B 107.4
C3'—C2—H2B 75.1 C14—N7—C16 118.1 (2)
H2A—C2—H2B 107.5 C9—C8—C16 119.9 (3)
C2—C3—C4 114.1 (4) C9—C8—H8A 120.0
C2—C3—H3A 108.7 C16—C8—H8A 120.0
C4—C3—H3A 108.7 C8—C9—C10 120.8 (3)
C2—C3—H3B 108.7 C8—C9—H9A 119.6
C4—C3—H3B 108.7 C10—C9—H9A 119.6
H3A—C3—H3B 107.6 C11—C10—C9 120.3 (3)
C5—C4—C3 114.6 (4) C11—C10—H10A 119.8
C5—C4—H4A 108.6 C9—C10—H10A 119.8
C3—C4—H4A 108.6 C10—C11—C13 119.4 (3)
C5—C4—H4B 108.6 C10—C11—H11A 120.3
C3—C4—H4B 108.6 C13—C11—H11A 120.3
H4A—C4—H4B 107.6 O1—C12—N15 120.2 (2)
C4'—C3'—C2 108 (4) O1—C12—C13 124.9 (2)
C4'—C3'—H3C 110.2 N15—C12—C13 114.9 (2)
C2—C3'—H3C 110.2 C16—C13—C11 120.6 (2)
C4'—C3'—H3D 110.2 C16—C13—C12 118.8 (2)
C2—C3'—H3D 110.2 C11—C13—C12 120.6 (2)
H3C—C3'—H3D 108.5 N7—C14—N15 123.3 (2)
C5—C4'—C3' 109 (3) N7—C14—C6 116.8 (2)
C5—C4'—H4C 109.9 N15—C14—C6 119.9 (2)
C3'—C4'—H4C 109.9 C14—N15—C12 122.0 (2)
C5—C4'—H4D 109.9 C14—N15—C1 121.7 (2)
C3'—C4'—H4D 109.9 C12—N15—C1 116.3 (2)
H4C—C4'—H4D 108.3 C13—C16—N7 122.4 (2)
C4—C5—C6 117.7 (3) C13—C16—C8 119.0 (2)
C6—C5—C4' 119.9 (16) N7—C16—C8 118.6 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8A···O1i 0.93 2.64 3.490 (3) 153
C9—H9A···N7ii 0.93 2.74 3.660 (3) 170
C10—H10A···O1iii 0.93 2.71 3.599 (3) 162

Symmetry codes: (i) −x+3/2, −y+1, z−1/2; (ii) −x+2, y−1/2, −z+1/2; (iii) x+1/2, −y+1/2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2205).

References

  1. Barnes, J. C., Hunter, G., Keller, W., Paton, J. D. & Weissensteiner, W. (1992). Monatsh. Chem.123, 443–454.
  2. Bruker (1998). XP Bruker AXS Ins., Madison, Wisconsin, USA.
  3. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  4. Rajnikant, Dinesh & Kamni (2005). Bull. Mater. Sci.28, 187–198.
  5. Shakhidoyatov, Kh. M. (1988). Quinazolin-4-one and their biological activity, edited by M. S. Yunusov, S. R. Tulyaganov & M. M. Yunusov, p. 103. Tashkent: Fan.
  6. Shakhidoyatov, Kh. M., Irisbaev, A., Yun, L. M., Oripov, E. & Kadirov, Ch. Sh. (1976). Khim. Geterotsikl. Soedin.11, 1286–1291.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Stoe & Cie (1997). STADI4 and X-RED Stoe & Cie, Darmstadt, Germany.
  9. Tashkhodzhaev, B., Turgunov, K. K., D’yakonov, A. L., Belova, G. A. & Shakhidoyatov, Kh. M. (1995). Chem. Nat. Compd, 31, 342–348.
  10. Turgunov, K. K., Tashkhodzhaev, B., Molchanov, L. V. & Aripov, Kh. N. (1995). Chem. Nat. Compd, 31, 714–718.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902460X/zl2205sup1.cif

e-65-o1776-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902460X/zl2205Isup2.hkl

e-65-o1776-Isup2.hkl (59.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES