Abstract
In the title compound, C18H24N2, the molecular unit adopts a trans conformation around the central C—C bond [N—C—C—N torsion angle of 179.2 (3)°], with the two aromatic rings almost coplanar [dihedral angle of only 0.70 (4)°]. The crystal packing is driven by co-operative contacts involving weak C—H⋯N and C—H⋯π interactions, and also the need to fill effectively the available space.
Related literature
For related structures, see: Batsanov et al. (2007 ▶); Coelho et al. (2007 ▶); Paz & Klinowski (2003 ▶); Paz et al. (2002 ▶). For a description of the Cambridge Structural Database, see: Allen (2002 ▶).
Experimental
Crystal data
C18H24N2
M r = 268.39
Monoclinic,
a = 10.241 (5) Å
b = 6.228 (3) Å
c = 24.559 (10) Å
β = 99.75 (3)°
V = 1543.7 (12) Å3
Z = 4
Mo Kα radiation
μ = 0.07 mm−1
T = 296 K
0.20 × 0.16 × 0.14 mm
Data collection
Bruker X8 Kappa CCD APEXII diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1997 ▶) T min = 0.98, T max = 0.99
15295 measured reflections
2722 independent reflections
1805 reflections with I > 2σ(I)
R int = 0.044
Refinement
R[F 2 > 2σ(F 2)] = 0.080
wR(F 2) = 0.217
S = 1.12
2722 reflections
187 parameters
H-atom parameters constrained
Δρmax = 0.29 e Å−3
Δρmin = −0.44 e Å−3
Data collection: APEX2 (Bruker, 2006 ▶); cell refinement: SAINT-Plus (Bruker, 2005 ▶); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2009 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029109/bg2282sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029109/bg2282Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Enhanced figure: interactive version of Fig. 3
Enhanced figure: interactive version of Fig. 4
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| C12—H12B⋯N1i | 2.74 | 3.637 (4) | 155 | |
| C12—H12A⋯Cg2ii | 3.78 | 140 | ||
| C1—H1⋯Cg1ii | 3.40 | 137 |
Symmetry codes: (i)
; (ii)
. Cg1 and Cg2 are the centroids of the N1,C1–C5 and N2,C6–C10 rings, respectively.
Acknowledgments
We are grateful to Fundação para a Ciência e a Tecnologia (FCT, Portugal) for their general financial support (project PTDC/QUI/71198/2006) and also for specific funding towards the purchase of the single-crystal diffractometer.
supplementary crystallographic information
Comment
Organic derivatives of 2,2'-bipyridine find innumerous applications in the field of synthetic chemistry, in particular as N,N-chelating agents which are able to coordinate to a myriad of metal centres. A search in the literature and in the Cambridge Structural Database (CSD, Version of November 2008 with three updates; Allen, 2002) reveals that the title compound has been predominantely employed in the coordination chemistry field with only the structure by Batsanov et al. (2007) being of an organic crystal in which the title compound co-crystallizes with hexafluorobenzene: C18H24N2.C6F6. Following our interest on organic crystals with pyridine derivatives (Coelho et al., 2007; Paz & Klinowski, 2003; Paz et al., 2002) we wish to report the structure of the title compound (I) at 150K.
The asymmetric unit is composed of an entire molecular unit as depicted in Fig. 1. The molecule adopts in the crystal structure a trans conformation around the central C—C bond, a feature also reported by Batsanov et al. for the co-crystal with hexafluorobenzene. This conformation seems to minimize steric repulsion between the substituent tert-butyl groups and the heteroatoms from the aromatic rings. While in the structure of Batsanov et al. the 4,4'-di-tert-butyl-2,2'-dipyridyl residue is structurally located on a mirror plane, which ensures coplanarity for the two aromatic rings, in the standalone crystal here reported the atoms are located on generic positions. Nevertheless, the average planes containing the two aromatic rings subtend a dihedral angle of only ca 0.70°, with the corresponding <(N1—C5—C6—N2) torsion angle around the central bond being of 179.2 (3)°.
Individual molecules close pack in the solid state forming layers placed in the (001) plane of the unit cell (Fig. 2). The presence of the large tert-butyl groups seems to prevent the presence of π-π stacking interactions as it can be easily observed by manipulating Enhanced Fig. 4. We note the existence of a terminal —CH3 group engaged in a C—H···N hydrogen bonding interaction: even though this contact is considered as weak (dD···A being ca 3.64 Å) it is directional with <(DHA) being above 150° (Table 1). In addition, the same —CH3 group is involved in a C—H···π contact with the aromatic ring of an adjacent molecular unit [not shown; dC···π = ca 3.78 Å; <(C12—H12A···π) = ca 140°]. A similar contact connects two adjacent aromatic rings [not shown; dC1···π = ca 3.40 Å; <(C1—H1···π) = ca 137°]. Besides these weak cooperative interactions, close packing in (I) is further mediated by van der Waals interactions so to promote an effective filling of the available space. Noteworthy, in the C18H24N2.C6F6 organic crystal π-π contacts mediate the close packing because the auxiliary C6F6 molecule is small and can easily be accommodated on top of the 2,2'-dipyridyl residue.
Experimental
4,4'-Di-tert-butyl-2,2'-dipyridyl was purchased from Sigma-Aldrich (98% purity) and used as received without further purification. Single crystals were isolated from the slow evaporation (at ambient temperature) over the period of one month from a solution of the title compound in toluene (Sigma-Aldrich, ACS reagent, >99.5%).
Refinement
Hydrogen atoms bound to carbon were located at their idealized positions and were included in the final structural model in riding-motion approximation with C—H = 0.93 (aromatic C—H) or 0.96 Å (for the —CH3 moieties). The isotropic thermal displacement parameters for these atoms were fixed at 1.2 or 1.5 for the aromatic C—H or the —CH3 moieties, respectively, times Ueq(C).
Figures
Fig. 1.
Schematic representation of the molecular unit of the title compound, with non-hydrogen atoms being represented as thermal displacement ellipsoids drawn at the 50% probability level. The atomic labeling is provided for all non-hydrogen atoms. Bond lengths and angles are provided as supplementary material.
Fig. 2.
Crystal packing of the title compound viewed along the b axis of the unit cell.
Fig. 3.
Asymmetric unit of the title compound with all non-hydrogen atoms represented as thermal ellipsoids drawn at the 50% probability level.
Fig. 4.
Crystal packing of the title compound viewed along the [010] direction of the unit cell.
Crystal data
| C18H24N2 | F(000) = 584 |
| Mr = 268.39 | Dx = 1.155 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 5252 reflections |
| a = 10.241 (5) Å | θ = 3.4–25.3° |
| b = 6.228 (3) Å | µ = 0.07 mm−1 |
| c = 24.559 (10) Å | T = 296 K |
| β = 99.75 (3)° | Plate, colourless |
| V = 1543.7 (12) Å3 | 0.20 × 0.16 × 0.14 mm |
| Z = 4 |
Data collection
| Bruker X8 Kappa CCD APEXII diffractometer | 2722 independent reflections |
| Radiation source: fine-focus sealed tube | 1805 reflections with I > 2σ(I) |
| graphite | Rint = 0.044 |
| ω and φ scans | θmax = 25.3°, θmin = 3.6° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 1997) | h = −12→11 |
| Tmin = 0.98, Tmax = 0.99 | k = −7→5 |
| 15295 measured reflections | l = −29→29 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.080 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.217 | H-atom parameters constrained |
| S = 1.12 | w = 1/[σ2(Fo2) + (0.0449P)2 + 4.7425P] where P = (Fo2 + 2Fc2)/3 |
| 2722 reflections | (Δ/σ)max < 0.001 |
| 187 parameters | Δρmax = 0.29 e Å−3 |
| 0 restraints | Δρmin = −0.44 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| N1 | 0.3249 (3) | 0.3001 (5) | 0.25918 (12) | 0.0246 (7) | |
| N2 | 0.1719 (3) | 0.8151 (5) | 0.24419 (12) | 0.0243 (7) | |
| C1 | 0.3931 (3) | 0.1715 (6) | 0.23049 (14) | 0.0252 (8) | |
| H1 | 0.4201 | 0.0386 | 0.2456 | 0.030* | |
| C2 | 0.4260 (3) | 0.2236 (6) | 0.17986 (14) | 0.0256 (9) | |
| H2 | 0.4757 | 0.1284 | 0.1625 | 0.031* | |
| C3 | 0.3852 (3) | 0.4166 (6) | 0.15491 (13) | 0.0227 (8) | |
| C4 | 0.3118 (3) | 0.5477 (6) | 0.18389 (14) | 0.0240 (8) | |
| H4 | 0.2801 | 0.6786 | 0.1689 | 0.029* | |
| C5 | 0.2852 (3) | 0.4848 (6) | 0.23540 (14) | 0.0218 (8) | |
| C6 | 0.2103 (3) | 0.6285 (6) | 0.26780 (14) | 0.0213 (8) | |
| C7 | 0.1830 (3) | 0.5671 (6) | 0.31914 (14) | 0.0226 (8) | |
| H7 | 0.2130 | 0.4351 | 0.3340 | 0.027* | |
| C8 | 0.1115 (3) | 0.7010 (6) | 0.34851 (14) | 0.0233 (8) | |
| C9 | 0.0721 (3) | 0.8944 (6) | 0.32347 (14) | 0.0259 (9) | |
| H9 | 0.0241 | 0.9917 | 0.3409 | 0.031* | |
| C10 | 0.1041 (3) | 0.9434 (6) | 0.27250 (15) | 0.0258 (9) | |
| H10 | 0.0763 | 1.0752 | 0.2569 | 0.031* | |
| C11 | 0.4250 (4) | 0.4806 (7) | 0.10003 (14) | 0.0272 (9) | |
| C12 | 0.5727 (4) | 0.5224 (11) | 0.11030 (19) | 0.0645 (17) | |
| H12A | 0.6188 | 0.3938 | 0.1238 | 0.097* | |
| H12B | 0.5929 | 0.6345 | 0.1372 | 0.097* | |
| H12C | 0.6000 | 0.5655 | 0.0764 | 0.097* | |
| C13 | 0.3929 (6) | 0.3050 (10) | 0.05788 (19) | 0.0722 (19) | |
| H13A | 0.4108 | 0.3540 | 0.0228 | 0.108* | |
| H13B | 0.3009 | 0.2675 | 0.0545 | 0.108* | |
| H13C | 0.4464 | 0.1813 | 0.0694 | 0.108* | |
| C14 | 0.3543 (6) | 0.6789 (11) | 0.0762 (2) | 0.075 (2) | |
| H14A | 0.3818 | 0.7133 | 0.0417 | 0.112* | |
| H14B | 0.3754 | 0.7963 | 0.1015 | 0.112* | |
| H14C | 0.2604 | 0.6542 | 0.0701 | 0.112* | |
| C15 | 0.0734 (4) | 0.6350 (7) | 0.40367 (14) | 0.0277 (9) | |
| C16 | 0.1739 (5) | 0.4837 (10) | 0.43529 (18) | 0.0592 (16) | |
| H16A | 0.1497 | 0.4522 | 0.4705 | 0.089* | |
| H16B | 0.2599 | 0.5496 | 0.4407 | 0.089* | |
| H16C | 0.1761 | 0.3530 | 0.4147 | 0.089* | |
| C17 | −0.0606 (5) | 0.5247 (10) | 0.39153 (18) | 0.0558 (15) | |
| H17A | −0.1247 | 0.6214 | 0.3717 | 0.084* | |
| H17B | −0.0877 | 0.4840 | 0.4256 | 0.084* | |
| H17C | −0.0541 | 0.3989 | 0.3695 | 0.084* | |
| C18 | 0.0621 (6) | 0.8287 (9) | 0.44040 (18) | 0.0594 (15) | |
| H18A | −0.0077 | 0.9208 | 0.4229 | 0.089* | |
| H18B | 0.1443 | 0.9062 | 0.4462 | 0.089* | |
| H18C | 0.0426 | 0.7812 | 0.4753 | 0.089* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| N1 | 0.0221 (16) | 0.0236 (19) | 0.0285 (16) | −0.0027 (14) | 0.0056 (12) | −0.0015 (13) |
| N2 | 0.0191 (15) | 0.0244 (19) | 0.0306 (16) | 0.0026 (14) | 0.0073 (12) | 0.0036 (14) |
| C1 | 0.0225 (19) | 0.021 (2) | 0.0313 (19) | 0.0014 (16) | 0.0021 (15) | 0.0012 (16) |
| C2 | 0.0210 (19) | 0.029 (2) | 0.0274 (18) | −0.0026 (17) | 0.0044 (15) | −0.0060 (16) |
| C3 | 0.0175 (18) | 0.027 (2) | 0.0240 (18) | −0.0001 (16) | 0.0029 (14) | −0.0027 (16) |
| C4 | 0.0197 (18) | 0.026 (2) | 0.0256 (18) | 0.0016 (16) | 0.0027 (14) | 0.0020 (16) |
| C5 | 0.0166 (17) | 0.023 (2) | 0.0249 (17) | 0.0002 (16) | 0.0023 (14) | −0.0001 (15) |
| C6 | 0.0165 (17) | 0.021 (2) | 0.0256 (18) | −0.0033 (15) | 0.0013 (14) | −0.0043 (15) |
| C7 | 0.0215 (18) | 0.019 (2) | 0.0260 (18) | 0.0003 (16) | 0.0015 (14) | 0.0009 (15) |
| C8 | 0.0178 (18) | 0.026 (2) | 0.0263 (18) | −0.0042 (16) | 0.0031 (14) | −0.0051 (16) |
| C9 | 0.0205 (19) | 0.026 (2) | 0.0320 (19) | 0.0022 (16) | 0.0064 (15) | −0.0027 (16) |
| C10 | 0.0198 (18) | 0.024 (2) | 0.0336 (19) | 0.0025 (16) | 0.0055 (15) | 0.0023 (17) |
| C11 | 0.026 (2) | 0.033 (2) | 0.0240 (18) | −0.0017 (17) | 0.0078 (15) | 0.0013 (16) |
| C12 | 0.041 (3) | 0.112 (5) | 0.043 (3) | −0.022 (3) | 0.012 (2) | 0.017 (3) |
| C13 | 0.118 (5) | 0.071 (4) | 0.034 (3) | −0.030 (4) | 0.031 (3) | −0.013 (3) |
| C14 | 0.102 (5) | 0.085 (5) | 0.049 (3) | 0.046 (4) | 0.045 (3) | 0.034 (3) |
| C15 | 0.028 (2) | 0.033 (2) | 0.0227 (18) | 0.0033 (18) | 0.0056 (15) | −0.0009 (16) |
| C16 | 0.061 (3) | 0.085 (4) | 0.036 (2) | 0.028 (3) | 0.021 (2) | 0.025 (3) |
| C17 | 0.050 (3) | 0.084 (4) | 0.037 (2) | −0.031 (3) | 0.018 (2) | −0.003 (3) |
| C18 | 0.100 (4) | 0.048 (3) | 0.036 (2) | 0.001 (3) | 0.028 (3) | −0.002 (2) |
Geometric parameters (Å, °)
| N1—C5 | 1.323 (5) | C11—C12 | 1.513 (6) |
| N1—C1 | 1.338 (5) | C12—H12A | 0.9600 |
| N2—C6 | 1.328 (5) | C12—H12B | 0.9600 |
| N2—C10 | 1.329 (5) | C12—H12C | 0.9600 |
| C1—C2 | 1.381 (5) | C13—H13A | 0.9600 |
| C1—H1 | 0.9300 | C13—H13B | 0.9600 |
| C2—C3 | 1.382 (5) | C13—H13C | 0.9600 |
| C2—H2 | 0.9300 | C14—H14A | 0.9600 |
| C3—C4 | 1.385 (5) | C14—H14B | 0.9600 |
| C3—C11 | 1.526 (5) | C14—H14C | 0.9600 |
| C4—C5 | 1.395 (5) | C15—C16 | 1.510 (6) |
| C4—H4 | 0.9300 | C15—C17 | 1.518 (6) |
| C5—C6 | 1.493 (5) | C15—C18 | 1.522 (6) |
| C6—C7 | 1.390 (5) | C16—H16A | 0.9600 |
| C7—C8 | 1.389 (5) | C16—H16B | 0.9600 |
| C7—H7 | 0.9300 | C16—H16C | 0.9600 |
| C8—C9 | 1.382 (5) | C17—H17A | 0.9600 |
| C8—C15 | 1.529 (5) | C17—H17B | 0.9600 |
| C9—C10 | 1.381 (5) | C17—H17C | 0.9600 |
| C9—H9 | 0.9300 | C18—H18A | 0.9600 |
| C10—H10 | 0.9300 | C18—H18B | 0.9600 |
| C11—C14 | 1.500 (6) | C18—H18C | 0.9600 |
| C11—C13 | 1.503 (6) | ||
| C5—N1—C1 | 115.9 (3) | H12A—C12—H12B | 109.5 |
| C6—N2—C10 | 116.1 (3) | C11—C12—H12C | 109.5 |
| N1—C1—C2 | 124.2 (4) | H12A—C12—H12C | 109.5 |
| N1—C1—H1 | 117.9 | H12B—C12—H12C | 109.5 |
| C2—C1—H1 | 117.9 | C11—C13—H13A | 109.5 |
| C1—C2—C3 | 120.1 (3) | C11—C13—H13B | 109.5 |
| C1—C2—H2 | 119.9 | H13A—C13—H13B | 109.5 |
| C3—C2—H2 | 119.9 | C11—C13—H13C | 109.5 |
| C2—C3—C4 | 115.8 (3) | H13A—C13—H13C | 109.5 |
| C2—C3—C11 | 120.9 (3) | H13B—C13—H13C | 109.5 |
| C4—C3—C11 | 123.3 (3) | C11—C14—H14A | 109.5 |
| C3—C4—C5 | 120.4 (4) | C11—C14—H14B | 109.5 |
| C3—C4—H4 | 119.8 | H14A—C14—H14B | 109.5 |
| C5—C4—H4 | 119.8 | C11—C14—H14C | 109.5 |
| N1—C5—C4 | 123.5 (3) | H14A—C14—H14C | 109.5 |
| N1—C5—C6 | 115.7 (3) | H14B—C14—H14C | 109.5 |
| C4—C5—C6 | 120.8 (3) | C16—C15—C17 | 109.5 (4) |
| N2—C6—C7 | 123.1 (3) | C16—C15—C18 | 107.7 (4) |
| N2—C6—C5 | 115.6 (3) | C17—C15—C18 | 108.6 (4) |
| C7—C6—C5 | 121.3 (3) | C16—C15—C8 | 111.7 (3) |
| C8—C7—C6 | 120.7 (4) | C17—C15—C8 | 107.8 (3) |
| C8—C7—H7 | 119.7 | C18—C15—C8 | 111.6 (4) |
| C6—C7—H7 | 119.7 | C15—C16—H16A | 109.5 |
| C9—C8—C7 | 115.6 (3) | C15—C16—H16B | 109.5 |
| C9—C8—C15 | 122.0 (3) | H16A—C16—H16B | 109.5 |
| C7—C8—C15 | 122.4 (3) | C15—C16—H16C | 109.5 |
| C10—C9—C8 | 120.0 (3) | H16A—C16—H16C | 109.5 |
| C10—C9—H9 | 120.0 | H16B—C16—H16C | 109.5 |
| C8—C9—H9 | 120.0 | C15—C17—H17A | 109.5 |
| N2—C10—C9 | 124.5 (4) | C15—C17—H17B | 109.5 |
| N2—C10—H10 | 117.7 | H17A—C17—H17B | 109.5 |
| C9—C10—H10 | 117.7 | C15—C17—H17C | 109.5 |
| C14—C11—C13 | 107.2 (4) | H17A—C17—H17C | 109.5 |
| C14—C11—C12 | 109.0 (4) | H17B—C17—H17C | 109.5 |
| C13—C11—C12 | 109.6 (4) | C15—C18—H18A | 109.5 |
| C14—C11—C3 | 112.1 (3) | C15—C18—H18B | 109.5 |
| C13—C11—C3 | 111.0 (3) | H18A—C18—H18B | 109.5 |
| C12—C11—C3 | 107.9 (3) | C15—C18—H18C | 109.5 |
| C11—C12—H12A | 109.5 | H18A—C18—H18C | 109.5 |
| C11—C12—H12B | 109.5 | H18B—C18—H18C | 109.5 |
| C5—N1—C1—C2 | 1.9 (5) | C6—C7—C8—C9 | −0.5 (5) |
| N1—C1—C2—C3 | −1.7 (6) | C6—C7—C8—C15 | 176.8 (3) |
| C1—C2—C3—C4 | 0.1 (5) | C7—C8—C9—C10 | 0.1 (5) |
| C1—C2—C3—C11 | 177.7 (3) | C15—C8—C9—C10 | −177.2 (3) |
| C2—C3—C4—C5 | 1.2 (5) | C6—N2—C10—C9 | −0.2 (5) |
| C11—C3—C4—C5 | −176.3 (3) | C8—C9—C10—N2 | 0.2 (6) |
| C1—N1—C5—C4 | −0.5 (5) | C2—C3—C11—C14 | 171.5 (4) |
| C1—N1—C5—C6 | −179.4 (3) | C4—C3—C11—C14 | −11.1 (6) |
| C3—C4—C5—N1 | −1.1 (5) | C2—C3—C11—C13 | 51.7 (5) |
| C3—C4—C5—C6 | 177.8 (3) | C4—C3—C11—C13 | −131.0 (4) |
| C10—N2—C6—C7 | −0.3 (5) | C2—C3—C11—C12 | −68.5 (5) |
| C10—N2—C6—C5 | 179.4 (3) | C4—C3—C11—C12 | 108.9 (5) |
| N1—C5—C6—N2 | 179.2 (3) | C9—C8—C15—C16 | −152.6 (4) |
| C4—C5—C6—N2 | 0.2 (5) | C7—C8—C15—C16 | 30.2 (5) |
| N1—C5—C6—C7 | −1.1 (5) | C9—C8—C15—C17 | 87.1 (5) |
| C4—C5—C6—C7 | 179.9 (3) | C7—C8—C15—C17 | −90.1 (4) |
| N2—C6—C7—C8 | 0.6 (5) | C9—C8—C15—C18 | −32.0 (5) |
| C5—C6—C7—C8 | −179.0 (3) | C7—C8—C15—C18 | 150.8 (4) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| C12—H12B···N1i | . | 2.74 | 3.637 (4) | 155 |
| C12—H12A···Cg2ii | . | . | 3.78 | 140 |
| C1—H1···Cg1ii | . | . | 3.40 | 137 |
Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x+1, y−1/2, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2282).
References
- Allen, F. H. (2002). Acta Cryst. B58, 380–388. [DOI] [PubMed]
- Batsanov, A. S., Mkhalid, I. A. I. & Marder, T. B. (2007). Acta Cryst. E63, o1196–o1198.
- Brandenburg, K. (2009). DIAMOND Crystal Impact GbR, Bonn, Germany.
- Bruker (2005). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2006). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
- Coelho, A. C., Gonçalves, I. S. & Almeida Paz, F. A. (2007). Acta Cryst. E63, o1380–o1382.
- Paz, F. A. A., Bond, A. D., Khimyak, Y. Z. & Klinowski, J. (2002). New J. Chem.26, 381–383.
- Paz, F. A. A. & Klinowski, J. (2003). CrystEngComm, 5, 238–244.
- Sheldrick, G. M. (1997). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029109/bg2282sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029109/bg2282Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Enhanced figure: interactive version of Fig. 3
Enhanced figure: interactive version of Fig. 4




