Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 11;65(Pt 8):m906. doi: 10.1107/S1600536809026208

A new coordination tetra­mer of copper(I) iodide and benzyl­dimethyl­amine: tetra-μ3-iodido-tetra­kis[(benzyl­dimethyl­amine-κN)copper(I)]

Shuying Yang a, Yuebao Li a, Yujie Cui a, Jianguo Pan a,*
PMCID: PMC2977424  PMID: 21583366

Abstract

The title compound, [Cu4I4(C9H13N)4], has a distorted cubane-like [Cu4I4] core structure. Each CuI atom is tetra­hedrally coordinated by three I atoms and one N atom of an benzyl­dimethyl­amine ligand. Each I atom acts as a μ3-ligand, linking three CuI atoms. The Cu—I bond distances vary between 2.6328 (7) and 2.7121 (6) Å, while the Cu—N bond distances vary between 2.107 (3) and 2.122 (3) Å.

Related literature

For the synthesis and structures of copper iodide coordination polymers, see: Bi et al. (2007a ,b ); Chen et al. (2008).graphic file with name e-65-0m906-scheme1.jpg

Experimental

Crystal data

  • [Cu4I4(C9H13N)4]

  • M r = 1302.58

  • Monoclinic, Inline graphic

  • a = 17.758 (4) Å

  • b = 11.544 (2) Å

  • c = 21.540 (4) Å

  • β = 100.16 (3)°

  • V = 4346.3 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 4.80 mm−1

  • T = 298 K

  • 0.38 × 0.29 × 0.27 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.719, T max = 1.000 (expected range = 0.197–0.274)

  • 40151 measured reflections

  • 9884 independent reflections

  • 8944 reflections with I > 2σ(I)

  • R int = 0.063

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031

  • wR(F 2) = 0.059

  • S = 1.08

  • 9884 reflections

  • 434 parameters

  • 6 restraints

  • H-atom parameters constrained

  • Δρmax = 1.77 e Å−3

  • Δρmin = −0.94 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809026208/fj2223sup1.cif

e-65-0m906-sup1.cif (30.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026208/fj2223Isup2.hkl

e-65-0m906-Isup2.hkl (483.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected geometric parameters (Å, °).

Cu1—N1 2.107 (3)
Cu1—I4 2.6711 (8)
Cu1—I1 2.6892 (6)
Cu1—I2 2.6953 (8)
Cu2—N2 2.108 (3)
Cu2—I3 2.6609 (6)
Cu2—I4 2.6750 (6)
Cu2—I1 2.6819 (9)
Cu3—N3 2.122 (3)
Cu3—I4 2.6611 (6)
Cu3—I2 2.6947 (8)
Cu3—I3 2.7121 (6)
Cu4—N4 2.112 (3)
Cu4—I1 2.6328 (7)
Cu4—I2 2.6788 (6)
Cu4—I3 2.7090 (10)

Acknowledgments

This work was partially supported by the Zhejiang Provincial Natural Science Foundation (No.Y406277), the Ningbo Municipal Natural Science Foundation (No. 2005 A620023) and the K. C. Wang Magna Fund in Ningbo University.

supplementary crystallographic information

Comment

Copper halides have been widely investigated due to their rich photoluminescent properties and intriguing topology. In recent years, great efforts have been taken to synthesize and characterize copper iodide coordination polymers which have special crystal structure and properties. By now several classes of copper iodide coordination polymers have been successfully synthesized and investigated (Bi et al., 2007a,b; Chen et al., 2008). Herein, we report the synthesis and crystal structure of the title complex.

The title compound (Fig.1) has a distorted cubanelike [Cu4I4] core structure. Each copper(I) atom is tetrahedrally coordinated by three iodide atoms and one N atom of n-benzyldimethylamine. Each iodide atom acting as µ3-I links three copper(I) atoms. The Cu—I bond distances vary between 2.6328 (7) and 2.7121 (6) Å, while the Cu—N bond distances vary between 2.107 (3) and 2.122 (3) Å. The Cu—I and Cu—N bond distances correspond well with that found in the literatures listed in the comment. Finally, Cu4I4(C9H13N)4 forms the supramolecular structure via intermolecular forces.

Experimental

Cuprous iodide (0.3881 g) and n-benzyldimethylamine (1 ml) were sealed in a glass vial, which was heated at 353 K for two days. Then, the solution (0.5 ml) was put in another glass vial. One day later colorless and transparent crystals were obtained by slow evaporation of the solution at 353 K.

Refinement

All H atoms associated with C atoms were positioned geometrically and refined as riding model [C—H1=0.93 Å, C—H2=0.97 Å, C—H3=0.96Å Uiso(H)=1.2Ueq(C), Uiso(H)=1.5Ueq(C)].

Figures

Fig. 1.

Fig. 1.

The symmetric unit structure of Cu4I4(C9H13N)4 with displacement ellipsoids drawn at the 45% probability level.

Fig. 2.

Fig. 2.

The supramolecular structure formed via intermolecular forces.

Crystal data

[Cu4I4(C9H13N)4] F(000) = 2496
Mr = 1302.58 Dx = 1.991 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 40151 reflections
a = 17.758 (4) Å θ = 3.0–27.4°
b = 11.544 (2) Å µ = 4.80 mm1
c = 21.540 (4) Å T = 298 K
β = 100.16 (3)° Block, colorless
V = 4346.3 (15) Å3 0.38 × 0.29 × 0.27 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer 9884 independent reflections
Radiation source: fine-focus sealed tube 8944 reflections with I > 2σ(I)
graphite Rint = 0.063
ω scans θmax = 27.4°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −23→23
Tmin = 0.719, Tmax = 1.000 k = −14→14
40151 measured reflections l = −27→27

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031 H-atom parameters constrained
wR(F2) = 0.059 w = 1/[σ2(Fo2) + 6.5262P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.003
9884 reflections Δρmax = 1.77 e Å3
434 parameters Δρmin = −0.94 e Å3
6 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.00015 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 −0.00846 (2) 0.35843 (3) 0.16475 (2) 0.01613 (9)
Cu2 0.12653 (2) 0.45686 (3) 0.18503 (2) 0.01504 (9)
Cu3 0.05779 (2) 0.42114 (3) 0.289283 (19) 0.01594 (9)
Cu4 0.00552 (2) 0.58059 (3) 0.20498 (2) 0.01611 (9)
I1 0.020897 (11) 0.530945 (17) 0.088571 (10) 0.01611 (6)
I2 −0.093901 (11) 0.439045 (17) 0.247110 (10) 0.01551 (6)
I3 0.144530 (11) 0.610927 (17) 0.278368 (10) 0.01425 (5)
I4 0.110408 (11) 0.244188 (17) 0.230246 (10) 0.01544 (6)
C1 −0.1133 (2) 0.1608 (3) 0.14134 (18) 0.0230 (7)
H1A −0.1468 0.1099 0.1140 0.034*
H1B −0.1415 0.1990 0.1695 0.034*
H1C −0.0724 0.1166 0.1653 0.034*
C2 −0.14480 (18) 0.3176 (3) 0.06819 (17) 0.0218 (7)
H2A −0.1784 0.2680 0.0401 0.033*
H2B −0.1248 0.3767 0.0443 0.033*
H2C −0.1727 0.3529 0.0975 0.033*
C3 −0.03673 (17) 0.1916 (3) 0.05871 (16) 0.0170 (7)
H3A 0.0047 0.1479 0.0834 0.020*
H3B −0.0140 0.2515 0.0364 0.020*
C4 −0.08217 (17) 0.1108 (3) 0.01039 (16) 0.0172 (7)
C5 −0.0909 (2) −0.0059 (3) 0.02337 (18) 0.0212 (7)
H5A −0.0688 −0.0356 0.0625 0.025*
C6 −0.13257 (19) −0.0788 (3) −0.02167 (18) 0.0237 (8)
H6A −0.1385 −0.1565 −0.0122 0.028*
C7 −0.16496 (19) −0.0367 (3) −0.08022 (18) 0.0239 (8)
H7A −0.1924 −0.0859 −0.1102 0.029*
C8 −0.15646 (19) 0.0791 (3) −0.09414 (18) 0.0232 (8)
H8A −0.1783 0.1081 −0.1335 0.028*
C9 −0.11522 (18) 0.1522 (3) −0.04909 (17) 0.0200 (7)
H9A −0.1096 0.2298 −0.0588 0.024*
C11 0.29409 (18) 0.4446 (3) 0.20081 (17) 0.0192 (7)
H11A 0.3412 0.4481 0.1849 0.029*
H11B 0.2889 0.3695 0.2187 0.029*
H11C 0.2943 0.5028 0.2327 0.029*
C12 0.2371 (2) 0.5829 (3) 0.12264 (17) 0.0207 (7)
H12A 0.2836 0.5870 0.1058 0.031*
H12B 0.2385 0.6392 0.1556 0.031*
H12C 0.1943 0.5985 0.0897 0.031*
C13 0.2257 (2) 0.3751 (3) 0.09826 (17) 0.0221 (7)
H13A 0.1764 0.3808 0.0707 0.027*
H13B 0.2283 0.2996 0.1182 0.027*
C14 0.2872 (2) 0.3810 (3) 0.05807 (18) 0.0266 (8)
C15 0.2717 (3) 0.4335 (4) −0.0012 (2) 0.0582 (16)
H15A 0.2229 0.4620 −0.0160 0.070*
C16 0.3270 (4) 0.4439 (5) −0.0382 (3) 0.0761 (19)
H16A 0.3156 0.4807 −0.0771 0.091*
C17 0.3996 (4) 0.4000 (4) −0.0177 (3) 0.0686 (18)
H17A 0.4370 0.4071 −0.0428 0.082*
C18 0.4163 (3) 0.3456 (4) 0.0402 (2) 0.0439 (11)
H18A 0.4649 0.3157 0.0543 0.053*
C19 0.3596 (2) 0.3359 (3) 0.07735 (19) 0.0281 (8)
H19A 0.3709 0.2981 0.1160 0.034*
C21 0.0141 (2) 0.3227 (3) 0.40695 (18) 0.0243 (8)
H21A 0.0179 0.3227 0.4520 0.036*
H21B 0.0306 0.2491 0.3935 0.036*
H21C −0.0381 0.3361 0.3874 0.036*
C22 0.03421 (19) 0.5276 (3) 0.40854 (17) 0.0207 (7)
H22A 0.0360 0.5268 0.4533 0.031*
H22B −0.0176 0.5391 0.3875 0.031*
H22C 0.0657 0.5893 0.3977 0.031*
C23 0.14486 (18) 0.3971 (3) 0.41885 (17) 0.0217 (7)
H23A 0.1753 0.4590 0.4054 0.026*
H23B 0.1625 0.3249 0.4034 0.026*
C24 0.15991 (19) 0.3937 (3) 0.49034 (18) 0.0249 (8)
C25 0.17937 (19) 0.4938 (4) 0.52562 (19) 0.0316 (9)
H25A 0.1844 0.5634 0.5050 0.038*
C26 0.1913 (2) 0.4913 (4) 0.5908 (2) 0.0378 (10)
H26A 0.2045 0.5587 0.6137 0.045*
C27 0.1834 (2) 0.3883 (5) 0.6217 (2) 0.0398 (11)
H27A 0.1906 0.3869 0.6656 0.048*
C28 0.1650 (2) 0.2878 (4) 0.58806 (19) 0.0362 (10)
H28A 0.1604 0.2185 0.6091 0.043*
C29 0.1533 (2) 0.2902 (4) 0.52248 (18) 0.0295 (9)
H29A 0.1409 0.2222 0.4998 0.035*
C31 0.0059 (2) 0.8294 (3) 0.17982 (18) 0.0238 (8)
H31A −0.0159 0.9056 0.1787 0.036*
H31B 0.0122 0.8073 0.1381 0.036*
H31C 0.0549 0.8294 0.2072 0.036*
C32 −0.1203 (2) 0.7451 (3) 0.16079 (18) 0.0246 (8)
H32A −0.1433 0.8204 0.1604 0.037*
H32B −0.1531 0.6888 0.1752 0.037*
H32C −0.1130 0.7255 0.1189 0.037*
C33 −0.05426 (19) 0.7741 (3) 0.26976 (16) 0.0186 (7)
H33A −0.0045 0.7671 0.2966 0.022*
H33B −0.0875 0.7164 0.2835 0.022*
C34 −0.08608 (19) 0.8926 (3) 0.28009 (16) 0.0171 (7)
C35 −0.03778 (19) 0.9878 (3) 0.29292 (18) 0.0224 (7)
H35A 0.0147 0.9775 0.2960 0.027*
C36 −0.0660 (2) 1.0976 (3) 0.30126 (18) 0.0233 (8)
H36A −0.0328 1.1603 0.3088 0.028*
C37 −0.1438 (2) 1.1136 (3) 0.29828 (17) 0.0220 (7)
H37A −0.1629 1.1869 0.3045 0.026*
C38 −0.19297 (19) 1.0205 (3) 0.28603 (17) 0.0214 (7)
H38A −0.2453 1.0312 0.2839 0.026*
C39 −0.16446 (19) 0.9105 (3) 0.27686 (17) 0.0189 (7)
H39A −0.1980 0.8484 0.2685 0.023*
N1 −0.08119 (14) 0.2486 (2) 0.10298 (13) 0.0157 (6)
N2 0.22903 (15) 0.4653 (2) 0.14853 (13) 0.0158 (6)
N3 0.06292 (15) 0.4150 (2) 0.38841 (13) 0.0162 (6)
N4 −0.04546 (15) 0.7461 (2) 0.20371 (13) 0.0171 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01373 (18) 0.01576 (18) 0.0179 (2) −0.00103 (16) 0.00007 (15) −0.00207 (15)
Cu2 0.01317 (18) 0.01511 (18) 0.0169 (2) −0.00067 (15) 0.00288 (15) −0.00087 (15)
Cu3 0.01647 (19) 0.01768 (19) 0.0138 (2) 0.00067 (16) 0.00297 (15) 0.00108 (15)
Cu4 0.01831 (19) 0.01386 (18) 0.0161 (2) 0.00297 (16) 0.00278 (15) 0.00088 (15)
I1 0.01885 (10) 0.01741 (10) 0.01135 (11) −0.00066 (8) 0.00072 (8) 0.00055 (8)
I2 0.01233 (10) 0.01651 (10) 0.01800 (12) 0.00070 (8) 0.00350 (8) −0.00110 (8)
I3 0.01502 (10) 0.01455 (10) 0.01326 (11) −0.00241 (8) 0.00275 (7) −0.00213 (7)
I4 0.01374 (10) 0.01215 (9) 0.02016 (12) 0.00196 (8) 0.00229 (8) 0.00118 (8)
C1 0.0227 (17) 0.0228 (17) 0.025 (2) −0.0068 (15) 0.0082 (14) −0.0037 (14)
C2 0.0144 (15) 0.0229 (17) 0.026 (2) 0.0043 (14) −0.0024 (13) −0.0055 (14)
C3 0.0113 (14) 0.0206 (15) 0.0190 (18) −0.0016 (13) 0.0025 (12) −0.0043 (13)
C4 0.0114 (14) 0.0207 (16) 0.0210 (19) −0.0002 (13) 0.0066 (12) −0.0047 (13)
C5 0.0228 (17) 0.0171 (15) 0.023 (2) 0.0033 (14) 0.0018 (14) −0.0027 (13)
C6 0.0213 (17) 0.0179 (16) 0.032 (2) −0.0015 (14) 0.0062 (15) −0.0055 (14)
C7 0.0179 (16) 0.0252 (17) 0.029 (2) −0.0020 (15) 0.0046 (14) −0.0115 (15)
C8 0.0189 (16) 0.0320 (19) 0.0186 (19) −0.0016 (15) 0.0032 (14) −0.0050 (15)
C9 0.0207 (16) 0.0197 (16) 0.0208 (19) −0.0018 (14) 0.0070 (13) −0.0022 (13)
C11 0.0144 (15) 0.0217 (16) 0.0216 (19) 0.0030 (13) 0.0039 (13) −0.0006 (13)
C12 0.0246 (17) 0.0164 (15) 0.023 (2) 0.0022 (14) 0.0102 (14) 0.0037 (13)
C13 0.0245 (17) 0.0197 (16) 0.022 (2) 0.0025 (15) 0.0030 (14) −0.0068 (14)
C14 0.039 (2) 0.0215 (17) 0.022 (2) 0.0121 (17) 0.0131 (16) 0.0004 (14)
C15 0.094 (4) 0.059 (3) 0.025 (3) 0.051 (3) 0.021 (3) 0.011 (2)
C16 0.139 (5) 0.061 (3) 0.044 (3) 0.061 (3) 0.059 (3) 0.030 (3)
C17 0.121 (5) 0.044 (3) 0.062 (4) 0.026 (3) 0.076 (3) 0.019 (2)
C18 0.051 (3) 0.038 (2) 0.052 (3) 0.010 (2) 0.034 (2) 0.004 (2)
C19 0.037 (2) 0.0242 (18) 0.026 (2) 0.0077 (17) 0.0160 (16) 0.0042 (15)
C21 0.0254 (18) 0.0253 (18) 0.022 (2) −0.0069 (16) 0.0042 (14) 0.0059 (15)
C22 0.0193 (16) 0.0251 (17) 0.0189 (19) 0.0020 (15) 0.0069 (13) −0.0016 (14)
C23 0.0148 (15) 0.0314 (18) 0.0195 (19) 0.0052 (15) 0.0042 (13) 0.0052 (15)
C24 0.0130 (15) 0.042 (2) 0.020 (2) 0.0067 (16) 0.0032 (13) 0.0017 (16)
C25 0.0154 (16) 0.052 (2) 0.027 (2) −0.0037 (18) 0.0019 (15) −0.0029 (18)
C26 0.0194 (18) 0.067 (3) 0.026 (2) 0.000 (2) 0.0035 (16) −0.012 (2)
C27 0.0194 (18) 0.082 (3) 0.019 (2) 0.013 (2) 0.0049 (15) 0.002 (2)
C28 0.0246 (19) 0.063 (3) 0.022 (2) 0.016 (2) 0.0071 (15) 0.015 (2)
C29 0.0240 (18) 0.044 (2) 0.021 (2) 0.0129 (17) 0.0057 (15) 0.0046 (17)
C31 0.0315 (19) 0.0167 (15) 0.025 (2) 0.0036 (15) 0.0112 (15) 0.0066 (14)
C32 0.0249 (18) 0.0231 (17) 0.024 (2) 0.0081 (15) −0.0021 (14) −0.0026 (14)
C33 0.0231 (16) 0.0173 (15) 0.0162 (18) 0.0047 (14) 0.0062 (13) 0.0018 (13)
C34 0.0205 (16) 0.0165 (15) 0.0146 (17) 0.0015 (14) 0.0038 (13) 0.0000 (12)
C35 0.0154 (15) 0.0268 (18) 0.025 (2) −0.0008 (15) 0.0033 (14) −0.0070 (15)
C36 0.0241 (17) 0.0201 (16) 0.026 (2) −0.0077 (15) 0.0069 (15) −0.0082 (14)
C37 0.0260 (18) 0.0179 (16) 0.024 (2) 0.0031 (15) 0.0088 (14) −0.0017 (14)
C38 0.0147 (15) 0.0264 (17) 0.024 (2) 0.0032 (14) 0.0044 (13) 0.0003 (14)
C39 0.0169 (15) 0.0197 (16) 0.0204 (19) −0.0029 (14) 0.0044 (13) −0.0009 (13)
N1 0.0117 (12) 0.0168 (13) 0.0187 (15) −0.0010 (11) 0.0026 (10) −0.0023 (11)
N2 0.0169 (13) 0.0131 (12) 0.0179 (15) −0.0009 (11) 0.0043 (11) 0.0002 (11)
N3 0.0158 (13) 0.0183 (13) 0.0149 (15) 0.0004 (11) 0.0034 (11) 0.0029 (11)
N4 0.0205 (14) 0.0167 (13) 0.0143 (15) 0.0042 (12) 0.0039 (11) 0.0023 (11)

Geometric parameters (Å, °)

Cu1—N1 2.107 (3) C14—C19 1.381 (5)
Cu1—Cu2 2.6189 (7) C14—C15 1.396 (6)
Cu1—I4 2.6711 (8) C15—C16 1.374 (8)
Cu1—I1 2.6892 (6) C15—H15A 0.9300
Cu1—I2 2.6953 (8) C16—C17 1.383 (9)
Cu1—Cu4 2.7043 (7) C16—H16A 0.9300
Cu1—Cu3 2.8266 (9) C17—C18 1.381 (7)
Cu2—N2 2.108 (3) C17—H17A 0.9300
Cu2—I3 2.6609 (6) C18—C19 1.397 (6)
Cu2—I4 2.6750 (6) C18—H18A 0.9300
Cu2—Cu4 2.6774 (7) C19—H19A 0.9300
Cu2—I1 2.6819 (9) C21—N3 1.473 (4)
Cu2—Cu3 2.7694 (9) C21—H21A 0.9600
Cu3—N3 2.122 (3) C21—H21B 0.9600
Cu3—Cu4 2.6368 (7) C21—H21C 0.9600
Cu3—I4 2.6611 (6) C22—N3 1.488 (4)
Cu3—I2 2.6947 (8) C22—H22A 0.9600
Cu3—I3 2.7121 (6) C22—H22B 0.9600
Cu4—N4 2.112 (3) C22—H22C 0.9600
Cu4—I1 2.6328 (7) C23—N3 1.501 (4)
Cu4—I2 2.6788 (6) C23—C24 1.516 (5)
Cu4—I3 2.7090 (10) C23—H23A 0.9700
C1—N1 1.484 (4) C23—H23B 0.9700
C1—H1A 0.9600 C24—C25 1.393 (6)
C1—H1B 0.9600 C24—C29 1.396 (5)
C1—H1C 0.9600 C25—C26 1.382 (6)
C2—N1 1.474 (4) C25—H25A 0.9300
C2—H2A 0.9600 C26—C27 1.382 (7)
C2—H2B 0.9600 C26—H26A 0.9300
C2—H2C 0.9600 C27—C28 1.377 (7)
C3—N1 1.494 (4) C27—H27A 0.9300
C3—C4 1.519 (4) C28—C29 1.391 (5)
C3—H3A 0.9700 C28—H28A 0.9300
C3—H3B 0.9700 C29—H29A 0.9300
C4—C5 1.391 (5) C31—N4 1.480 (4)
C4—C9 1.396 (5) C31—H31A 0.9600
C5—C6 1.394 (5) C31—H31B 0.9600
C5—H5A 0.9300 C31—H31C 0.9600
C6—C7 1.379 (5) C32—N4 1.479 (4)
C6—H6A 0.9300 C32—H32A 0.9600
C7—C8 1.385 (5) C32—H32B 0.9600
C7—H7A 0.9300 C32—H32C 0.9600
C8—C9 1.392 (5) C33—N4 1.494 (4)
C8—H8A 0.9300 C33—C34 1.510 (4)
C9—H9A 0.9300 C33—H33A 0.9700
C11—N2 1.484 (4) C33—H33B 0.9700
C11—H11A 0.9600 C34—C35 1.392 (5)
C11—H11B 0.9600 C34—C39 1.397 (5)
C11—H11C 0.9600 C35—C36 1.386 (5)
C12—N2 1.483 (4) C35—H35A 0.9300
C12—H12A 0.9600 C36—C37 1.384 (5)
C12—H12B 0.9600 C36—H36A 0.9300
C12—H12C 0.9600 C37—C38 1.380 (5)
C13—N2 1.496 (4) C37—H37A 0.9300
C13—C14 1.510 (5) C38—C39 1.393 (5)
C13—H13A 0.9700 C38—H38A 0.9300
C13—H13B 0.9700 C39—H39A 0.9300
N1—Cu1—Cu2 143.85 (8) N2—C11—H11A 109.5
N1—Cu1—I4 112.06 (8) N2—C11—H11B 109.5
Cu2—Cu1—I4 60.74 (2) H11A—C11—H11B 109.5
N1—Cu1—I1 102.92 (8) N2—C11—H11C 109.5
Cu2—Cu1—I1 60.68 (2) H11A—C11—H11C 109.5
I4—Cu1—I1 117.89 (2) H11B—C11—H11C 109.5
N1—Cu1—I2 105.65 (8) N2—C12—H12A 109.5
Cu2—Cu1—I2 110.21 (2) N2—C12—H12B 109.5
I4—Cu1—I2 107.88 (2) H12A—C12—H12B 109.5
I1—Cu1—I2 109.76 (2) N2—C12—H12C 109.5
N1—Cu1—Cu4 141.67 (7) H12A—C12—H12C 109.5
Cu2—Cu1—Cu4 60.368 (17) H12B—C12—H12C 109.5
I4—Cu1—Cu4 106.24 (2) N2—C13—C14 116.4 (3)
I1—Cu1—Cu4 58.436 (18) N2—C13—H13A 108.2
I2—Cu1—Cu4 59.485 (14) C14—C13—H13A 108.2
N1—Cu1—Cu3 149.25 (8) N2—C13—H13B 108.2
Cu2—Cu1—Cu3 60.99 (3) C14—C13—H13B 108.2
I4—Cu1—Cu3 57.82 (2) H13A—C13—H13B 107.3
I1—Cu1—Cu3 107.241 (19) C19—C14—C15 117.5 (4)
I2—Cu1—Cu3 58.36 (2) C19—C14—C13 122.7 (3)
Cu4—Cu1—Cu3 56.893 (14) C15—C14—C13 119.9 (4)
N2—Cu2—Cu1 141.53 (8) C16—C15—C14 121.5 (5)
N2—Cu2—I3 104.72 (8) C16—C15—H15A 119.3
Cu1—Cu2—I3 113.60 (3) C14—C15—H15A 119.3
N2—Cu2—I4 109.47 (7) C15—C16—C17 120.3 (5)
Cu1—Cu2—I4 60.592 (18) C15—C16—H16A 119.8
I3—Cu2—I4 110.16 (2) C17—C16—H16A 119.8
N2—Cu2—Cu4 143.63 (7) C18—C17—C16 119.5 (5)
Cu1—Cu2—Cu4 61.40 (2) C18—C17—H17A 120.2
I3—Cu2—Cu4 60.99 (2) C16—C17—H17A 120.2
I4—Cu2—Cu4 106.90 (2) C17—C18—C19 119.5 (5)
N2—Cu2—I1 103.19 (8) C17—C18—H18A 120.2
Cu1—Cu2—I1 60.96 (2) C19—C18—H18A 120.2
I3—Cu2—I1 110.28 (2) C14—C19—C18 121.6 (4)
I4—Cu2—I1 118.005 (16) C14—C19—H19A 119.2
Cu4—Cu2—I1 58.845 (19) C18—C19—H19A 119.2
N2—Cu2—Cu3 147.38 (8) N3—C21—H21A 109.5
Cu1—Cu2—Cu3 63.21 (3) N3—C21—H21B 109.5
I3—Cu2—Cu3 59.886 (17) H21A—C21—H21B 109.5
I4—Cu2—Cu3 58.490 (13) N3—C21—H21C 109.5
Cu4—Cu2—Cu3 57.88 (2) H21A—C21—H21C 109.5
I1—Cu2—Cu3 109.12 (2) H21B—C21—H21C 109.5
N3—Cu3—Cu4 131.57 (8) N3—C22—H22A 109.5
N3—Cu3—I4 119.92 (7) N3—C22—H22B 109.5
Cu4—Cu3—I4 108.51 (2) H22A—C22—H22B 109.5
N3—Cu3—I2 101.81 (8) N3—C22—H22C 109.5
Cu4—Cu3—I2 60.31 (2) H22A—C22—H22C 109.5
I4—Cu3—I2 108.19 (2) H22B—C22—H22C 109.5
N3—Cu3—I3 100.94 (8) N3—C23—C24 115.5 (3)
Cu4—Cu3—I3 60.84 (2) N3—C23—H23A 108.4
I4—Cu3—I3 109.03 (2) C24—C23—H23A 108.4
I2—Cu3—I3 117.263 (17) N3—C23—H23B 108.4
N3—Cu3—Cu2 150.92 (7) C24—C23—H23B 108.4
Cu4—Cu3—Cu2 59.313 (18) H23A—C23—H23B 107.5
I4—Cu3—Cu2 58.983 (17) C25—C24—C29 118.3 (4)
I2—Cu3—Cu2 105.82 (3) C25—C24—C23 121.0 (4)
I3—Cu3—Cu2 58.072 (16) C29—C24—C23 120.7 (4)
N3—Cu3—Cu1 152.01 (7) C26—C25—C24 121.0 (4)
Cu4—Cu3—Cu1 59.22 (2) C26—C25—H25A 119.5
I4—Cu3—Cu1 58.159 (17) C24—C25—H25A 119.5
I2—Cu3—Cu1 58.38 (3) C25—C26—C27 119.9 (4)
I3—Cu3—Cu1 105.80 (2) C25—C26—H26A 120.1
Cu2—Cu3—Cu1 55.798 (19) C27—C26—H26A 120.1
N4—Cu4—I1 107.50 (8) C28—C27—C26 120.4 (4)
N4—Cu4—Cu3 137.59 (8) C28—C27—H27A 119.8
I1—Cu4—Cu3 114.89 (2) C26—C27—H27A 119.8
N4—Cu4—Cu2 146.59 (8) C27—C28—C29 119.8 (4)
I1—Cu4—Cu2 60.66 (3) C27—C28—H28A 120.1
Cu3—Cu4—Cu2 62.81 (2) C29—C28—H28A 120.1
N4—Cu4—I2 104.45 (8) C28—C29—C24 120.7 (4)
I1—Cu4—I2 112.03 (2) C28—C29—H29A 119.7
Cu3—Cu4—I2 60.92 (2) C24—C29—H29A 119.7
Cu2—Cu4—I2 108.94 (2) N4—C31—H31A 109.5
N4—Cu4—Cu1 147.00 (8) N4—C31—H31B 109.5
I1—Cu4—Cu1 60.494 (14) H31A—C31—H31B 109.5
Cu3—Cu4—Cu1 63.89 (2) N4—C31—H31C 109.5
Cu2—Cu4—Cu1 58.236 (17) H31A—C31—H31C 109.5
I2—Cu4—Cu1 60.089 (18) H31B—C31—H31C 109.5
N4—Cu4—I3 103.60 (7) N4—C32—H32A 109.5
I1—Cu4—I3 110.30 (3) N4—C32—H32B 109.5
Cu3—Cu4—I3 60.95 (2) H32A—C32—H32B 109.5
Cu2—Cu4—I3 59.205 (17) N4—C32—H32C 109.5
I2—Cu4—I3 117.93 (2) H32A—C32—H32C 109.5
Cu1—Cu4—I3 109.405 (17) H32B—C32—H32C 109.5
Cu4—I1—Cu2 60.49 (2) N4—C33—C34 116.2 (3)
Cu4—I1—Cu1 61.070 (17) N4—C33—H33A 108.2
Cu2—I1—Cu1 58.366 (16) C34—C33—H33A 108.2
Cu4—I2—Cu3 58.773 (17) N4—C33—H33B 108.2
Cu4—I2—Cu1 60.43 (2) C34—C33—H33B 108.2
Cu3—I2—Cu1 63.26 (2) H33A—C33—H33B 107.4
Cu2—I3—Cu4 59.81 (2) C35—C34—C39 117.8 (3)
Cu2—I3—Cu3 62.04 (2) C35—C34—C33 120.7 (3)
Cu4—I3—Cu3 58.208 (14) C39—C34—C33 121.5 (3)
Cu3—I4—Cu1 64.025 (19) C36—C35—C34 121.6 (3)
Cu3—I4—Cu2 62.53 (2) C36—C35—H35A 119.2
Cu1—I4—Cu2 58.665 (15) C34—C35—H35A 119.2
N1—C1—H1A 109.5 C37—C36—C35 119.8 (3)
N1—C1—H1B 109.5 C37—C36—H36A 120.1
H1A—C1—H1B 109.5 C35—C36—H36A 120.1
N1—C1—H1C 109.5 C38—C37—C36 119.8 (3)
H1A—C1—H1C 109.5 C38—C37—H37A 120.1
H1B—C1—H1C 109.5 C36—C37—H37A 120.1
N1—C2—H2A 109.5 C37—C38—C39 120.2 (3)
N1—C2—H2B 109.5 C37—C38—H38A 119.9
H2A—C2—H2B 109.5 C39—C38—H38A 119.9
N1—C2—H2C 109.5 C38—C39—C34 120.8 (3)
H2A—C2—H2C 109.5 C38—C39—H39A 119.6
H2B—C2—H2C 109.5 C34—C39—H39A 119.6
N1—C3—C4 115.5 (2) C2—N1—C1 108.5 (3)
N1—C3—H3A 108.4 C2—N1—C3 110.9 (3)
C4—C3—H3A 108.4 C1—N1—C3 110.7 (3)
N1—C3—H3B 108.4 C2—N1—Cu1 108.97 (19)
C4—C3—H3B 108.4 C1—N1—Cu1 108.2 (2)
H3A—C3—H3B 107.5 C3—N1—Cu1 109.50 (18)
C5—C4—C9 118.2 (3) C12—N2—C11 108.6 (3)
C5—C4—C3 121.5 (3) C12—N2—C13 111.0 (3)
C9—C4—C3 120.4 (3) C11—N2—C13 111.3 (3)
C4—C5—C6 120.6 (3) C12—N2—Cu2 109.2 (2)
C4—C5—H5A 119.7 C11—N2—Cu2 108.5 (2)
C6—C5—H5A 119.7 C13—N2—Cu2 108.2 (2)
C7—C6—C5 120.5 (3) C21—N3—C22 107.7 (3)
C7—C6—H6A 119.7 C21—N3—C23 110.7 (3)
C5—C6—H6A 119.7 C22—N3—C23 110.4 (3)
C6—C7—C8 119.6 (3) C21—N3—Cu3 112.0 (2)
C6—C7—H7A 120.2 C22—N3—Cu3 107.9 (2)
C8—C7—H7A 120.2 C23—N3—Cu3 108.1 (2)
C7—C8—C9 119.9 (3) C32—N4—C31 109.2 (3)
C7—C8—H8A 120.1 C32—N4—C33 111.3 (3)
C9—C8—H8A 120.1 C31—N4—C33 111.4 (3)
C8—C9—C4 121.1 (3) C32—N4—Cu4 109.7 (2)
C8—C9—H9A 119.4 C31—N4—Cu4 107.7 (2)
C4—C9—H9A 119.4 C33—N4—Cu4 107.49 (19)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2223).

References

  1. Bi, M., Li, G., Hua, J., Liu, X., Hu, Y., Shi, Z. & Feng, S. (2007b). CrystEngComm, 9, 984–986.
  2. Bi, M., Li, G., Hua, J., Liu, Y., Liu, X., Hu, Y., Shi, Z. & Feng, S. (2007a). Cryst. Growth Des.7, 2066–2070.
  3. Chen, Y., Li, H.-X., Liu, D., Liu, L.-L., Li, N., Ye, H.-Y., Zhang, Y. & Lang, J.-P. (2008). Cryst. Growth Des.8, 3810–3816.
  4. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  5. Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  6. Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  7. Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809026208/fj2223sup1.cif

e-65-0m906-sup1.cif (30.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026208/fj2223Isup2.hkl

e-65-0m906-Isup2.hkl (483.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES