Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 25;65(Pt 8):m992–m993. doi: 10.1107/S160053680902875X

(μ-4,4′-Bipyridine-κ2 N:N′)bis­[triaqua­(4,4′-bipyridine-κN)(3-nitro­phthalato-κO 2)cobalt(II)]

Hong-Xu Guo a,*, Zhong-Liang Yao b, Wen Weng a, Xi-Zhong Li a
PMCID: PMC2977433  PMID: 21583433

Abstract

The title binuclear complex, [Co2(C8H3NO6)2(C10H8N2)3(H2O)6], has been synthesized hydro­thermally from 3-nitro­phthalic acid (H2NPA), Co(NO3)2·6H2O and 4,4′-bipyridine (4,4′-bipy). The mol­ecule of the complex occupies a special position on an inversion centre. The CoII atom has a slightly distorted octa­hedral environment formed by two N atoms from two 4,4′-bipy ligands, one carboxyl­ate O atom from NPA, and three O atoms of water mol­ecules. An extensive O—H⋯O and N—H⋯O hydrogen-bonding system links mol­ecules of the complex into a three-dimensional network.

Related literature

For background to metal-involved supra­molecular compounds, see: Noro (2004); Yaghi et al. (2003); Rao et al. (2004); Huang et al. (2004); Zhang et al. (2004). For other 3-nitro­phthalic derivatives, see: Deng et al. (2007); Guo (2004); Song et al. (2007); Xiong & Qi (2007).graphic file with name e-65-0m992-scheme1.jpg

Experimental

Crystal data

  • [Co2(C8H3NO6)2(C10H8N2)3(H2O)6]

  • M r = 1112.74

  • Monoclinic, Inline graphic

  • a = 15.672 (3) Å

  • b = 9.4283 (19) Å

  • c = 16.063 (3) Å

  • β = 103.92 (3)°

  • V = 2303.8 (8) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.81 mm−1

  • T = 293 K

  • 0.21 × 0.15 × 0.12 mm

Data collection

  • Siemens SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.765, T max = 0.872

  • 21789 measured reflections

  • 5252 independent reflections

  • 3669 reflections with I > 2σ(I)

  • R int = 0.079

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.134

  • S = 1.01

  • 5252 reflections

  • 352 parameters

  • 9 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.38 e Å−3

  • Δρmin = −0.45 e Å−3

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902875X/ya2101sup1.cif

e-65-0m992-sup1.cif (24.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902875X/ya2101Isup2.hkl

e-65-0m992-Isup2.hkl (257.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O7—H7A⋯O3i 0.842 (10) 1.960 (11) 2.798 (3) 173 (3)
O7—H7B⋯O4ii 0.845 (10) 1.942 (12) 2.772 (3) 167 (3)
O8—H8A⋯O2 0.854 (10) 1.855 (13) 2.677 (3) 161 (3)
O8—H8B⋯N3iii 0.847 (10) 2.021 (15) 2.830 (4) 159 (3)
O9—H9B⋯O4i 0.849 (10) 1.810 (13) 2.645 (3) 167 (3)
O9—H9C⋯O3 0.849 (10) 1.968 (13) 2.801 (3) 167 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This work was supported by the Natural Science Foundation of Fujian Province (No. 2008 J0172) and the National Natural Science Foundation of China (20705031).

supplementary crystallographic information

Comment

Design and assembly of metal-involving supramolecular architectures are currently of great interest in the field of supramolecular chemistry and crystal engineering, because they can provide novel topology and functional materials (Noro, 2004; Yaghi et al., 2003; Rao et al., 2004). During the past decades, extensive efforts have been focused on the design and assembly of supramolecular architectures of this kind (Huang et al., 2004; Zhang et al., 2004). Although the multifunctional ligand, 3-nitrophthalic acid (H2NPA), has been utilized to build many coordination complexes, such as dinuclear centrosymmetric complexes [LaL(HL)(H2O)3]2.2H2O (L = NPA) (Deng et al., 2007), [La2(C8H3NO6)2(C8H4NO6)2(H2O)6].2H2O (Xiong & Qi, 2007), and [Na(C8H4NO6)(H2O)3].H2O (Guo, 2004), only a few mixed ligand complexes involving NPA have been reported so far (Song et al., 2007). In this work, we employed NPA and 4,4'-bipy ligands to produce a novel binuclear complex, [Co2(NPA)2(bipy)3(H2O)6](I).

Complex (I) occupies a special position in the inversion centre; the asymmetric unit consists of one cobalt(II) atom, one NPA ligand, one terminal and one-half of a bridging 4,4'-bipy groups, as well as three metal-coordinated water molecules.(Fig. 1 and Table 1). The Co1 atom has a a slightly distorted octahedral environment formed by two N atoms from two different bipy ligands, one carboyxlate O atom of the NPA ligand, and three water molecules. The µ2-4,4'-bipyridine ligand bridges two [Co(NPA)(bipy)(H2O)3] units of the binuclear complex.

The extensive system of O—H···O hydrogen bonds links molecules of the complex into a three-dimensional network (Fig. 2; Table 1).

Experimental

A solution of Co(NO3)2.6H2O (0.0291 g, 0.1 mmol) in 5 ml of water was added dropwise under continuous stirring to an aqueous solution (5 ml) of 3-nitrophthalic acid (0.0211 g, 0.1 mmol) and 4,4'-bipyridine (0.0156 g, 0.1 mmol). The resulting mixture was then transferred into a Teflon-lined stainless steel vessel, which was sealed and kept at 393 K for 72 h. The vessel was then cooled to room temperature, the reaction mixture was filtered, and single crystals were obtained from the filtrate after a few days of slow evaporation at room temperature.

Refinement

The aromatic H atoms were positioned geometrically and allowed to ride during subsequent refinement, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). Water H atoms were located in a difference map and refined with O—H and H···H distance restraints of 0.85 (1) and 1.39 (1) Å, respectively and Uiso(H)= 1.2Ueq(O).

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level; H-atoms bound to phenyl C atoms are omitted for clarity. H-atoms bound to O are shown as small circles of arbitrary radius. The unlabeled atoms are derived from their labeled counterparts via symmetry transformation (-x + 1,-y + 2,-z + 1).

Fig. 2.

Fig. 2.

Crystal packing of the title compound viewed down the a axis; H-bonds are shown as dashed lines.

Crystal data

[Co2(C8H3NO6)2(C10H8N2)3(H2O)6] F(000) = 1144
Mr = 1112.74 Dx = 1.604 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 21789 reflections
a = 15.672 (3) Å θ = 3.0–27.5°
b = 9.4283 (19) Å µ = 0.81 mm1
c = 16.063 (3) Å T = 293 K
β = 103.92 (3)° Prism, pink
V = 2303.8 (8) Å3 0.21 × 0.15 × 0.12 mm
Z = 2

Data collection

Siemens SMART CCD area-detector diffractometer 5252 independent reflections
Radiation source: fine-focus sealed tube 3669 reflections with I > 2σ(I)
graphite Rint = 0.079
Detector resolution: no pixels mm-1 θmax = 27.5°, θmin = 3.0°
ω scans h = −20→20
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −12→12
Tmin = 0.765, Tmax = 0.872 l = −20→19
21789 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134 H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.075P)2] where P = (Fo2 + 2Fc2)/3
5252 reflections (Δ/σ)max = 0.001
352 parameters Δρmax = 0.38 e Å3
9 restraints Δρmin = −0.45 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.32172 (2) 0.70261 (4) 0.20771 (2) 0.02477 (14)
N1 0.17512 (19) 0.4939 (3) −0.07320 (18) 0.0434 (7)
N2 0.24471 (16) 0.8547 (3) 0.12309 (15) 0.0299 (6)
N3 −0.0484 (2) 1.2759 (4) −0.1856 (2) 0.0507 (8)
N4 0.35953 (16) 0.8342 (3) 0.31977 (14) 0.0288 (6)
O1 0.30328 (14) 0.5593 (2) 0.10689 (12) 0.0303 (5)
O2 0.22712 (15) 0.3866 (2) 0.15197 (13) 0.0398 (6)
O3 0.41953 (15) 0.2894 (2) 0.18540 (13) 0.0378 (6)
O4 0.43538 (15) 0.0753 (2) 0.13428 (14) 0.0395 (6)
O5 0.13514 (18) 0.5266 (3) −0.02137 (16) 0.0565 (7)
O6 0.1662 (2) 0.5543 (4) −0.14226 (19) 0.0909 (12)
O7 0.43623 (14) 0.7886 (2) 0.17266 (13) 0.0308 (5)
H7A 0.4781 (16) 0.782 (3) 0.2166 (14) 0.037*
H7B 0.4312 (19) 0.8724 (16) 0.1535 (17) 0.037*
O8 0.21785 (14) 0.6093 (3) 0.25287 (13) 0.0337 (5)
H8A 0.2092 (19) 0.534 (2) 0.2224 (18) 0.040*
H8B 0.1712 (13) 0.658 (3) 0.243 (2) 0.040*
O9 0.40189 (14) 0.5401 (2) 0.27330 (13) 0.0331 (5)
H9B 0.4550 (9) 0.560 (3) 0.2970 (18) 0.040*
H9C 0.4003 (18) 0.469 (2) 0.2406 (17) 0.040*
C1 0.28309 (19) 0.3469 (3) 0.02915 (18) 0.0272 (6)
C2 0.23784 (19) 0.3751 (3) −0.05515 (18) 0.0312 (7)
C3 0.2485 (2) 0.2972 (4) −0.1248 (2) 0.0386 (8)
H3A 0.2170 0.3202 −0.1800 0.046*
C4 0.3062 (2) 0.1854 (4) −0.1112 (2) 0.0420 (8)
H4A 0.3132 0.1298 −0.1570 0.050*
C5 0.3537 (2) 0.1565 (3) −0.02903 (19) 0.0359 (7)
H5A 0.3936 0.0817 −0.0203 0.043*
C6 0.34391 (19) 0.2355 (3) 0.04132 (18) 0.0283 (7)
C7 0.26975 (19) 0.4381 (3) 0.10318 (17) 0.0273 (6)
C8 0.4034 (2) 0.1983 (3) 0.12786 (19) 0.0290 (6)
C9 0.2360 (2) 0.8381 (4) 0.03926 (19) 0.0380 (8)
H9A 0.2676 0.7659 0.0210 0.046*
C10 0.1829 (2) 0.9217 (4) −0.02198 (19) 0.0378 (8)
H10A 0.1795 0.9052 −0.0798 0.045*
C11 0.1994 (2) 0.9611 (4) 0.1467 (2) 0.0401 (8)
H11A 0.2049 0.9761 0.2050 0.048*
C12 0.1452 (2) 1.0492 (4) 0.0896 (2) 0.0400 (8)
H12A 0.1155 1.1221 0.1096 0.048*
C13 0.0546 (2) 1.0864 (4) −0.1498 (2) 0.0481 (9)
H13A 0.0827 1.0105 −0.1690 0.058*
C14 −0.0048 (3) 1.1679 (5) −0.2077 (2) 0.0558 (11)
H14A −0.0148 1.1454 −0.2656 0.067*
C15 0.0285 (2) 1.2325 (4) −0.0402 (2) 0.0442 (9)
H15A 0.0388 1.2599 0.0170 0.053*
C16 −0.0308 (3) 1.3064 (4) −0.1027 (3) 0.0531 (10)
H16A −0.0603 1.3824 −0.0855 0.064*
C17 0.13452 (19) 1.0300 (3) 0.00195 (19) 0.0300 (7)
C18 0.07229 (19) 1.1180 (4) −0.06323 (19) 0.0320 (7)
C19 0.3917 (2) 0.9648 (3) 0.31517 (18) 0.0331 (7)
H19A 0.3766 1.0121 0.2629 0.040*
C20 0.4460 (2) 1.0327 (3) 0.38372 (18) 0.0310 (7)
H20A 0.4674 1.1229 0.3769 0.037*
C21 0.46875 (18) 0.9661 (3) 0.46269 (17) 0.0261 (6)
C22 0.4311 (2) 0.8345 (3) 0.46904 (18) 0.0336 (7)
H22A 0.4417 0.7880 0.5216 0.040*
C23 0.3779 (2) 0.7729 (4) 0.39713 (18) 0.0340 (7)
H23A 0.3536 0.6845 0.4027 0.041*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0295 (2) 0.0217 (2) 0.0215 (2) −0.00056 (17) 0.00289 (16) −0.00077 (15)
N1 0.0390 (16) 0.0472 (19) 0.0376 (15) 0.0047 (14) −0.0032 (14) 0.0032 (14)
N2 0.0317 (13) 0.0290 (15) 0.0277 (12) 0.0015 (11) 0.0045 (11) 0.0015 (11)
N3 0.0410 (17) 0.055 (2) 0.0513 (18) 0.0092 (15) 0.0009 (15) 0.0066 (15)
N4 0.0353 (14) 0.0283 (15) 0.0223 (11) −0.0019 (11) 0.0062 (11) −0.0032 (10)
O1 0.0412 (12) 0.0224 (12) 0.0254 (10) −0.0036 (9) 0.0044 (9) −0.0011 (8)
O2 0.0486 (14) 0.0332 (14) 0.0409 (12) −0.0088 (11) 0.0170 (11) −0.0025 (10)
O3 0.0447 (13) 0.0299 (13) 0.0323 (11) 0.0056 (10) −0.0036 (10) −0.0036 (9)
O4 0.0456 (13) 0.0205 (12) 0.0458 (13) 0.0039 (10) −0.0020 (10) 0.0026 (9)
O5 0.0578 (16) 0.0590 (19) 0.0494 (15) 0.0215 (14) 0.0065 (13) −0.0057 (13)
O6 0.103 (3) 0.112 (3) 0.0584 (18) 0.053 (2) 0.0208 (17) 0.0473 (19)
O7 0.0360 (12) 0.0228 (12) 0.0312 (11) −0.0017 (9) 0.0032 (9) 0.0009 (9)
O8 0.0325 (11) 0.0340 (13) 0.0335 (11) 0.0033 (10) 0.0060 (10) 0.0027 (9)
O9 0.0364 (12) 0.0256 (12) 0.0321 (11) 0.0023 (9) −0.0017 (10) −0.0028 (9)
C1 0.0291 (15) 0.0228 (16) 0.0275 (14) −0.0066 (12) 0.0026 (12) −0.0011 (12)
C2 0.0311 (16) 0.0282 (18) 0.0309 (15) −0.0014 (13) 0.0008 (13) 0.0008 (13)
C3 0.0413 (18) 0.045 (2) 0.0258 (15) −0.0057 (16) 0.0006 (14) −0.0006 (14)
C4 0.051 (2) 0.045 (2) 0.0306 (16) −0.0083 (17) 0.0111 (15) −0.0097 (15)
C5 0.0416 (18) 0.0237 (17) 0.0419 (18) −0.0010 (14) 0.0091 (15) −0.0062 (14)
C6 0.0312 (16) 0.0218 (16) 0.0310 (15) −0.0052 (12) 0.0054 (13) 0.0008 (12)
C7 0.0299 (15) 0.0229 (16) 0.0248 (14) 0.0017 (12) −0.0020 (12) −0.0007 (11)
C8 0.0307 (15) 0.0221 (16) 0.0320 (15) −0.0039 (13) 0.0034 (13) 0.0023 (13)
C9 0.052 (2) 0.0327 (19) 0.0304 (16) 0.0115 (15) 0.0128 (15) 0.0041 (14)
C10 0.0468 (19) 0.041 (2) 0.0246 (15) 0.0107 (16) 0.0062 (14) 0.0040 (14)
C11 0.0445 (19) 0.042 (2) 0.0309 (16) 0.0059 (16) 0.0044 (15) −0.0068 (15)
C12 0.0460 (19) 0.037 (2) 0.0340 (16) 0.0140 (16) 0.0048 (15) −0.0081 (14)
C13 0.044 (2) 0.054 (2) 0.0421 (19) 0.0178 (17) 0.0011 (16) −0.0041 (17)
C14 0.049 (2) 0.073 (3) 0.0392 (19) 0.020 (2) −0.0007 (18) −0.0034 (19)
C15 0.048 (2) 0.042 (2) 0.0410 (19) 0.0125 (17) 0.0076 (16) 0.0008 (16)
C16 0.056 (2) 0.042 (2) 0.060 (2) 0.0207 (18) 0.012 (2) 0.0046 (18)
C17 0.0271 (15) 0.0279 (17) 0.0345 (16) 0.0007 (13) 0.0062 (13) 0.0043 (13)
C18 0.0262 (15) 0.0337 (18) 0.0348 (16) 0.0024 (13) 0.0050 (13) 0.0026 (13)
C19 0.0444 (18) 0.0284 (18) 0.0246 (14) −0.0008 (14) 0.0046 (13) −0.0019 (12)
C20 0.0388 (17) 0.0259 (17) 0.0275 (14) −0.0041 (13) 0.0061 (13) −0.0022 (12)
C21 0.0292 (14) 0.0260 (16) 0.0232 (13) −0.0017 (12) 0.0064 (12) −0.0039 (12)
C22 0.0441 (18) 0.0344 (19) 0.0216 (14) −0.0050 (14) 0.0065 (13) 0.0015 (13)
C23 0.0416 (18) 0.0325 (19) 0.0275 (15) −0.0122 (14) 0.0077 (14) −0.0028 (13)

Geometric parameters (Å, °)

Co1—O1 2.075 (2) C4—C5 1.378 (4)
Co1—O9 2.097 (2) C4—H4A 0.9300
Co1—O8 2.126 (2) C5—C6 1.393 (4)
Co1—N2 2.138 (2) C5—H5A 0.9300
Co1—N4 2.149 (2) C6—C8 1.517 (4)
Co1—O7 2.164 (2) C9—C10 1.374 (4)
N1—O5 1.197 (4) C9—H9A 0.9300
N1—O6 1.225 (4) C10—C17 1.380 (4)
N1—C2 1.472 (4) C10—H10A 0.9300
N2—C9 1.330 (4) C11—C12 1.370 (4)
N2—C11 1.336 (4) C11—H11A 0.9300
N3—C14 1.322 (5) C12—C17 1.388 (4)
N3—C16 1.325 (5) C12—H12A 0.9300
N4—C23 1.337 (4) C13—C14 1.380 (5)
N4—C19 1.339 (4) C13—C18 1.384 (4)
O1—C7 1.253 (4) C13—H13A 0.9300
O2—C7 1.244 (4) C14—H14A 0.9300
O3—C8 1.242 (4) C15—C18 1.376 (5)
O4—C8 1.257 (4) C15—C16 1.382 (5)
O7—H7A 0.842 (10) C15—H15A 0.9300
O7—H7B 0.845 (10) C16—H16A 0.9300
O8—H8A 0.854 (10) C17—C18 1.498 (4)
O8—H8B 0.847 (10) C19—C20 1.377 (4)
O9—H9B 0.849 (10) C19—H19A 0.9300
O9—H9C 0.849 (10) C20—C21 1.383 (4)
C1—C2 1.395 (4) C20—H20A 0.9300
C1—C6 1.401 (4) C21—C22 1.388 (4)
C1—C7 1.522 (4) C21—C21i 1.497 (5)
C2—C3 1.382 (4) C22—C23 1.380 (4)
C3—C4 1.372 (5) C22—H22A 0.9300
C3—H3A 0.9300 C23—H23A 0.9300
O1—Co1—O9 82.56 (8) C1—C6—C8 123.3 (3)
O1—Co1—O8 91.30 (9) O2—C7—O1 127.5 (3)
O9—Co1—O8 86.66 (9) O2—C7—C1 117.9 (3)
O1—Co1—N2 89.37 (9) O1—C7—C1 114.7 (3)
O9—Co1—N2 170.96 (9) O3—C8—O4 124.8 (3)
O8—Co1—N2 97.64 (9) O3—C8—C6 119.5 (3)
O1—Co1—N4 171.19 (9) O4—C8—C6 115.7 (3)
O9—Co1—N4 89.42 (9) N2—C9—C10 123.7 (3)
O8—Co1—N4 91.87 (9) N2—C9—H9A 118.2
N2—Co1—N4 98.34 (10) C10—C9—H9A 118.2
O1—Co1—O7 90.54 (8) C9—C10—C17 120.3 (3)
O9—Co1—O7 88.29 (9) C9—C10—H10A 119.9
O8—Co1—O7 174.37 (8) C17—C10—H10A 119.9
N2—Co1—O7 87.70 (9) N2—C11—C12 123.4 (3)
N4—Co1—O7 85.57 (9) N2—C11—H11A 118.3
O5—N1—O6 123.1 (3) C12—C11—H11A 118.3
O5—N1—C2 119.7 (3) C11—C12—C17 120.3 (3)
O6—N1—C2 117.2 (3) C11—C12—H12A 119.9
C9—N2—C11 116.3 (3) C17—C12—H12A 119.9
C9—N2—Co1 118.0 (2) C14—C13—C18 119.8 (3)
C11—N2—Co1 125.5 (2) C14—C13—H13A 120.1
C14—N3—C16 116.1 (3) C18—C13—H13A 120.1
C23—N4—C19 116.7 (3) N3—C14—C13 123.8 (3)
C23—N4—Co1 118.9 (2) N3—C14—H14A 118.1
C19—N4—Co1 121.1 (2) C13—C14—H14A 118.1
C7—O1—Co1 127.50 (19) C18—C15—C16 119.5 (3)
Co1—O7—H7A 106 (2) C18—C15—H15A 120.3
Co1—O7—H7B 116 (2) C16—C15—H15A 120.3
H7A—O7—H7B 110.9 (16) N3—C16—C15 124.2 (4)
Co1—O8—H8A 100 (2) N3—C16—H16A 117.9
Co1—O8—H8B 114 (2) C15—C16—H16A 117.9
H8A—O8—H8B 109.6 (16) C10—C17—C12 116.0 (3)
Co1—O9—H9B 118 (2) C10—C17—C18 121.6 (3)
Co1—O9—H9C 110 (2) C12—C17—C18 122.4 (3)
H9B—O9—H9C 109.4 (16) C15—C18—C13 116.5 (3)
C2—C1—C6 116.7 (3) C15—C18—C17 121.9 (3)
C2—C1—C7 121.2 (3) C13—C18—C17 121.5 (3)
C6—C1—C7 122.1 (2) N4—C19—C20 123.5 (3)
C3—C2—C1 123.5 (3) N4—C19—H19A 118.2
C3—C2—N1 116.7 (3) C20—C19—H19A 118.2
C1—C2—N1 119.7 (3) C19—C20—C21 119.7 (3)
C4—C3—C2 118.9 (3) C19—C20—H20A 120.1
C4—C3—H3A 120.6 C21—C20—H20A 120.1
C2—C3—H3A 120.6 C20—C21—C22 116.9 (3)
C3—C4—C5 119.2 (3) C20—C21—C21i 121.0 (3)
C3—C4—H4A 120.4 C22—C21—C21i 122.0 (3)
C5—C4—H4A 120.4 C23—C22—C21 119.8 (3)
C4—C5—C6 122.1 (3) C23—C22—H22A 120.1
C4—C5—H5A 118.9 C21—C22—H22A 120.1
C6—C5—H5A 118.9 N4—C23—C22 123.2 (3)
C5—C6—C1 119.5 (3) N4—C23—H23A 118.4
C5—C6—C8 117.2 (3) C22—C23—H23A 118.4
O1—Co1—N2—C9 −21.2 (2) C2—C1—C7—O2 106.9 (3)
O8—Co1—N2—C9 −112.4 (2) C6—C1—C7—O2 −76.2 (4)
N4—Co1—N2—C9 154.5 (2) C2—C1—C7—O1 −72.5 (4)
O7—Co1—N2—C9 69.3 (2) C6—C1—C7—O1 104.5 (3)
O1—Co1—N2—C11 154.2 (3) C5—C6—C8—O3 155.8 (3)
O8—Co1—N2—C11 63.0 (3) C1—C6—C8—O3 −21.8 (5)
N4—Co1—N2—C11 −30.1 (3) C5—C6—C8—O4 −21.9 (4)
O7—Co1—N2—C11 −115.2 (3) C1—C6—C8—O4 160.4 (3)
O9—Co1—N4—C23 −31.5 (2) C11—N2—C9—C10 −1.1 (5)
O8—Co1—N4—C23 55.1 (2) Co1—N2—C9—C10 174.7 (3)
N2—Co1—N4—C23 153.1 (2) N2—C9—C10—C17 −0.1 (5)
O7—Co1—N4—C23 −119.9 (2) C9—N2—C11—C12 0.9 (5)
O9—Co1—N4—C19 127.1 (2) Co1—N2—C11—C12 −174.5 (3)
O8—Co1—N4—C19 −146.3 (2) N2—C11—C12—C17 0.5 (6)
N2—Co1—N4—C19 −48.3 (3) C16—N3—C14—C13 1.5 (7)
O7—Co1—N4—C19 38.7 (2) C18—C13—C14—N3 −1.1 (7)
O9—Co1—O1—C7 62.0 (2) C14—N3—C16—C15 −0.5 (6)
O8—Co1—O1—C7 −24.5 (2) C18—C15—C16—N3 −1.0 (6)
N2—Co1—O1—C7 −122.1 (2) C9—C10—C17—C12 1.5 (5)
O7—Co1—O1—C7 150.2 (2) C9—C10—C17—C18 −176.6 (3)
C6—C1—C2—C3 1.9 (5) C11—C12—C17—C10 −1.7 (5)
C7—C1—C2—C3 179.0 (3) C11—C12—C17—C18 176.5 (3)
C6—C1—C2—N1 −177.9 (3) C16—C15—C18—C13 1.4 (5)
C7—C1—C2—N1 −0.8 (4) C16—C15—C18—C17 −177.4 (3)
O5—N1—C2—C3 148.7 (3) C14—C13—C18—C15 −0.5 (6)
O6—N1—C2—C3 −30.8 (5) C14—C13—C18—C17 178.4 (4)
O5—N1—C2—C1 −31.5 (5) C10—C17—C18—C15 −175.3 (3)
O6—N1—C2—C1 149.0 (3) C12—C17—C18—C15 6.7 (5)
C1—C2—C3—C4 0.2 (5) C10—C17—C18—C13 5.9 (5)
N1—C2—C3—C4 −180.0 (3) C12—C17—C18—C13 −172.1 (3)
C2—C3—C4—C5 −1.8 (5) C23—N4—C19—C20 4.3 (5)
C3—C4—C5—C6 1.3 (5) Co1—N4—C19—C20 −154.8 (3)
C4—C5—C6—C1 0.9 (5) N4—C19—C20—C21 −1.0 (5)
C4—C5—C6—C8 −176.8 (3) C19—C20—C21—C22 −3.0 (5)
C2—C1—C6—C5 −2.4 (4) C19—C20—C21—C21i 176.9 (3)
C7—C1—C6—C5 −179.5 (3) C20—C21—C22—C23 3.6 (5)
C2—C1—C6—C8 175.2 (3) C21i—C21—C22—C23 −176.3 (3)
C7—C1—C6—C8 −1.9 (5) C19—N4—C23—C22 −3.6 (5)
Co1—O1—C7—O2 13.2 (4) Co1—N4—C23—C22 156.0 (3)
Co1—O1—C7—C1 −167.53 (18) C21—C22—C23—N4 −0.3 (5)

Symmetry codes: (i) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O7—H7A···O3ii 0.84 (1) 1.96 (1) 2.798 (3) 173 (3)
O7—H7B···O4iii 0.85 (1) 1.94 (1) 2.772 (3) 167 (3)
O8—H8A···O2 0.85 (1) 1.86 (1) 2.677 (3) 161 (3)
O8—H8B···N3iv 0.85 (1) 2.02 (2) 2.830 (4) 159 (3)
O9—H9B···O4ii 0.85 (1) 1.81 (1) 2.645 (3) 167 (3)
O9—H9C···O3 0.85 (1) 1.97 (1) 2.801 (3) 167 (3)

Symmetry codes: (ii) −x+1, y+1/2, −z+1/2; (iii) x, y+1, z; (iv) −x, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: YA2101).

References

  1. Deng, Y. H., Liu, J., Yang, Y. L., Zhu, H. J. & Ma, H. W. (2007). Chin. J. Struct. Chem.26, 642–648.
  2. Guo, M.-L. (2004). Acta Cryst. E60, m1684–m1685.
  3. Huang, X. C., Zhang, J. P., Lin, Y. Y., Yu, X. L. & Chen, X. M. (2004). Chem. Commun. pp. 1100–1101. [DOI] [PubMed]
  4. Noro, S. (2004). Angew. Chem. Int. Ed.43, 2334–2375.
  5. Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed.43, 1466–1496. [DOI] [PubMed]
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Siemens (1994). SMART and SAINT Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  9. Song, Y. S., Yan, B. & Chen, Z. X. (2007). Appl. Organomet. Chem.21, 150–155.
  10. Xiong, L.-Q. & Qi, C.-M. (2007). Acta Cryst. C63, m10–m12. [DOI] [PubMed]
  11. Yaghi, O. M., O’Keeffe, M., Ockwig, N. W., Chae, H. K., Eddaoudi, M. & Kim, J. (2003). Nature (London), 423, 705–714. [DOI] [PubMed]
  12. Zhang, J. P., Zheng, S. L., Huang, X. C. & Chen, X. M. (2004). Angew. Chem. Int. Ed.43, 206–209.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902875X/ya2101sup1.cif

e-65-0m992-sup1.cif (24.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902875X/ya2101Isup2.hkl

e-65-0m992-Isup2.hkl (257.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES