Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 29;65(Pt 8):o2020–o2021. doi: 10.1107/S1600536809029353

Carvedilol dihydrogen phosphate hemihydrate: a powder study

Vladimir V Chernyshev a,*, Alexandre A Machula b, Sergei Yu Kukushkin b, Yurii A Velikodny a
PMCID: PMC2977435  PMID: 21583690

Abstract

In the cation of the title compound [systematic name: 3-(9H-carbazol-4-yl­oxy)-2-hydr­oxy-N-[2-(2-methoxy­phen­oxy)eth­yl]propan-1-aminium dihydrogen phosphate hemihydrate], C24H27N2O4 +·H2PO4 ·0.5H2O, the mean planes of the tricyclic ring system and the benzene ring form a dihedral angle of 87.2 (2)°. In the crystal structure, the solvent water mol­ecule is situated on a twofold rotation axis linking two cations via O—H⋯O and N—H⋯O hydrogen bonds. The anions contribute to the formation O—H⋯O and N—H⋯O hydrogen bonds between the anions and cations, which consolidate the crystal packing.

Related literature

For the synthesis of the title compound, claimed as Form I, see: Brook et al. (2005). For the crystal structures of two polymorphs of the carvedilol free base, see: Chen et al. (1998); Yathirajan et al. (2007). For details of the indexing algorithm, see: Visser (1969). The methodology of bond-restrained Rietveld refinement used in this study was the same as described by Chernyshev et al. (2003).graphic file with name e-65-o2020-scheme1.jpg

Experimental

Crystal data

  • C24H27N2O4 +·H2PO4 ·0.5H2O

  • M r = 513.47

  • Monoclinic, Inline graphic

  • a = 26.600 (2) Å

  • b = 12.3767 (12) Å

  • c = 16.5101 (15) Å

  • β = 106.662 (11)°

  • V = 5207.2 (8) Å3

  • Z = 8

  • Cu Kα1 radiation

  • μ = 1.38 mm−1

  • T = 295 K

  • Specimen shape: flat sheet

  • 15 × 1 × 1 mm

  • Specimen prepared at 101 kPa

  • Specimen prepared at 295 K

  • Particle morphology: no specific habit, light grey

Data collection

  • Guinier G670 image plate camera

  • Specimen mounting: thin layer in the specimen holder of the camera

  • Specimen mounted in transmission mode

  • Scan method: continuous

  • min = 5.0, 2θmax = 75.0°

  • Increment in 2θ = 0.01°

Refinement

  • R p = 0.026

  • R wp = 0.035

  • R exp = 0.014

  • R B = 0.064

  • S = 2.43

  • Wavelength of incident radiation: 1.54059 Å

  • Excluded region(s): none

  • Profile function: split-type pseudo-Voigt (Toraya, 1986)

  • 1346 reflections

  • 157 parameters

  • 125 restraints

  • H-atom parameters not refined

  • Preferred orientation correction: March-Dollase (Dollase, 1986); direction of preferred orientation 100, texture parameter r = 1.038 (5)

Data collection: G670 Imaging Plate Guinier Camera Software (Huber, 2002); cell refinement: MRIA (Zlokazov & Chernyshev, 1992); data reduction: G670 Imaging Plate Guinier Camera Software; method used to solve structure: simulated annealing (Zhukov et al., 2001); program(s) used to refine structure: MRIA; molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: MRIA and SHELXL97 (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029353/lh2866sup1.cif

e-65-o2020-sup1.cif (18.9KB, cif)

Rietveld powder data: contains datablocks I. DOI: 10.1107/S1600536809029353/lh2866Isup2.rtv

e-65-o2020-Isup2.rtv (232.9KB, rtv)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N19—H19A⋯O32 0.90 2.06 2.93 (2) 165
N19—H19B⋯O36 0.90 2.18 3.04 (2) 159
N9—H9⋯O35i 0.86 1.87 2.72 (3) 168
O18—H18⋯O32ii 0.82 2.42 3.15 (2) 148
O18—H18⋯O35ii 0.82 2.46 3.02 (2) 126
O33—H33⋯O35ii 0.82 1.77 2.53 (2) 153
O34—H34⋯O32iii 0.82 1.87 2.58 (2) 144
O36—H36⋯O22 0.85 2.34 2.887 (15) 122
O36—H36⋯O29 0.85 2.00 2.80 (2) 155
C21—H21B⋯O34iii 0.97 2.24 2.91 (2) 125

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

VVC and YAV acknowledge the International Centre for Diffraction Data (ICDD) for supporting this study (GiA 03–06).

supplementary crystallographic information

Comment

Earlier, the crystal structures of two polymorphs of carvedilol free base have been reported (Chen et al., 1998; Yathirajan et al., 2007). Herein we report the crystal structure of the title compound (I), also known as carvedilol dihydrogen phosphate hemihydrate, Form I (Brook et al., 2005).

In (I) (Fig. 1), all bond lengths and angles in the cation are comparable with those reported earlier for two monoclinic polymorphs of carvedilol free base (Chen et al., 1998; Yathirajan et al., 2007). The mean planes of tricycle and benzene ring form a dihedral angle of 87.2 (2)°. The crystalline water molecule is situated on a twofold rotational axis linking two cations via O—H···O and N—H···O hydrogen bonds (Table 1). The anions contribute to formation O—H···O and N—H···O hydrogen bonds (Table 1) between the anions and cations giving rise to three-dimensional hydrogen-bonding network.

Experimental

The title compound was synthesized in accordance with the known procedure, invented by Brook et al. (2005) for Form I.

Refinement

During the exposure, the specimen was spun in its plane to improve particle statistics. The monoclinic unit-cell dimensions were determined with the indexing program ITO (Visser, 1969), M20=35, using the first 30 peak positions. The space group C2/c was chosen on the basis of systematic extinction rules and confirmed later by the crystal structure solution. The structure of (I) was solved by simulated annealing procedure (Zhukov et al., 2001) and refined following the methodology described in details elsewhere (Chernyshev et al., 2003) by the subsequent bond-restrained Rietveld refinement with the program MRIA (Zlokazov & Chernyshev, 1992). All non-H atoms were refined isotropically: two overall Uiso parameters were refined for the cation, and two Uiso parameters were refined for the anion - one for P and one for all O atoms. All H atoms were placed in geometrically calculated positions and not refined. The diffraction profiles and the differences between the measured and calculated profiles are shown in Fig. 2.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with the atomic numbering and 40% displacement spheres. H atoms are not shown.

Fig. 2.

Fig. 2.

The Rietveld plot, showing the observed and difference profiles for (I). The reflection positions are shown above the difference profile.

Crystal data

C24H27N2O4+·H2PO4·0.5H2O F(000) = 2168
Mr = 513.47 Dx = 1.310 Mg m3
Monoclinic, C2/c Cu Kα1 radiation, λ = 1.54059 Å
Hall symbol: -C 2yc µ = 1.38 mm1
a = 26.600 (2) Å T = 295 K
b = 12.3767 (12) Å Particle morphology: no specific habit
c = 16.5101 (15) Å light grey
β = 106.662 (11)° flat_sheet, 15 × 1 mm
V = 5207.2 (8) Å3 Specimen preparation: Prepared at 295 K and 101 kPa
Z = 8

Data collection

Guinier G670 diffractometer Data collection mode: transmission
Radiation source: line-focus sealed tube Scan method: continuous
Curved Germanium (111) min = 5.00°, 2θmax = 75.00°, 2θstep = 0.01°
Specimen mounting: thin layer in the specimen holder of the camera

Refinement

Refinement on Inet Profile function: split-type pseudo-Voigt (Toraya, 1986)
Least-squares matrix: full with fixed elements per cycle 157 parameters
Rp = 0.026 125 restraints
Rwp = 0.035 27 constraints
Rexp = 0.014 H-atom parameters not refined
RBragg = 0.064 Weighting scheme based on measured s.u.'s
χ2 = 5.928 (Δ/σ)max = 0.004
7001 data points Background function: Chebyshev polynomial up to the 5th order
Excluded region(s): none Preferred orientation correction: March-Dollase (Dollase, 1986); direction of preferred orientation 100, texture parameter r = 1.038(5)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1090 (10) 0.7439 (16) 0.8662 (14) 0.096 (9)*
H1A 0.1218 0.6723 0.8585 0.115*
H1B 0.1339 0.7771 0.9146 0.115*
C2 0.1044 (9) 0.8122 (14) 0.7871 (12) 0.096 (9)*
H2 0.1110 0.8888 0.8012 0.115*
C3 0.1405 (11) 0.7694 (13) 0.7371 (13) 0.096 (9)*
H3A 0.1289 0.6980 0.7153 0.115*
H3B 0.1386 0.8167 0.6895 0.115*
C4 0.2317 (10) 0.7415 (15) 0.7495 (11) 0.078 (7)*
C5 0.2335 (8) 0.7825 (16) 0.6713 (14) 0.078 (7)*
H5 0.2069 0.8273 0.6402 0.094*
C6 0.2761 (11) 0.7553 (13) 0.6398 (12) 0.078 (7)*
H6 0.2745 0.7766 0.5851 0.094*
C7 0.3201 (9) 0.6987 (17) 0.6859 (15) 0.078 (7)*
H7 0.3502 0.6922 0.6684 0.094*
C8 0.3156 (9) 0.6522 (16) 0.7609 (13) 0.078 (7)*
N9 0.3515 (8) 0.5885 (13) 0.8183 (10) 0.078 (7)*
H9 0.3797 0.5622 0.8107 0.094*
C10 0.3351 (9) 0.5734 (15) 0.8899 (14) 0.078 (7)*
C11 0.3572 (11) 0.5123 (16) 0.9629 (15) 0.078 (7)*
H11 0.3890 0.4766 0.9703 0.094*
C12 0.3304 (12) 0.5062 (17) 1.0244 (15) 0.078 (7)*
H12 0.3454 0.4682 1.0741 0.094*
C13 0.2814 (10) 0.5561 (14) 1.0128 (12) 0.078 (7)*
H13 0.2646 0.5522 1.0550 0.094*
C14 0.2580 (9) 0.6116 (13) 0.9379 (14) 0.078 (7)*
H14 0.2243 0.6393 0.9280 0.094*
C15 0.2854 (11) 0.6256 (15) 0.8773 (13) 0.078 (7)*
C16 0.2737 (10) 0.6768 (16) 0.7952 (12) 0.078 (7)*
O17 0.1930 (7) 0.7639 (11) 0.7893 (9) 0.078 (7)*
O18 0.0509 (8) 0.7940 (12) 0.7362 (9) 0.096 (9)*
H18 0.0479 0.8342 0.6957 0.144*
N19 0.0560 (8) 0.7353 (13) 0.8820 (11) 0.096 (9)*
H19A 0.0435 0.8022 0.8851 0.115*
H19B 0.0337 0.7015 0.8379 0.115*
C20 0.0576 (10) 0.6750 (16) 0.9617 (14) 0.096 (9)*
H20A 0.0807 0.7124 1.0098 0.115*
H20B 0.0718 0.6032 0.9592 0.115*
C21 0.0031 (11) 0.6657 (15) 0.9737 (12) 0.096 (9)*
H21A 0.0051 0.6343 1.0283 0.115*
H21B −0.0133 0.7362 0.9701 0.115*
O22 −0.0260 (7) 0.5974 (11) 0.9071 (8) 0.096 (9)*
C23 −0.0747 (10) 0.5587 (16) 0.9079 (13) 0.096 (9)*
C24 −0.0925 (12) 0.4644 (14) 0.8587 (14) 0.096 (9)*
C25 −0.1401 (9) 0.4201 (15) 0.8616 (15) 0.096 (9)*
H25 −0.1524 0.3577 0.8309 0.115*
C26 −0.1699 (10) 0.4678 (16) 0.9099 (12) 0.096 (9)*
H26 −0.2032 0.4412 0.9062 0.115*
C27 −0.1502 (9) 0.5542 (17) 0.9631 (14) 0.096 (9)*
H27 −0.1677 0.5796 1.0006 0.115*
C28 −0.1033 (11) 0.6023 (14) 0.9590 (12) 0.096 (9)*
H28 −0.0911 0.6640 0.9907 0.115*
O29 −0.0584 (8) 0.4261 (12) 0.8162 (9) 0.096 (9)*
C30 −0.0784 (11) 0.3728 (16) 0.7357 (14) 0.096 (9)*
H30A −0.0497 0.3514 0.7150 0.144*
H30B −0.1008 0.4215 0.6961 0.144*
H30C −0.0981 0.3101 0.7424 0.144*
P31 −0.0045 (5) 1.0448 (8) 0.8733 (7) 0.063 (6)*
O32 0.0094 (8) 0.9380 (12) 0.9182 (10) 0.124 (11)*
O33 0.0409 (8) 1.0822 (11) 0.8416 (11) 0.124 (11)*
H33 0.0373 1.0524 0.7960 0.186*
O34 −0.0127 (8) 1.1325 (13) 0.9331 (10) 0.124 (11)*
H34 −0.0244 1.1016 0.9678 0.186*
O35 −0.0536 (9) 1.0330 (11) 0.7999 (9) 0.124 (11)*
O36 0.0000 0.5716 (11) 0.7500 0.076 (7)*
H36 −0.0103 0.5310 0.7836 0.114*

Geometric parameters (Å, °)

P31—O35 1.51 (2) C12—C13 1.40 (4)
P31—O34 1.52 (2) C13—C14 1.40 (3)
P31—O33 1.52 (2) C14—C15 1.41 (3)
P31—O32 1.509 (18) C15—C16 1.45 (3)
O17—C4 1.40 (3) C20—C21 1.52 (4)
O17—C3 1.42 (3) C23—C28 1.40 (3)
O18—C2 1.45 (3) C23—C24 1.42 (3)
O22—C23 1.38 (3) C24—C25 1.39 (4)
O22—C21 1.43 (2) C25—C26 1.41 (3)
O29—C24 1.38 (3) C26—C27 1.39 (3)
O29—C30 1.44 (3) C27—C28 1.40 (4)
O18—H18 0.82 C1—H1A 0.97
O33—H33 0.82 C1—H1B 0.97
O34—H34 0.82 C2—H2 0.98
O36—H36 0.85 C3—H3A 0.97
O36—H36i 0.85 C3—H3B 0.97
N9—C10 1.39 (3) C5—H5 0.93
N9—C8 1.38 (3) C6—H6 0.93
N19—C1 1.51 (3) C7—H7 0.93
N19—C20 1.50 (3) C11—H11 0.93
N9—H9 0.86 C12—H12 0.93
N19—H19A 0.90 C13—H13 0.93
N19—H19B 0.90 C14—H14 0.93
C1—C2 1.53 (3) C20—H20B 0.97
C2—C3 1.53 (3) C20—H20A 0.97
C4—C16 1.41 (3) C21—H21B 0.97
C4—C5 1.40 (3) C21—H21A 0.97
C5—C6 1.42 (4) C25—H25 0.93
C6—C7 1.39 (3) C26—H26 0.93
C7—C8 1.40 (3) C27—H27 0.93
C8—C16 1.42 (4) C28—H28 0.93
C10—C15 1.43 (4) C30—H30A 0.96
C10—C11 1.40 (3) C30—H30B 0.96
C11—C12 1.40 (4) C30—H30C 0.96
O34—P31—O35 109.7 (13) O29—C24—C25 128.2 (18)
O32—P31—O35 110.0 (11) C24—C25—C26 121.3 (19)
O32—P31—O33 109.2 (13) C25—C26—C27 121 (2)
O32—P31—O34 111.5 (11) C26—C27—C28 118 (2)
O33—P31—O34 106.4 (12) C23—C28—C27 120.8 (19)
O33—P31—O35 110.0 (12) N19—C1—H1B 109.77
C3—O17—C4 117.0 (16) N19—C1—H1A 109.78
C21—O22—C23 120.0 (18) H1A—C1—H1B 108.18
C24—O29—C30 120 (2) C2—C1—H1A 109.73
C2—O18—H18 103.23 C2—C1—H1B 109.71
P31—O33—H33 106.53 C1—C2—H2 111.50
P31—O34—H34 105.88 C3—C2—H2 111.46
H36—O36—H36i 107.52 O18—C2—H2 111.57
C8—N9—C10 110 (2) O17—C3—H3A 109.57
C1—N19—C20 113.1 (18) C2—C3—H3A 109.48
C10—N9—H9 125.12 C2—C3—H3B 109.48
C8—N9—H9 125.17 O17—C3—H3B 109.59
C1—N19—H19B 108.95 H3A—C3—H3B 108.18
H19A—N19—H19B 107.79 C4—C5—H5 120.24
C20—N19—H19B 108.92 C6—C5—H5 120.11
C1—N19—H19A 108.90 C7—C6—H6 118.16
C20—N19—H19A 109.00 C5—C6—H6 118.07
N19—C1—C2 109.6 (19) C6—C7—H7 122.62
C1—C2—C3 111.1 (17) C8—C7—H7 122.59
O18—C2—C1 103.5 (18) C10—C11—H11 120.69
O18—C2—C3 107.3 (16) C12—C11—H11 120.78
O17—C3—C2 110.5 (16) C11—C12—H12 119.21
O17—C4—C16 116.1 (17) C13—C12—H12 119.26
C5—C4—C16 118 (2) C12—C13—H13 120.07
O17—C4—C5 125.8 (19) C14—C13—H13 120.07
C4—C5—C6 120 (2) C13—C14—H14 120.01
C5—C6—C7 123.8 (19) C15—C14—H14 119.97
C6—C7—C8 115 (2) C21—C20—H20A 109.42
N9—C8—C16 108.4 (18) C21—C20—H20B 109.44
C7—C8—C16 123 (2) H20A—C20—H20B 107.96
N9—C8—C7 128 (2) N19—C20—H20A 109.38
N9—C10—C11 131 (2) N19—C20—H20B 109.33
N9—C10—C15 108.6 (18) O22—C21—H21A 110.63
C11—C10—C15 121 (2) C20—C21—H21B 110.63
C10—C11—C12 119 (2) O22—C21—H21B 110.54
C11—C12—C13 122 (2) C20—C21—H21A 110.55
C12—C13—C14 120 (2) H21A—C21—H21B 108.76
C13—C14—C15 120 (2) C26—C25—H25 119.37
C10—C15—C16 106 (2) C24—C25—H25 119.29
C14—C15—C16 135 (2) C25—C26—H26 119.69
C10—C15—C14 119.1 (19) C27—C26—H26 119.59
C4—C16—C8 120.1 (18) C26—C27—H27 120.79
C4—C16—C15 133 (2) C28—C27—H27 120.75
C8—C16—C15 107 (2) C27—C28—H28 119.57
N19—C20—C21 111.3 (19) C23—C28—H28 119.65
O22—C21—C20 105.7 (18) O29—C30—H30B 109.47
O22—C23—C28 123.0 (19) O29—C30—H30C 109.44
C24—C23—C28 121 (2) H30A—C30—H30C 109.53
O22—C23—C24 116 (2) H30B—C30—H30C 109.45
C23—C24—C25 117 (2) H30A—C30—H30B 109.43
O29—C24—C23 114 (2) O29—C30—H30A 109.50

Symmetry codes: (i) −x, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N19—H19A···O32 0.90 2.06 2.93 (2) 165
N19—H19B···O36 0.90 2.18 3.04 (2) 159
N9—H9···O35ii 0.86 1.87 2.72 (3) 168
O18—H18···O32i 0.82 2.42 3.15 (2) 148
O18—H18···O35i 0.82 2.46 3.02 (2) 126
O33—H33···O35i 0.82 1.77 2.53 (2) 153
O34—H34···O32iii 0.82 1.87 2.58 (2) 144
O36—H36···O22 0.85 2.34 2.887 (15) 122
O36—H36···O29 0.85 2.00 2.80 (2) 155
C21—H21B···O34iii 0.97 2.24 2.91 (2) 125

Symmetry codes: (ii) x+1/2, y−1/2, z; (i) −x, y, −z+3/2; (iii) −x, −y+2, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2866).

References

  1. Brook, C. S., Chen, W., Dell’Orco, P. C., Katrincic, L. M., Lovet, A. M., Oh, C. K., Spoors, P. G. & Werner, C. (2005). US Patent No. 20050240027A1.
  2. Chen, W.-M., Zeng, L.-M., Yu, K.-B. & Xu, J.-H. (1998). Jiegou Huaxue, 17, 325–328.
  3. Chernyshev, V. V., Machon, D., Fitch, A. N., Zaitsev, S. A., Yatsenko, A. V., Shmakov, A. N. & Weber, H.-P. (2003). Acta Cryst. B59, 787–793. [DOI] [PubMed]
  4. Dollase, W. A. (1986). J. Appl. Cryst.19, 267–272.
  5. Huber (2002). G670 Imaging Plate Guinier Camera Software Huber Diffraktionstechnik GmbH, Rimsting, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Toraya, H. (1986). J. Appl. Cryst.19, 440–447.
  9. Visser, J. W. (1969). J. Appl. Cryst.2, 89–95.
  10. Yathirajan, H. S., Bindya, S., Sreevidya, T. V., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, o542–o544.
  11. Zhukov, S. G., Chernyshev, V. V., Babaev, E. V., Sonneveld, E. J. & Schenk, H. (2001). Z. Kristallogr. 216, 5–9.
  12. Zlokazov, V. B. & Chernyshev, V. V. (1992). J. Appl. Cryst.25, 447–451.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809029353/lh2866sup1.cif

e-65-o2020-sup1.cif (18.9KB, cif)

Rietveld powder data: contains datablocks I. DOI: 10.1107/S1600536809029353/lh2866Isup2.rtv

e-65-o2020-Isup2.rtv (232.9KB, rtv)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES