Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 25;65(Pt 8):m983–m984. doi: 10.1107/S160053680902844X

catena-Poly[[diaqua­dibromidoman­ganese(III)]-μ-pyridine-2-carboxyl­ato]

Nam-Ho Kim a, Kwang Ha a,*
PMCID: PMC2977438  PMID: 21583426

Abstract

The asymmetric unit of the title compound, [MnBr2(C6H4NO2)(H2O)2]n, contains one monomeric unit of the neutral linear coordination polymer. The Mn3+ ions are bridged by anionic pyridine-2-carboxyl­ate (pic) ligands, thereby forming a chain-like structure along the c axis, and are six-coordinated in a distorted octa­hedral environment by two O atoms of the two different carboxyl­ate groups, two O atoms of two water mol­ecules and two Br atoms. The complex displays inter­molecular O—H⋯Br, O—H⋯N, O—H⋯O, C—H⋯O and C—H⋯Br hydrogen bonding. There may also be inter­molecular π–π inter­actions between adjacent pyridine rings, with a centroid–centroid distance of 3.993 (8) Å.

Related literature

For the synthesis and structure of [Mn(pic)3], see: Figgis et al. (1978); Yamaguchi & Sawyer (1985); Li et al. (2000). For the synthesis and structure of [Mn(pic)2(H2O)2], see: Okabe & Koizumi (1998); Barandika et al. (1999). For details of mono-, di- and polynuclear Mn(II, III, IV)–pic complexes, see: Huang et al. (2004). For the synthesis and structure of the anionic Mn(II)–pic polymer, {[MnBr2(pic)(H2O)]}n, see: Kim et al. (2009).graphic file with name e-65-0m983-scheme1.jpg

Experimental

Crystal data

  • [MnBr2(C6H4NO2)(H2O)2]

  • M r = 372.89

  • Monoclinic, Inline graphic

  • a = 10.290 (3) Å

  • b = 13.814 (4) Å

  • c = 7.978 (3) Å

  • β = 109.810 (6)°

  • V = 1066.9 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 8.71 mm−1

  • T = 223 K

  • 0.25 × 0.23 × 0.10 mm

Data collection

  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.133, T max = 0.418

  • 6572 measured reflections

  • 2168 independent reflections

  • 1510 reflections with I > 2σ(I)

  • R int = 0.060

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070

  • wR(F 2) = 0.248

  • S = 1.14

  • 2168 reflections

  • 127 parameters

  • H-atom parameters constrained

  • Δρmax = 2.85 e Å−3

  • Δρmin = −1.46 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680902844X/im2127sup1.cif

e-65-0m983-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902844X/im2127Isup2.hkl

e-65-0m983-Isup2.hkl (106.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3A⋯Br1i 0.83 2.58 3.340 (9) 154
O3—H3B⋯N1ii 1.10 2.41 3.466 (14) 162
O4—H4A⋯Br2iii 0.83 2.70 3.333 (9) 135
O4—H4A⋯O1iii 0.83 2.33 2.908 (14) 127
O4—H4B⋯Br1iv 1.02 2.31 3.210 (9) 147
C2—H2⋯O4v 0.94 2.59 3.319 (18) 134
C4—H4⋯Br2vi 0.94 2.80 3.534 (12) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Acknowledgments

This work was supported by a Korea Research Foundation grant funded by the Korean Government (MOEHRD) (KRF-2007–412-J02001).

supplementary crystallographic information

Comment

Coordination polymers are attracting great attention because of their potential applications such as in catalysis, magnetism, molecular recognition and other fields (Huang et al., 2004).

The asymmetric unit of the title compound, [MnBr2(C6H4NO2)(H2O)2]n, contains one monomeric unit of the neutral linear coordination polymer (Fig. 1). Mn3+ ions are bridged by anionic pyridinecarboxylate (pic) ligands, thereby forming a one-dimensional zigzag chain-like structure along the c axis (Fig. 2). Mn3+ ions are six-coordinated in a distorted octahedral environment by two O atoms of the two different carboxylate groups, two O atoms of two water molecules and two Br atoms. Water molecules are trans with respect to each other, whereas Br atoms and O atoms of the carboxylate groups are cis with respect to each other, respectively. The complex displays intermolecular O—H···Br, O—H···N, O—H···O, C—H···O and C—H···Br hydrogen bonding (Table 1 and Fig. 2). There may also be intermolecular π-π interactions between adjacent pyridine rings, with a centroid-centroid distance of 3.993 (8) Å. The structure of the complex polymer is comparable with the structure of the anionic complex polymer, {[MnBr2(pic)(H2O)]-}n, in which the Mn2+ ions are linked to each other by pyridinecarboxylate bridges in a syn-anti mode (Kim et al., 2009).

Experimental

A solution of MnBr2 × 4 H2O (0.920 g, 3.208 mmol) and pyridine-2-carboxylic acid (0.200 g, 1.625 mmol) in H2O (10 ml) was refluxed for 3 h. The solvent was removed in vacuum, the residue was dissolved in MeOH/H2O (5 ml/5 ml) and filtered. After evaporation of the solvent, the residue was dried at 333 K, to give a pale pink powder (0.918 g). Crystals suitable for X-ray analysis were obtained by slow evaporation from a CH3CN solution.

Refinement

H atoms were positioned geometrically and allowed to ride on their respective parent atoms [C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C)]. The H atoms of the water molecules were located from Fourier difference maps, but not refined [Uiso(H) = 1.5Ueq(O)].

Figures

Fig. 1.

Fig. 1.

The repeat unit of the title compound, with displacement ellipsoids drawn at the 50% probability level for non-H atoms.

Fig. 2.

Fig. 2.

View of the unit-cell contents and chain-like structure of the title compound. Hydrogen-bond interactions are drawn with dashed lines.

Crystal data

[MnBr2(C6H4NO2)(H2O)2] F(000) = 712
Mr = 372.89 Dx = 2.321 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2889 reflections
a = 10.290 (3) Å θ = 2.6–28.2°
b = 13.814 (4) Å µ = 8.71 mm1
c = 7.978 (3) Å T = 223 K
β = 109.810 (6)° Plate, colorless
V = 1066.9 (6) Å3 0.25 × 0.23 × 0.10 mm
Z = 4

Data collection

Bruker SMART 1000 CCD diffractometer 2168 independent reflections
Radiation source: fine-focus sealed tube 1510 reflections with I > 2σ(I)
graphite Rint = 0.060
φ and ω scans θmax = 26.4°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −12→11
Tmin = 0.133, Tmax = 0.418 k = −17→17
6572 measured reflections l = −5→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.248 H-atom parameters constrained
S = 1.14 w = 1/[σ2(Fo2) + (0.135P)2 + 7.437P] where P = (Fo2 + 2Fc2)/3
2168 reflections (Δ/σ)max < 0.001
127 parameters Δρmax = 2.85 e Å3
0 restraints Δρmin = −1.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Mn1 1.11555 (19) 0.12215 (13) 0.3085 (2) 0.0262 (5)
Br1 1.27174 (14) 0.06169 (8) 0.63672 (16) 0.0287 (4)
Br2 1.29649 (14) 0.06032 (9) 0.17035 (17) 0.0322 (4)
O1 0.9974 (9) 0.1781 (7) 0.0294 (12) 0.037 (2)
O2 0.9538 (9) 0.1716 (6) 0.4164 (12) 0.033 (2)
O3 1.0017 (9) −0.0140 (6) 0.2414 (12) 0.039 (2)
H3A 0.9255 −0.0079 0.2534 0.059*
H3B 1.0868 −0.0659 0.2907 0.059*
O4 1.1968 (11) 0.2673 (6) 0.3608 (12) 0.039 (2)
H4A 1.1943 0.2857 0.4586 0.058*
H4B 1.1898 0.3074 0.2510 0.058*
N1 0.7263 (11) 0.3399 (7) 0.0142 (14) 0.031 (2)
C1 0.6010 (14) 0.3448 (9) 0.0408 (19) 0.035 (3)
H1 0.5611 0.4054 0.0464 0.042*
C2 0.5345 (14) 0.2620 (11) 0.059 (2) 0.041 (4)
H2 0.4469 0.2652 0.0714 0.049*
C3 0.5976 (14) 0.1726 (12) 0.0593 (18) 0.042 (4)
H3 0.5538 0.1153 0.0750 0.050*
C4 0.7258 (12) 0.1683 (9) 0.0361 (16) 0.027 (3)
H4 0.7690 0.1083 0.0367 0.032*
C5 0.7886 (12) 0.2528 (8) 0.0123 (14) 0.025 (3)
C6 0.9277 (13) 0.2547 (9) −0.0176 (15) 0.027 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Mn1 0.0264 (10) 0.0225 (9) 0.0289 (10) −0.0013 (7) 0.0085 (8) 0.0024 (7)
Br1 0.0340 (8) 0.0267 (7) 0.0244 (7) 0.0015 (5) 0.0085 (5) 0.0002 (4)
Br2 0.0366 (8) 0.0356 (8) 0.0276 (7) 0.0081 (5) 0.0149 (6) 0.0039 (5)
O1 0.027 (5) 0.048 (5) 0.036 (5) 0.013 (4) 0.012 (4) 0.016 (4)
O2 0.029 (5) 0.039 (5) 0.038 (5) 0.003 (4) 0.024 (4) −0.005 (4)
O3 0.042 (6) 0.026 (5) 0.049 (6) −0.015 (4) 0.015 (5) 0.003 (4)
O4 0.058 (7) 0.033 (5) 0.030 (5) −0.007 (4) 0.020 (5) 0.000 (4)
N1 0.032 (6) 0.031 (6) 0.028 (6) 0.006 (5) 0.007 (5) 0.003 (4)
C1 0.028 (7) 0.035 (7) 0.053 (8) 0.010 (5) 0.030 (6) −0.007 (6)
C2 0.015 (6) 0.061 (10) 0.049 (9) 0.005 (6) 0.014 (6) 0.002 (7)
C3 0.024 (7) 0.063 (9) 0.037 (8) −0.020 (7) 0.008 (6) −0.002 (7)
C4 0.025 (6) 0.022 (6) 0.033 (7) −0.004 (5) 0.009 (5) 0.001 (5)
C5 0.020 (6) 0.044 (7) 0.004 (5) −0.003 (5) −0.003 (4) 0.001 (4)
C6 0.025 (6) 0.040 (7) 0.008 (5) −0.003 (5) −0.005 (4) 0.007 (5)

Geometric parameters (Å, °)

Mn1—O4 2.158 (9) N1—C5 1.365 (15)
Mn1—O3 2.184 (8) N1—C1 1.378 (16)
Mn1—O2 2.224 (8) C1—C2 1.366 (19)
Mn1—O1 2.281 (9) C1—H1 0.94
Mn1—Br2 2.608 (2) C2—C3 1.40 (2)
Mn1—Br1 2.699 (2) C2—H2 0.94
O1—C6 1.261 (14) C3—C4 1.394 (18)
O2—C6i 1.217 (14) C3—H3 0.94
O3—H3A 0.83 C4—C5 1.378 (16)
O3—H3B 1.10 C4—H4 0.94
O4—H4A 0.83 C5—C6 1.529 (18)
O4—H4B 1.02 C6—O2ii 1.217 (14)
O4—Mn1—O3 171.1 (4) Mn1—O4—H4B 115
O4—Mn1—O2 86.1 (4) H4A—O4—H4B 129
O3—Mn1—O2 87.1 (3) C5—N1—C1 120.9 (11)
O4—Mn1—O1 85.2 (4) C2—C1—N1 120.3 (12)
O3—Mn1—O1 89.3 (3) C2—C1—H1 119.9
O2—Mn1—O1 93.0 (3) N1—C1—H1 119.9
O4—Mn1—Br2 95.8 (3) C1—C2—C3 119.5 (12)
O3—Mn1—Br2 90.8 (3) C1—C2—H2 120.3
O2—Mn1—Br2 177.4 (3) C3—C2—H2 120.3
O1—Mn1—Br2 85.3 (2) C4—C3—C2 119.9 (13)
O4—Mn1—Br1 92.1 (3) C4—C3—H3 120.1
O3—Mn1—Br1 93.7 (2) C2—C3—H3 120.1
O2—Mn1—Br1 89.9 (2) C5—C4—C3 119.5 (12)
O1—Mn1—Br1 175.9 (2) C5—C4—H4 120.3
Br2—Mn1—Br1 91.89 (7) C3—C4—H4 120.3
C6—O1—Mn1 129.5 (8) N1—C5—C4 120.0 (12)
C6i—O2—Mn1 136.7 (9) N1—C5—C6 117.1 (10)
Mn1—O3—H3A 110 C4—C5—C6 122.9 (11)
Mn1—O3—H3B 100 O2ii—C6—O1 130.0 (13)
H3A—O3—H3B 134 O2ii—C6—C5 115.9 (11)
Mn1—O4—H4A 109 O1—C6—C5 114.1 (10)
O4—Mn1—O1—C6 −47.0 (11) C2—C3—C4—C5 −0.3 (19)
O3—Mn1—O1—C6 125.9 (11) C1—N1—C5—C4 0.4 (17)
O2—Mn1—O1—C6 38.8 (11) C1—N1—C5—C6 −179.8 (10)
Br2—Mn1—O1—C6 −143.2 (11) C3—C4—C5—N1 1.0 (18)
O4—Mn1—O2—C6i −3.1 (12) C3—C4—C5—C6 −178.8 (10)
O3—Mn1—O2—C6i −177.3 (12) Mn1—O1—C6—O2ii 107.2 (14)
O1—Mn1—O2—C6i −88.1 (12) Mn1—O1—C6—C5 −73.5 (12)
Br1—Mn1—O2—C6i 89.0 (12) N1—C5—C6—O2ii −19.0 (15)
C5—N1—C1—C2 −2(2) C4—C5—C6—O2ii 160.8 (12)
N1—C1—C2—C3 3(2) N1—C5—C6—O1 161.6 (10)
C1—C2—C3—C4 −2(2) C4—C5—C6—O1 −18.6 (15)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3A···Br1iii 0.83 2.58 3.340 (9) 154
O3—H3B···N1iv 1.10 2.41 3.466 (14) 162
O4—H4A···Br2i 0.83 2.70 3.333 (9) 135
O4—H4A···O1i 0.83 2.33 2.908 (14) 127
O4—H4B···Br1ii 1.02 2.31 3.210 (9) 147
C2—H2···O4v 0.94 2.59 3.319 (18) 134
C4—H4···Br2vi 0.94 2.80 3.534 (12) 135

Symmetry codes: (iii) −x+2, −y, −z+1; (iv) −x+2, y−1/2, −z+1/2; (i) x, −y+1/2, z+1/2; (ii) x, −y+1/2, z−1/2; (v) x−1, −y+1/2, z−1/2; (vi) −x+2, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2127).

References

  1. Barandika, M. G., Serna, Z. E., Urtiaga, M. K., de Larramendi, J. I. R., Arriortua, M. I. & Cortés, R. (1999). Polyhedron, 18, 1311–1316.
  2. Bruker (2000). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Figgis, B. N., Raston, C. L., Sharma, R. P. & White, A. H. (1978). Aust. J. Chem.31, 2545–2548.
  5. Huang, D., Wang, W., Zhang, X., Chen, C., Chen, F., Liu, Q., Liao, D., Li, L. & Sun, L. (2004). Eur. J. Inorg. Chem. pp. 1454–1464.
  6. Kim, N.-H., Hwang, I.-C. & Ha, K. (2009). Acta Cryst. E65, m621. [DOI] [PMC free article] [PubMed]
  7. Li, Y.-Z., Wang, M., Wang, L.-F. & Xia, C.-G. (2000). Acta Cryst. C56, e445–e446.
  8. Okabe, N. & Koizumi, M. (1998). Acta Cryst. C54, 288–290.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Yamaguchi, K. & Sawyer, D. T. (1985). Inorg. Chem.24, 971–976.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053680902844X/im2127sup1.cif

e-65-0m983-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902844X/im2127Isup2.hkl

e-65-0m983-Isup2.hkl (106.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES