Abstract
In the molecule of the title compound, C9H9N3O2, the indazole ring system is almost planar [maximum deviation = 0.019 (3) Å for the C atom bearing the nitro group]. In the crystal structure, intermolecular C—H⋯O interactions link the molecules into centrosymmetric dimers, forming R 2 2(18) ring motifs. Aromatic π–π contacts between indazole rings [centroid–centroid distances = 3.632 (1) and 3.705 (1) Å] may further stabilize the structure.
Related literature
For a related structure, see: Xu et al. (1999 ▶). For bond-length data, see: Allen et al. (1987 ▶). For ring-motifs, see: Bernstein et al. (1995 ▶).
Experimental
Crystal data
C9H9N3O2
M r = 191.19
Triclinic,
a = 6.5800 (13) Å
b = 7.2050 (14) Å
c = 10.752 (2) Å
α = 75.07 (3)°
β = 74.67 (3)°
γ = 66.73 (3)°
V = 444.81 (19) Å3
Z = 2
Mo Kα radiation
μ = 0.11 mm−1
T = 294 K
0.30 × 0.20 × 0.10 mm
Data collection
Enraf–Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968 ▶) T min = 0.969, T max = 0.990
1756 measured reflections
1606 independent reflections
1292 reflections with I > 2σ(I)
R int = 0.031
3 standard reflections frequency: 120 min intensity decay: 1%
Refinement
R[F 2 > 2σ(F 2)] = 0.054
wR(F 2) = 0.154
S = 1.00
1606 reflections
129 parameters
H-atom parameters constrained
Δρmax = 0.32 e Å−3
Δρmin = −0.25 e Å−3
Data collection: CAD-4 Software (Enraf–Nonius, 1989 ▶); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995 ▶); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 ▶) and PLATON (Spek, 2009 ▶); software used to prepare material for publication: SHELXL97 and PLATON.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025410/hk2724sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025410/hk2724Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
---|---|---|---|---|
C1—H1A⋯O2i | 0.96 | 2.58 | 3.533 (4) | 171 |
Symmetry code: (i) .
Acknowledgments
The authors thank the Center of Testing and Analysis, Nanjing University, for support.
supplementary crystallographic information
Comment
Some derivatives of indazole are important chemical materials. We report herein the crystal structure of the title compound.
In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N1/N2/C3/C4/C9) and B (C4-C9) are, of course, planar and the dihedral angle between them is A/B = 0.80 (3)°. The indazole ring system is planar with a maximum deviation of -0.019 (3) Å for atom C6. Atoms O1, O2, N3, C1 and C2 are 0.024 (3), -0.124 (3), -0.038 (3), 0.003 (3) and -0.056 (3) Å away from the plane of the indazole ring system, respectively.
In the crystal structure, weak intermolecular C-H···O interactions (Table 1) link the molecules into centrosymmetric dimers forming R22(18) ring motifs (Bernstein et al., 1995) (Fig. 2), in which they may be effective in the stabilization of the structure. The π–π contacts between the indazole rings, Cg1—Cg2i and Cg2—Cg2ii [symmetry codes: (i) 2 - x, 2 - y, -z, (ii) 2 - x, 1 - y, -z, where Cg1 and Cg2 are centroids of the rings A (N1/N2/C3/C4/C9) and B (C4-C9), respectively] may further stabilize the structure, with centroid-centroid distances of 3.632 (1) and 3.705 (1) Å, respectively.
Experimental
For the preparation of the title compound, metallic sodium (3.22 g) was dissolved in regurgitant 2-propanol (140 ml). Then, the solution was added to 3-methyl-6-nitro-1H-indazole (13 g) and iodomethane (30 g) was added in small portions. The mixture was refluxed for 5 h. The suspension was cooled to room temperature, filtered and washed with 2-propanol to give yellow solid (yield; 12 g) (Xu et al., 1999). Crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution.
Refinement
H atoms were positioned geometrically, with C-H = 0.93 and 0.96 Å for aromatic and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for aromatic H atoms.
Figures
Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines.
Crystal data
C9H9N3O2 | Z = 2 |
Mr = 191.19 | F(000) = 200 |
Triclinic, P1 | Dx = 1.427 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 6.5800 (13) Å | Cell parameters from 25 reflections |
b = 7.2050 (14) Å | θ = 9–13° |
c = 10.752 (2) Å | µ = 0.11 mm−1 |
α = 75.07 (3)° | T = 294 K |
β = 74.67 (3)° | Block, colorless |
γ = 66.73 (3)° | 0.30 × 0.20 × 0.10 mm |
V = 444.81 (19) Å3 |
Data collection
Enraf–Nonius CAD-4 diffractometer | 1292 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.031 |
graphite | θmax = 25.3°, θmin = 2.0° |
ω/2θ scans | h = 0→7 |
Absorption correction: ψ scan (North et al., 1968) | k = −7→8 |
Tmin = 0.969, Tmax = 0.990 | l = −12→12 |
1756 measured reflections | 3 standard reflections every 120 min |
1606 independent reflections | intensity decay: 1% |
Refinement
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.054 | H-atom parameters constrained |
wR(F2) = 0.154 | w = 1/[σ2(Fo2) + (0.08P)2 + 0.235P] where P = (Fo2 + 2Fc2)/3 |
S = 1.00 | (Δ/σ)max < 0.001 |
1606 reflections | Δρmax = 0.32 e Å−3 |
129 parameters | Δρmin = −0.25 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.059 (12) |
Special details
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
O1 | 0.2155 (5) | 0.7495 (5) | −0.3831 (2) | 0.1020 (9) | |
O2 | −0.1339 (4) | 0.7845 (4) | −0.33747 (19) | 0.0803 (7) | |
N1 | −0.2315 (3) | 0.7731 (3) | 0.25319 (18) | 0.0469 (5) | |
N2 | −0.3309 (3) | 0.7997 (3) | 0.15107 (18) | 0.0479 (5) | |
N3 | 0.0392 (4) | 0.7648 (3) | −0.3051 (2) | 0.0611 (6) | |
C1 | −0.3707 (5) | 0.7880 (5) | 0.3829 (2) | 0.0660 (8) | |
H1A | −0.5144 | 0.8941 | 0.3758 | 0.099* | |
H1B | −0.2979 | 0.8202 | 0.4368 | 0.099* | |
H1C | −0.3915 | 0.6594 | 0.4218 | 0.099* | |
C2 | 0.1367 (5) | 0.6977 (4) | 0.3176 (3) | 0.0601 (7) | |
H2B | 0.0456 | 0.7087 | 0.4032 | 0.090* | |
H2C | 0.2098 | 0.7971 | 0.2929 | 0.090* | |
H2D | 0.2482 | 0.5625 | 0.3186 | 0.090* | |
C3 | −0.0080 (4) | 0.7362 (3) | 0.2216 (2) | 0.0432 (6) | |
C4 | −0.1582 (3) | 0.7777 (3) | 0.0489 (2) | 0.0390 (5) | |
C5 | −0.1637 (4) | 0.7888 (3) | −0.0830 (2) | 0.0446 (6) | |
H5A | −0.2966 | 0.8160 | −0.1108 | 0.054* | |
C6 | 0.0376 (4) | 0.7573 (3) | −0.1678 (2) | 0.0462 (6) | |
C7 | 0.2431 (4) | 0.7224 (4) | −0.1315 (2) | 0.0517 (6) | |
H7A | 0.3741 | 0.7057 | −0.1943 | 0.062* | |
C8 | 0.2482 (4) | 0.7134 (3) | −0.0049 (2) | 0.0470 (6) | |
H8A | 0.3819 | 0.6910 | 0.0204 | 0.056* | |
C9 | 0.0474 (3) | 0.7388 (3) | 0.0874 (2) | 0.0387 (5) |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.1021 (19) | 0.150 (2) | 0.0491 (12) | −0.0512 (17) | 0.0174 (12) | −0.0311 (13) |
O2 | 0.1002 (17) | 0.0986 (16) | 0.0521 (12) | −0.0371 (13) | −0.0217 (11) | −0.0183 (11) |
N1 | 0.0480 (11) | 0.0573 (12) | 0.0389 (10) | −0.0226 (9) | −0.0063 (8) | −0.0089 (8) |
N2 | 0.0436 (11) | 0.0606 (12) | 0.0427 (11) | −0.0218 (9) | −0.0069 (8) | −0.0098 (9) |
N3 | 0.0804 (16) | 0.0572 (13) | 0.0453 (12) | −0.0255 (11) | −0.0051 (12) | −0.0129 (10) |
C1 | 0.0621 (17) | 0.095 (2) | 0.0422 (14) | −0.0311 (15) | 0.0000 (12) | −0.0173 (13) |
C2 | 0.0642 (16) | 0.0669 (17) | 0.0564 (15) | −0.0235 (13) | −0.0231 (13) | −0.0092 (12) |
C3 | 0.0475 (13) | 0.0402 (12) | 0.0459 (12) | −0.0177 (9) | −0.0112 (10) | −0.0077 (9) |
C4 | 0.0400 (11) | 0.0369 (11) | 0.0427 (12) | −0.0162 (9) | −0.0058 (9) | −0.0085 (9) |
C5 | 0.0501 (13) | 0.0444 (12) | 0.0442 (13) | −0.0207 (10) | −0.0117 (10) | −0.0061 (9) |
C6 | 0.0611 (14) | 0.0384 (12) | 0.0389 (12) | −0.0202 (10) | −0.0034 (10) | −0.0079 (9) |
C7 | 0.0465 (13) | 0.0485 (13) | 0.0523 (14) | −0.0148 (10) | 0.0048 (10) | −0.0128 (11) |
C8 | 0.0405 (12) | 0.0423 (12) | 0.0579 (14) | −0.0137 (9) | −0.0079 (10) | −0.0104 (10) |
C9 | 0.0426 (12) | 0.0306 (10) | 0.0448 (12) | −0.0135 (8) | −0.0098 (9) | −0.0070 (8) |
Geometric parameters (Å, °)
O1—N3 | 1.222 (3) | C2—H2C | 0.9600 |
O2—N3 | 1.223 (3) | C2—H2D | 0.9600 |
N1—N2 | 1.357 (3) | C3—C9 | 1.389 (3) |
N1—C1 | 1.456 (3) | C4—C5 | 1.409 (3) |
N1—C3 | 1.350 (3) | C4—C9 | 1.420 (3) |
N2—C4 | 1.346 (3) | C5—C6 | 1.366 (3) |
N3—C6 | 1.460 (3) | C5—H5A | 0.9300 |
C1—H1A | 0.9600 | C6—C7 | 1.416 (4) |
C1—H1B | 0.9600 | C7—C8 | 1.354 (3) |
C1—H1C | 0.9600 | C7—H7A | 0.9300 |
C2—C3 | 1.487 (3) | C8—C9 | 1.405 (3) |
C2—H2B | 0.9600 | C8—H8A | 0.9300 |
N2—N1—C1 | 118.6 (2) | N1—C3—C2 | 124.3 (2) |
C3—N1—N2 | 114.84 (19) | C9—C3—C2 | 130.3 (2) |
C3—N1—C1 | 126.6 (2) | N2—C4—C5 | 127.8 (2) |
C4—N2—N1 | 102.99 (17) | N2—C4—C9 | 111.81 (19) |
O1—N3—O2 | 122.6 (2) | C5—C4—C9 | 120.4 (2) |
O1—N3—C6 | 118.2 (2) | C6—C5—C4 | 116.1 (2) |
O2—N3—C6 | 119.2 (2) | C6—C5—H5A | 121.9 |
N1—C1—H1A | 109.5 | C4—C5—H5A | 121.9 |
N1—C1—H1B | 109.5 | C5—C6—C7 | 124.2 (2) |
H1A—C1—H1B | 109.5 | C5—C6—N3 | 117.7 (2) |
N1—C1—H1C | 109.5 | C7—C6—N3 | 118.1 (2) |
H1A—C1—H1C | 109.5 | C8—C7—C6 | 119.7 (2) |
H1B—C1—H1C | 109.5 | C8—C7—H7A | 120.1 |
C3—C2—H2B | 109.5 | C6—C7—H7A | 120.1 |
C3—C2—H2C | 109.5 | C7—C8—C9 | 118.6 (2) |
H2B—C2—H2C | 109.5 | C7—C8—H8A | 120.7 |
C3—C2—H2D | 109.5 | C9—C8—H8A | 120.7 |
H2B—C2—H2D | 109.5 | C3—C9—C8 | 134.1 (2) |
H2C—C2—H2D | 109.5 | C3—C9—C4 | 105.00 (19) |
N1—C3—C9 | 105.36 (19) | C8—C9—C4 | 120.9 (2) |
C1—N1—N2—C4 | 179.6 (2) | C2—C3—C9—C8 | −2.1 (4) |
C3—N1—N2—C4 | 0.1 (2) | N2—C4—C5—C6 | −178.9 (2) |
N2—N1—C3—C2 | −178.6 (2) | C9—C4—C5—C6 | 0.9 (3) |
N2—N1—C3—C9 | 0.2 (2) | N2—C4—C9—C3 | 0.4 (2) |
C1—N1—C3—C2 | 1.9 (4) | N2—C4—C9—C8 | −179.25 (18) |
C1—N1—C3—C9 | −179.3 (2) | C5—C4—C9—C3 | −179.41 (19) |
N1—N2—C4—C5 | 179.5 (2) | C5—C4—C9—C8 | 0.9 (3) |
N1—N2—C4—C9 | −0.3 (2) | C4—C5—C6—C7 | −2.2 (3) |
O1—N3—C6—C5 | 175.6 (2) | C4—C5—C6—N3 | 179.20 (19) |
O1—N3—C6—C7 | −3.1 (3) | C5—C6—C7—C8 | 1.8 (4) |
O2—N3—C6—C5 | −5.0 (3) | N3—C6—C7—C8 | −179.7 (2) |
O2—N3—C6—C7 | 176.4 (2) | C6—C7—C8—C9 | 0.2 (3) |
N1—C3—C9—C4 | −0.4 (2) | C7—C8—C9—C3 | 179.0 (2) |
N1—C3—C9—C8 | 179.3 (2) | C7—C8—C9—C4 | −1.4 (3) |
C2—C3—C9—C4 | 178.3 (2) |
Hydrogen-bond geometry (Å, °)
D—H···A | D—H | H···A | D···A | D—H···A |
C1—H1A···O2i | 0.96 | 2.58 | 3.533 (4) | 171 |
Symmetry codes: (i) −x−1, −y+2, −z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2724).
References
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555-1573.
- Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
- Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Xu, B.-C., Deng, F. & Wang, H.-Z. (1999). Speciality Petro. Chem. pp. 18–20.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809025410/hk2724sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809025410/hk2724Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report