Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 25;65(Pt 8):o1980. doi: 10.1107/S1600536809028761

4-(4-Bromo­phen­yl)-5-oxo-1,2,3,4,5,6,7,8-octa­hydro­quinazoline-2-thione

Min Xie a, Changquan Deng a, Jie Zheng a, Yulin Zhu a,*
PMCID: PMC2977462  PMID: 21583656

Abstract

The title compound, C14H13BrN2OS, was synthesized from the multicomponent reaction between thio­urea, 4-bromo­benzaldehyde and cyclo­hexane-1,3-dione. The crystal packing is stabilized by inter­molecular N—H⋯O, N—H⋯S, C—H⋯O and C—H⋯S hydrogen bonds. Br⋯O inter­actions [3.183 (3) Å] are also observed in the crystal structure.

Related literature

For the pharmaceutical applications of 4-aryl-5-oxo-1,2,3,4,5,6,7,8-octa­hydro­quinazoline-2-thio­nes, see: Kappe & Stadler (2004); Sarac et al. (1997, 1999); Yarima et al., (2003). For background information on halogen bonding, see: Damodharana et al. (2004); Sureshan et al. (2001); Yang et al. (2008).graphic file with name e-65-o1980-scheme1.jpg

Experimental

Crystal data

  • C14H13BrN2OS

  • M r = 337.23

  • Triclinic, Inline graphic

  • a = 7.0395 (11) Å

  • b = 8.1859 (13) Å

  • c = 13.286 (2) Å

  • α = 105.329 (2)°

  • β = 91.279 (2)°

  • γ = 103.854 (2)°

  • V = 713.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 3.02 mm−1

  • T = 293 K

  • 0.25 × 0.25 × 0.20 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.429, T max = 0.547

  • 3953 measured reflections

  • 2744 independent reflections

  • 1880 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.117

  • S = 1.04

  • 2744 reflections

  • 174 parameters

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.60 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809028761/zl2225sup1.cif

e-65-o1980-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028761/zl2225Isup2.hkl

e-65-o1980-Isup2.hkl (134.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2A⋯S1i 0.97 2.98 3.781 (4) 140
N2—H2⋯S1ii 0.86 2.55 3.380 (3) 161
N1—H1⋯O1iii 0.86 2.00 2.832 (4) 164
C4—H4A⋯O1iii 0.97 2.59 3.361 (4) 137

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank South China Normal University for financial support (grant Nos. SCNU033038 and SCNU524002).

supplementary crystallographic information

Comment

4-Aryl-5-oxo-1,2,3,4,5,6,7,8-octahydroquinazoline-2-thiones have received much attention recently because of their pharmaceutical applications. (Kappe & Stadler, 2004; Sarac et al., 1997; Sarac et al., 1999). For example, the calcium antagonist activity of the compounds was tested in vitro on isolated rat ileum and lamb carotid artery. (Yarima et al., 2003). As part of our on going studies on the synthesis of quinazolinethiones, the title compound was isolated under Biginelli reaction conditions (Figure 1).

The reaction between thiourea, 4-bromobenzaldehyde, and 1,3-cyclohexanedione instead of an open-chain dicarbonyl compound in the presence of palladium(II) 2,4-pentanedionate as catalyst proceeded to give the title compound in excellent yield. A representation of the title compound is given in Figure 2. There are no unusual bond lengths and angles in the compound. The molecules in the structure are linked via N1—H1···O1 and paired N2—H2···S1 intermolecular hydrogen bonds. The bromine atom Br1 exhibits a Br···O halogen bond with oxygen atom O1 (Figure 3). (Damodharana et al., 2004; Sureshan et al., 2001; Yang et al., 2008). The Br1···O1 distance of this interaction is 3.182 Å, which is less than the sum of their van der Waals radii.

Experimental

A mixture of thiourea (0.91 g, 12 mmol), 4-bromobenzaldehyde (1.84 g, 10 mmol), 1,3-cyclohexanedione (1.12 g, 10 mmol), and palladium(II) 2,4-pentanedionate (0.0020 mg) was refluxed in acetonitrile (12 ml) at 353 K for 4 h. After being cooled to room temperature, the reaction mixture was poured into water. The white precipitate was filtered off with a silica pad, washed twice with water, and the filtrate was then dried under vacuum to yield the product. Single crystals of the title compound were obtained by slow evaporation from ethanol at room temperature to yield colourless, block-shaped crystal.

Refinement

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93–0.97 Å and N—H = 0.86 Å, respectively, and Uiso = 1.2eq(parent atom).

Figures

Fig. 1.

Fig. 1.

Palladium(II) 2,4-pentanedionate catalyzed synthesis of the title compound.

Fig. 2.

Fig. 2.

View of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.

Fig. 3.

Fig. 3.

Perspective view of the packing of the title compound. Dashed lines stand for N1—H1···O1 and N2—H2···S1 intermolecular hydrogen bonds and Br1···O1 interactions.

Crystal data

C14H13BrN2OS Z = 2
Mr = 337.23 F(000) = 340
Triclinic, P1 Dx = 1.569 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.0395 (11) Å Cell parameters from 1089 reflections
b = 8.1859 (13) Å θ = 2.7–23.6°
c = 13.286 (2) Å µ = 3.02 mm1
α = 105.329 (2)° T = 293 K
β = 91.279 (2)° Block, colourless
γ = 103.854 (2)° 0.25 × 0.25 × 0.20 mm
V = 713.9 (2) Å3

Data collection

Bruker APEXII area-detector diffractometer 2744 independent reflections
Radiation source: fine-focus sealed tube 1880 reflections with I > 2σ(I)
graphite Rint = 0.021
φ and ω scans θmax = 26.0°, θmin = 1.6°
Absorption correction: multi-scan (APEX2; Bruker, 2004) h = −8→8
Tmin = 0.429, Tmax = 0.547 k = −10→10
3953 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.046 H-atom parameters constrained
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.8552P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2744 reflections Δρmax = 0.42 e Å3
174 parameters Δρmin = −0.60 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0058 (17)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.08077 (11) 0.17375 (8) −0.08352 (4) 0.0927 (3)
S1 0.81565 (14) 0.62120 (13) 0.47136 (8) 0.0395 (3)
N2 0.4706 (4) 0.6637 (4) 0.4168 (2) 0.0322 (7)
H2 0.4223 0.6000 0.4568 0.039*
C8 0.6646 (5) 0.7134 (5) 0.4188 (3) 0.0294 (8)
C7 0.3316 (5) 0.7096 (4) 0.3511 (3) 0.0291 (8)
H7 0.2139 0.7176 0.3881 0.035*
C6 0.4253 (5) 0.8861 (4) 0.3369 (3) 0.0282 (8)
C5 0.6241 (5) 0.9449 (4) 0.3455 (3) 0.0287 (8)
C1 0.3007 (5) 0.9915 (4) 0.3130 (3) 0.0303 (8)
C4 0.7274 (5) 1.1109 (5) 0.3220 (3) 0.0352 (9)
H4A 0.8475 1.0964 0.2906 0.042*
H4B 0.7626 1.2047 0.3867 0.042*
C2 0.3965 (5) 1.1566 (5) 0.2867 (3) 0.0396 (9)
H2A 0.4084 1.2547 0.3484 0.047*
H2B 0.3129 1.1722 0.2328 0.047*
C3 0.5987 (5) 1.1589 (5) 0.2486 (3) 0.0402 (9)
H3A 0.5851 1.0768 0.1796 0.048*
H3B 0.6606 1.2749 0.2426 0.048*
N1 0.7383 (4) 0.8485 (4) 0.3772 (2) 0.0350 (7)
H1 0.8622 0.8751 0.3703 0.042*
C9 0.2714 (5) 0.5708 (4) 0.2475 (3) 0.0321 (8)
C12 0.1586 (8) 0.3298 (5) 0.0523 (3) 0.0557 (12)
C14 0.0763 (6) 0.4943 (6) 0.2134 (4) 0.0598 (13)
H14 −0.0197 0.5240 0.2564 0.072*
C10 0.4095 (6) 0.5213 (6) 0.1814 (3) 0.0482 (11)
H10 0.5424 0.5704 0.2027 0.058*
C11 0.3538 (7) 0.4003 (6) 0.0842 (3) 0.0545 (12)
H11 0.4483 0.3674 0.0411 0.065*
C13 0.0205 (8) 0.3738 (7) 0.1163 (4) 0.0802 (18)
H13 −0.1120 0.3228 0.0947 0.096*
O1 0.1229 (4) 0.9472 (3) 0.3167 (2) 0.0426 (7)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.1179 (6) 0.0830 (5) 0.0453 (3) −0.0032 (4) 0.0010 (3) −0.0098 (3)
S1 0.0319 (6) 0.0473 (6) 0.0477 (6) 0.0135 (4) 0.0060 (4) 0.0239 (5)
N2 0.0243 (17) 0.0368 (17) 0.0377 (17) 0.0038 (13) 0.0046 (13) 0.0172 (14)
C8 0.027 (2) 0.036 (2) 0.0277 (18) 0.0093 (16) 0.0019 (14) 0.0123 (15)
C7 0.0207 (18) 0.0322 (19) 0.0358 (19) 0.0052 (15) 0.0042 (15) 0.0127 (15)
C6 0.0252 (19) 0.0285 (18) 0.0306 (18) 0.0044 (15) 0.0049 (14) 0.0099 (14)
C5 0.0245 (19) 0.0284 (18) 0.0348 (19) 0.0065 (15) 0.0069 (15) 0.0114 (15)
C1 0.026 (2) 0.0326 (19) 0.0319 (19) 0.0073 (15) 0.0046 (15) 0.0079 (15)
C4 0.026 (2) 0.031 (2) 0.050 (2) 0.0026 (16) 0.0055 (17) 0.0165 (17)
C2 0.030 (2) 0.039 (2) 0.053 (2) 0.0100 (17) 0.0058 (18) 0.0179 (18)
C3 0.034 (2) 0.041 (2) 0.051 (2) 0.0052 (18) 0.0070 (18) 0.0251 (19)
N1 0.0208 (16) 0.0410 (18) 0.0496 (19) 0.0077 (13) 0.0072 (14) 0.0231 (15)
C9 0.030 (2) 0.0297 (19) 0.038 (2) 0.0042 (16) 0.0037 (16) 0.0161 (16)
C12 0.073 (3) 0.040 (2) 0.041 (2) −0.003 (2) 0.007 (2) 0.0044 (19)
C14 0.034 (2) 0.074 (3) 0.050 (3) −0.002 (2) 0.006 (2) −0.003 (2)
C10 0.037 (2) 0.054 (3) 0.049 (3) 0.010 (2) 0.0076 (19) 0.008 (2)
C11 0.067 (3) 0.051 (3) 0.044 (3) 0.014 (2) 0.015 (2) 0.010 (2)
C13 0.045 (3) 0.092 (4) 0.064 (3) −0.013 (3) 0.000 (3) −0.017 (3)
O1 0.0251 (15) 0.0507 (17) 0.0573 (18) 0.0117 (12) 0.0069 (12) 0.0221 (14)

Geometric parameters (Å, °)

Br1—C12 1.895 (4) C4—H4B 0.9700
Br1—O1i 3.183 (3) C2—C3 1.519 (5)
S1—C8 1.678 (4) C2—H2A 0.9700
N2—C8 1.326 (4) C2—H2B 0.9700
N2—C7 1.474 (4) C3—H3A 0.9700
N2—H2 0.8600 C3—H3B 0.9700
C8—N1 1.364 (4) N1—H1 0.8600
C7—C6 1.500 (5) C9—C14 1.376 (5)
C7—C9 1.510 (5) C9—C10 1.386 (5)
C7—H7 0.9800 C12—C13 1.356 (6)
C6—C5 1.358 (5) C12—C11 1.366 (7)
C6—C1 1.453 (5) C14—C13 1.383 (6)
C5—N1 1.382 (4) C14—H14 0.9300
C5—C4 1.495 (5) C10—C11 1.384 (6)
C1—O1 1.222 (4) C10—H10 0.9300
C1—C2 1.492 (5) C11—H11 0.9300
C4—C3 1.504 (5) C13—H13 0.9300
C4—H4A 0.9700
C12—Br1—O1i 154.81 (16) C1—C2—H2B 108.9
C8—N2—C7 124.8 (3) C3—C2—H2B 108.9
C8—N2—H2 117.6 H2A—C2—H2B 107.7
C7—N2—H2 117.6 C4—C3—C2 111.6 (3)
N2—C8—N1 116.3 (3) C4—C3—H3A 109.3
N2—C8—S1 123.1 (3) C2—C3—H3A 109.3
N1—C8—S1 120.6 (3) C4—C3—H3B 109.3
N2—C7—C6 108.5 (3) C2—C3—H3B 109.3
N2—C7—C9 111.0 (3) H3A—C3—H3B 108.0
C6—C7—C9 112.0 (3) C8—N1—C5 123.3 (3)
N2—C7—H7 108.4 C8—N1—H1 118.3
C6—C7—H7 108.4 C5—N1—H1 118.3
C9—C7—H7 108.4 C14—C9—C10 117.5 (4)
C5—C6—C1 120.8 (3) C14—C9—C7 121.0 (3)
C5—C6—C7 120.1 (3) C10—C9—C7 121.4 (3)
C1—C6—C7 119.1 (3) C13—C12—C11 120.5 (4)
C6—C5—N1 119.4 (3) C13—C12—Br1 119.9 (4)
C6—C5—C4 122.9 (3) C11—C12—Br1 119.6 (3)
N1—C5—C4 117.7 (3) C9—C14—C13 121.1 (4)
O1—C1—C6 120.6 (3) C9—C14—H14 119.4
O1—C1—C2 121.3 (3) C13—C14—H14 119.4
C6—C1—C2 118.1 (3) C11—C10—C9 121.4 (4)
C5—C4—C3 110.8 (3) C11—C10—H10 119.3
C5—C4—H4A 109.5 C9—C10—H10 119.3
C3—C4—H4A 109.5 C12—C11—C10 119.3 (4)
C5—C4—H4B 109.5 C12—C11—H11 120.3
C3—C4—H4B 109.5 C10—C11—H11 120.3
H4A—C4—H4B 108.1 C12—C13—C14 120.2 (5)
C1—C2—C3 113.4 (3) C12—C13—H13 119.9
C1—C2—H2A 108.9 C14—C13—H13 119.9
C3—C2—H2A 108.9
C7—N2—C8—N1 16.5 (5) C1—C2—C3—C4 −50.8 (5)
C7—N2—C8—S1 −164.9 (3) N2—C8—N1—C5 7.6 (5)
C8—N2—C7—C6 −31.3 (4) S1—C8—N1—C5 −171.1 (3)
C8—N2—C7—C9 92.1 (4) C6—C5—N1—C8 −12.3 (5)
N2—C7—C6—C5 24.8 (4) C4—C5—N1—C8 167.8 (3)
C9—C7—C6—C5 −98.0 (4) N2—C7—C9—C14 126.7 (4)
N2—C7—C6—C1 −155.8 (3) C6—C7—C9—C14 −111.9 (4)
C9—C7—C6—C1 81.3 (4) N2—C7—C9—C10 −56.1 (4)
C1—C6—C5—N1 174.5 (3) C6—C7—C9—C10 65.3 (4)
C7—C6—C5—N1 −6.1 (5) O1i—Br1—C12—C13 63.0 (6)
C1—C6—C5—C4 −5.6 (5) O1i—Br1—C12—C11 −115.5 (5)
C7—C6—C5—C4 173.8 (3) C10—C9—C14—C13 −0.7 (7)
C5—C6—C1—O1 −171.9 (3) C7—C9—C14—C13 176.6 (5)
C7—C6—C1—O1 8.8 (5) C14—C9—C10—C11 0.5 (6)
C5—C6—C1—C2 6.5 (5) C7—C9—C10—C11 −176.8 (4)
C7—C6—C1—C2 −172.9 (3) C13—C12—C11—C10 −1.9 (7)
C6—C5—C4—C3 −23.7 (5) Br1—C12—C11—C10 176.6 (3)
N1—C5—C4—C3 156.2 (3) C9—C10—C11—C12 0.8 (7)
O1—C1—C2—C3 −159.6 (4) C11—C12—C13—C14 1.8 (9)
C6—C1—C2—C3 22.0 (5) Br1—C12—C13—C14 −176.8 (4)
C5—C4—C3—C2 50.7 (4) C9—C14—C13—C12 −0.4 (9)

Symmetry codes: (i) −x, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2A···S1ii 0.97 2.98 3.781 (4) 140
N2—H2···S1iii 0.86 2.55 3.380 (3) 161
N1—H1···O1iv 0.86 2.00 2.832 (4) 164
C4—H4A···O1iv 0.97 2.59 3.361 (4) 137

Symmetry codes: (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+1, −z+1; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2225).

References

  1. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Damodharana, D., Pattabhia, V., Beherab, M. & Kotha, S. (2004). J. Mol. Struct.705, 101–106.
  3. Kappe, C. O. & Stadler, A. (2004). Org. React.63, 1–116.
  4. Sarac, S., Yarim, M., Ertan, M., Erol, K. & Aktan, Y. (1997). Boll. Chim. Farm.136, 657–664. [PubMed]
  5. Sarac, S., Yarym, M. & Ertan, M. (1999). Anal. Lett.32, 1245–1254.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Sureshan, K. M., Gonnade, R. G., Puranik, V. G., Shashidhar, M. S. & Bhadbhade, M. M. (2001). Chem. Commun. pp. 881–882.
  8. Yang, F. X., Li, X. D., Xu, G. R. & Qian, C. (2008). Z. Kristallogr. New Cryst. Struct.223, 297–299.
  9. Yarima, M., Sarac, S., Kilic, F. S. & Erol, K. (2003). Farmaco, 58, 17–24. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809028761/zl2225sup1.cif

e-65-o1980-sup1.cif (18.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028761/zl2225Isup2.hkl

e-65-o1980-Isup2.hkl (134.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES