Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 4;65(Pt 8):o1749. doi: 10.1107/S1600536809024684

N,N′-p-Phenyl­enediisonicotinamide monohydrate

Li Song a,*, Wenxiang Chai b, Junwei Lan a
PMCID: PMC2977464  PMID: 21583460

Abstract

The organic mol­ecule of the title compound, C18H14N4O2·H2O, lies on a center of inversion located at the centre of the central phenyl­ene ring. There are two half-molecules in the asymmetric unit. In the crystal, the mol­ecules are linked through by N—H⋯O and O—H⋯N hydrogen bonds involving the water mol­ecule, forming a layer structure. The layers inter­act by π–π inter­actions between the aromatic rings.

Related literature

For background to N,N′-p-phenylenediisonicotinamide complexes, see: Burchell et al. (2003, 2004); Niu et al. (2004); Pansanel et al. (2006).graphic file with name e-65-o1749-scheme1.jpg

Experimental

Crystal data

  • C18H14N4O2·H2O

  • M r = 336.35

  • Triclinic, Inline graphic

  • a = 6.9936 (14) Å

  • b = 10.852 (2) Å

  • c = 11.285 (2) Å

  • α = 95.98 (3)°

  • β = 106.36 (3)°

  • γ = 94.68 (3)°

  • V = 811.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.32 × 0.21 × 0.13 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer

  • Absorption correction: multi-scan (CrystalStructure; Rigaku/MSC, 2004) T min = 0.976, T max = 0.987

  • 7994 measured reflections

  • 3671 independent reflections

  • 1782 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.163

  • S = 1.10

  • 3671 reflections

  • 235 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809024684/ng2603sup1.cif

e-65-o1749-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024684/ng2603Isup2.hkl

e-65-o1749-Isup2.hkl (180KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O3i 0.88 2.00 2.847 (3) 160
N4—H4A⋯O1 0.88 2.12 2.968 (3) 161
O3—H15⋯N1 0.94 (4) 1.92 (4) 2.845 (3) 168 (3)
O3—H16⋯N3ii 0.87 (4) 2.01 (4) 2.849 (3) 162 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We are grateful for financial support from the Scientific Research Fund of Zhejiang Provincial Education Department (grant No. 20070358), the Analysis and Testing Foundation of Zhejiang Province (grant Nos. 2008F70034 and 2008F70053), the National Natural Science Foundation of China (grant No. 20803070) and the Young Scientists Fund of the Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Ministry of Education (grant No. 2007QN01).

supplementary crystallographic information

Comment

The incorporation of amide groups into organic ligands are of interests because of the existence of great and typical intermolecular hydrogen bondings. Furthermore, the bridging bis(pyridyl) ligands are good donors for building metal-organic frameworks (MOFs). As one example of bis(pyridyl) ligands with amide groups, N,N'-(biphenyl-4,4'-diyl)diisonicotinamide has been very less studied. Only a few examples built upon N,N'-(biphenyl-4,4'-diyl)diisonicotinamide and Cu(II), Hg(I) salts have been reported. However, the crystal structure of the ligand, N,N'-(biphenyl-4,4'-diyl)diisonicotinamide, has not been described in detail. Herein, we report the crystal structure and characterization of the title compound N,N'-(biphenyl-4,4'-diyl)diisonicotinamide.

The compound crystallizes in triclinic form in the space group P-1. As shown in Figure 1, the title compound, C18H14N4O2.H2O, contains an N,N'-(biphenyl-4,4'-diyl)diisonicotinamide molecule and a water solvent molecule. The bond lengths of the two independent parts of the C18H14N4O2 molecule display slight differences. The two C=O bonds of the amide groups are 1.223 (3) Å and 1.232 (3) Å long respectively. Individual molecules are connected through intermolecular N—H···O=C hydrogen bonds between amide groups The H(4 A)···O(1) distance is 2.12 Å and the N(4)···O(1) distance is 2.968 (3) Å. The N(4)—H(4 A)···O(1) angle is 161.3 °.

As shown in Figure 2, The molecules and the solvent water molecules are connected through the O—H···N hydrogen bonds between the water molecules and the pyridine groups or the amide groups (N(2)···O(3) = 2.847 (3) Å, O(3)···N(1) = 2.845 (3) Å, O(3)···N(3) = 2.849 (3) Å) to form a layer. The hydrogen bond geometry is listed in table 1. The layers pack viaπ-π interactions among the phenyl rings (Figure 3).

Experimental

The synthesis of compound 1 was modified with reference to the literature methods (R. J. Puddephatt and H. W. Hou). Isonicotinic acid (4.924 g, 40.0 mmol) was refluxed in thionyl chloride (20 ml) for 4 h. Excess thionyl chloride was removed under vacuum leaving a colorless solid. The solid was suspended in tetrahydrofuran (80 ml) and then a solution of 1,4-phenylenediamine (1.622 g, 0.015 mol) in tetrahydrofuran (20 ml) was added. After 15 minutes of stirring, triethylamine (15.0 ml) was added. The solution was refluxed at 70 ?C for 6 h and cooled to room temperature. Removal of the excess solvents results in a great deal of light-yellow solid. A solution of K2CO3 (6.910 g, 50 mmol) in water (40 ml) was added into the solid. After 10 minutes of stirring, the white products were filtered, washed with water and ethanol. Yield: ca 82%. Well shaped colorless crystals were obtained by slow evaporation of DMF/THF solution. 1H NMR (400 MHz, DMSO): 1H 7.781 (s, 4H), 7.879 (d, 4H), 8.786 (d, 4H), 10.527 (s, 2H). Anal. Calcd for C18H16N4O3: C 64.28, H 4.79, N 16.66. Found (%): C 64.12, H 4.91, N 16.78. IR (KBr pellet, cm-1): 3329(s), 1647(s), 1611(m), 1593(sh), 1547(s), 1522(s), 1506(sh), 1485(w), 1413(m), 1321(m), 1276(w), 1219(w), 1066(w), 827(m), 756(w), 667(m).

Refinement

The structure was solved using direct methods and refined by full-matrix least-squares techniques. All non-hydrogen atoms were assigned anisotropic displacement parameters in the refinement. All hydrogen atoms were added at calculated positions and refined using a riding model, except that two hydrogen atoms of the solvent water were picked out by Difference Fourier Syntheses. The structure was refined on F2 using SHELXTL97 software package(Sheldrick et al., 2008) without any unusual events.

Figures

Fig. 1.

Fig. 1.

Structure and labeling of compound 1, with displacement ellipsoids drawn at the 30% probability level and H atoms shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

The layer formed through the intermolecular hydrogen bonds.

Fig. 3.

Fig. 3.

The packing diagram viewed along the a-direction.

Crystal data

C18H14N4O2·H2O Z = 2
Mr = 336.35 F(000) = 352
Triclinic, P1 Dx = 1.376 Mg m3
a = 6.9936 (14) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.852 (2) Å θ = 3.1–27.5°
c = 11.285 (2) Å µ = 0.10 mm1
α = 95.98 (3)° T = 296 K
β = 106.36 (3)° Block, colorless
γ = 94.68 (3)° 0.32 × 0.21 × 0.13 mm
V = 811.8 (3) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer 3671 independent reflections
Radiation source: fine-focus sealed tube 1782 reflections with I > 2σ(I)
Graphite Monochromator Rint = 0.039
ω scans θmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan (CrystalStructure; Rigaku/MSC, 2004) h = −9→8
Tmin = 0.976, Tmax = 0.987 k = −14→13
7994 measured reflections l = −14→14

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.050 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.163 w = 1/[σ2(Fo2) + (0.0641P)2 + 0.0836P] where P = (Fo2 + 2Fc2)/3
S = 1.10 (Δ/σ)max < 0.001
3671 reflections Δρmax = 0.24 e Å3
235 parameters Δρmin = −0.20 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.014 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.5143 (3) 0.75658 (16) 0.44339 (18) 0.0695 (6)
N1 0.3107 (4) 0.4128 (2) 0.0888 (2) 0.0784 (8)
C1 0.2062 (5) 0.4882 (3) 0.1391 (3) 0.0791 (9)
H1 0.0645 0.4691 0.1150 0.095*
O2 0.1628 (3) 0.77553 (17) 0.78063 (19) 0.0773 (6)
N2 0.7556 (3) 0.79239 (16) 0.34696 (18) 0.0511 (5)
H2A 0.7946 0.7654 0.2822 0.061*
C2 0.2908 (4) 0.5924 (2) 0.2241 (3) 0.0667 (7)
H2 0.2090 0.6436 0.2569 0.080*
O3 0.1253 (3) 0.2348 (2) −0.12516 (19) 0.0774 (7)
N3 0.7983 (4) 1.0595 (2) 0.8737 (2) 0.0693 (7)
C3 0.4971 (4) 0.6211 (2) 0.2608 (2) 0.0507 (6)
N4 0.2782 (3) 0.70930 (17) 0.61858 (19) 0.0545 (5)
H4A 0.3716 0.7266 0.5825 0.065*
C4 0.6076 (4) 0.5436 (2) 0.2091 (2) 0.0557 (7)
H4 0.7495 0.5607 0.2313 0.067*
C5 0.5096 (5) 0.4414 (2) 0.1251 (3) 0.0680 (8)
H5 0.5877 0.3882 0.0911 0.082*
C6 0.5894 (4) 0.7301 (2) 0.3589 (2) 0.0522 (6)
C7 0.8750 (3) 0.89703 (19) 0.4275 (2) 0.0458 (6)
C8 0.8041 (4) 0.9772 (2) 0.5031 (2) 0.0558 (7)
H8 0.6698 0.9625 0.5058 0.067*
C9 1.0706 (4) 0.9205 (2) 0.4249 (2) 0.0556 (6)
H9 1.1201 0.8653 0.3725 0.067*
C10 0.6170 (4) 1.0792 (2) 0.8812 (3) 0.0671 (8)
H10 0.6015 1.1572 0.9219 0.081*
C11 0.4505 (4) 0.9927 (2) 0.8333 (2) 0.0582 (7)
H11 0.3243 1.0105 0.8426 0.070*
C12 0.4690 (4) 0.8799 (2) 0.7717 (2) 0.0517 (6)
C13 0.6558 (4) 0.8578 (2) 0.7638 (3) 0.0612 (7)
H13 0.6748 0.7810 0.7224 0.073*
C14 0.8155 (4) 0.9488 (3) 0.8169 (3) 0.0712 (8)
H14 0.9447 0.9316 0.8128 0.085*
C15 0.2873 (4) 0.7842 (2) 0.7236 (3) 0.0558 (6)
H15 0.173 (6) 0.289 (3) −0.050 (4) 0.135 (14)*
C16 0.1331 (3) 0.6052 (2) 0.5602 (2) 0.0483 (6)
H16 0.026 (6) 0.191 (4) −0.110 (4) 0.130 (14)*
C17 −0.0548 (4) 0.5897 (2) 0.5761 (2) 0.0569 (7)
H17 −0.0939 0.6510 0.6283 0.068*
C18 0.1870 (4) 0.5146 (2) 0.4836 (2) 0.0563 (7)
H18 0.3165 0.5244 0.4720 0.068*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0723 (13) 0.0736 (12) 0.0619 (12) −0.0209 (9) 0.0365 (11) −0.0191 (9)
N1 0.101 (2) 0.0679 (15) 0.0548 (16) −0.0267 (14) 0.0189 (15) −0.0060 (12)
C1 0.070 (2) 0.091 (2) 0.0567 (19) −0.0302 (16) 0.0055 (16) −0.0115 (16)
O2 0.0662 (13) 0.0869 (13) 0.0788 (15) −0.0163 (10) 0.0395 (11) −0.0206 (10)
N2 0.0530 (12) 0.0506 (11) 0.0433 (12) −0.0092 (9) 0.0136 (9) −0.0091 (8)
C2 0.0580 (17) 0.0734 (17) 0.0593 (18) −0.0111 (13) 0.0120 (14) −0.0043 (14)
O3 0.0852 (15) 0.0810 (13) 0.0592 (13) −0.0318 (11) 0.0332 (12) −0.0226 (10)
N3 0.0677 (16) 0.0679 (14) 0.0659 (16) −0.0140 (11) 0.0201 (13) −0.0044 (12)
C3 0.0562 (16) 0.0519 (13) 0.0396 (14) −0.0060 (11) 0.0122 (12) 0.0012 (10)
N4 0.0539 (13) 0.0534 (11) 0.0528 (13) −0.0095 (9) 0.0181 (10) −0.0038 (9)
C4 0.0661 (17) 0.0486 (13) 0.0466 (15) −0.0039 (11) 0.0126 (13) −0.0002 (11)
C5 0.094 (2) 0.0542 (15) 0.0542 (17) −0.0023 (14) 0.0240 (16) 0.0021 (12)
C6 0.0523 (15) 0.0524 (14) 0.0472 (15) −0.0070 (11) 0.0130 (12) 0.0000 (11)
C7 0.0471 (14) 0.0471 (12) 0.0387 (13) −0.0033 (10) 0.0110 (11) −0.0035 (10)
C8 0.0473 (14) 0.0605 (14) 0.0546 (16) −0.0063 (11) 0.0176 (12) −0.0122 (12)
C9 0.0536 (15) 0.0536 (13) 0.0558 (16) −0.0037 (11) 0.0198 (13) −0.0126 (11)
C10 0.071 (2) 0.0572 (15) 0.0680 (19) −0.0055 (13) 0.0215 (16) −0.0059 (13)
C11 0.0575 (16) 0.0543 (14) 0.0620 (17) 0.0015 (11) 0.0206 (14) −0.0006 (12)
C12 0.0530 (16) 0.0498 (13) 0.0489 (15) −0.0001 (10) 0.0123 (12) 0.0032 (11)
C13 0.0532 (16) 0.0585 (15) 0.0693 (19) −0.0023 (12) 0.0219 (14) −0.0072 (13)
C14 0.0575 (18) 0.0773 (18) 0.075 (2) −0.0038 (14) 0.0213 (15) −0.0022 (15)
C15 0.0544 (16) 0.0547 (14) 0.0558 (17) −0.0018 (11) 0.0171 (13) −0.0006 (12)
C16 0.0444 (14) 0.0488 (13) 0.0488 (15) −0.0018 (10) 0.0121 (11) 0.0030 (11)
C17 0.0500 (15) 0.0582 (14) 0.0600 (17) −0.0005 (11) 0.0188 (13) −0.0058 (12)
C18 0.0470 (15) 0.0604 (15) 0.0599 (17) −0.0030 (11) 0.0194 (13) −0.0031 (12)

Geometric parameters (Å, °)

O1—C6 1.232 (3) C5—H5 0.9500
N1—C1 1.327 (4) C7—C8 1.372 (3)
N1—C5 1.335 (4) C7—C9 1.380 (3)
C1—C2 1.375 (4) C8—C9i 1.383 (3)
C1—H1 0.9500 C8—H8 0.9500
O2—C15 1.223 (3) C9—C8i 1.383 (3)
N2—C6 1.343 (3) C9—H9 0.9500
N2—C7 1.420 (3) C10—C11 1.375 (3)
N2—H2A 0.8800 C10—H10 0.9500
C2—C3 1.383 (3) C11—C12 1.377 (3)
C2—H2 0.9500 C11—H11 0.9500
O3—H15 0.94 (4) C12—C13 1.373 (3)
O3—H16 0.87 (4) C12—C15 1.506 (3)
N3—C10 1.327 (3) C13—C14 1.378 (4)
N3—C14 1.333 (3) C13—H13 0.9500
C3—C4 1.379 (3) C14—H14 0.9500
C3—C6 1.498 (3) C16—C17 1.375 (3)
N4—C15 1.348 (3) C16—C18 1.387 (3)
N4—C16 1.422 (3) C17—C18ii 1.382 (3)
N4—H4A 0.8800 C17—H17 0.9500
C4—C5 1.375 (3) C18—C17ii 1.382 (3)
C4—H4 0.9500 C18—H18 0.9500
C1—N1—C5 116.7 (2) C9i—C8—H8 120.2
N1—C1—C2 124.0 (3) C7—C9—C8i 121.2 (2)
N1—C1—H1 118.0 C7—C9—H9 119.4
C2—C1—H1 118.0 C8i—C9—H9 119.4
C6—N2—C7 127.0 (2) N3—C10—C11 123.5 (2)
C6—N2—H2A 116.5 N3—C10—H10 118.2
C7—N2—H2A 116.5 C11—C10—H10 118.2
C1—C2—C3 118.8 (3) C10—C11—C12 119.2 (2)
C1—C2—H2 120.6 C10—C11—H11 120.4
C3—C2—H2 120.6 C12—C11—H11 120.4
H15—O3—H16 100 (3) C13—C12—C11 118.0 (2)
C10—N3—C14 116.8 (2) C13—C12—C15 123.2 (2)
C4—C3—C2 117.9 (2) C11—C12—C15 118.7 (2)
C4—C3—C6 123.4 (2) C12—C13—C14 119.0 (2)
C2—C3—C6 118.6 (2) C12—C13—H13 120.5
C15—N4—C16 126.6 (2) C14—C13—H13 120.5
C15—N4—H4A 116.7 N3—C14—C13 123.5 (3)
C16—N4—H4A 116.7 N3—C14—H14 118.3
C5—C4—C3 119.1 (3) C13—C14—H14 118.3
C5—C4—H4 120.5 O2—C15—N4 124.2 (2)
C3—C4—H4 120.5 O2—C15—C12 120.4 (2)
N1—C5—C4 123.5 (3) N4—C15—C12 115.4 (2)
N1—C5—H5 118.2 C17—C16—C18 118.9 (2)
C4—C5—H5 118.2 C17—C16—N4 123.8 (2)
O1—C6—N2 124.6 (2) C18—C16—N4 117.3 (2)
O1—C6—C3 120.3 (2) C16—C17—C18ii 120.2 (2)
N2—C6—C3 115.1 (2) C16—C17—H17 119.9
C8—C7—C9 119.1 (2) C18ii—C17—H17 119.9
C8—C7—N2 123.6 (2) C17ii—C18—C16 120.8 (2)
C9—C7—N2 117.2 (2) C17ii—C18—H18 119.6
C7—C8—C9i 119.6 (2) C16—C18—H18 119.6
C7—C8—H8 120.2

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···O3iii 0.88 2.00 2.847 (3) 160
N4—H4A···O1 0.88 2.12 2.968 (3) 161
O3—H15···N1 0.94 (4) 1.92 (4) 2.845 (3) 168 (3)
O3—H16···N3iv 0.87 (4) 2.01 (4) 2.849 (3) 162 (4)

Symmetry codes: (iii) −x+1, −y+1, −z; (iv) x−1, y−1, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2603).

References

  1. Burchell, T. J., Eisler, D. J., Jennings, M. C. & Puddephatt, R. J. (2003). Chem. Commun. pp. 2228–2229. [DOI] [PubMed]
  2. Burchell, T. J., Eisler, D. J. & Puddephatt, R. J. (2004). Inorg. Chem.43, 5550–5557. [DOI] [PubMed]
  3. Niu, Y. Y., Song, Y. L., Wu, J., Hou, H. W., Zhu, Y. & Wang, X. (2004). Inorg. Chem. Commun.7, 471–474.
  4. Pansanel, J., Jouaiti, A., Ferlay, S., Hosseini, M. W., Planeix, J. M. & Kyritsakas, N. (2006). New J. Chem.30, 71–76.
  5. Rigaku (1998). PROCESS-AUTO Rigaku Corporation, Tokyo, Japan.
  6. Rigaku/MSC (2004). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809024684/ng2603sup1.cif

e-65-o1749-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809024684/ng2603Isup2.hkl

e-65-o1749-Isup2.hkl (180KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES