Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 11;65(Pt 8):o1841. doi: 10.1107/S1600536809026178

1(2,3),2(3,2),3(2,3),4(3,2)-Tetra­kis(1-benzothio­phena)cyclo­tetra­phane benzene sesquisolvate

Zhi-Hua Wang a, Jian-Wu Shi a, Sheng Zhu a, Hua Wang a,*
PMCID: PMC2977466  PMID: 21583541

Abstract

In the title compound, C32H16S4·1.5C6H6, the substituted cyclo­octa­tetra­ene (COT) ring compound has approximate local D 2 point symmetry of the so-called ‘saddle’ form: the dihedral angles between neighboring benzo[b]thio­phene units are 61.33 (4), 61.61 (4), 56.443 (14) and 58.32 (4)°. The short distance [3.545 (1) Å] between an S atom and the centroid of a benzene ring in a neighboring mol­ecule may indicate S⋯π inter­actions in the crystal.

Related literature

For the synthesis, see: Kauffmann et al. (1978). For related structures, see: Krömer et al. (2000); Mak & Wong (1987); Rajca et al. (1997, 2000); Wang et al. (2007).graphic file with name e-65-o1841-scheme1.jpg

Experimental

Crystal data

  • C32H16S4·1.5C6H6

  • M r = 645.85

  • Triclinic, Inline graphic

  • a = 9.5167 (10) Å

  • b = 13.3035 (14) Å

  • c = 13.9186 (15) Å

  • α = 65.674 (1)°

  • β = 84.646 (1)°

  • γ = 81.955 (1)°

  • V = 1588.7 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 294 K

  • 0.41 × 0.25 × 0.15 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.877, T max = 0.952

  • 11927 measured reflections

  • 5873 independent reflections

  • 4670 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.121

  • S = 1.04

  • 5873 reflections

  • 394 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809026178/hb2996sup1.cif

e-65-o1841-sup1.cif (27.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026178/hb2996Isup2.hkl

e-65-o1841-Isup2.hkl (287.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Dr Jiange Wang, Luoyang Normal University, for the crystal measurement and Mr Pengtao Ma for discussions. This research was supported by the NSFC (20572015, 20672028, 50803015), the Program for NCET-05–0610, the SRF for ROCS–SEM, the Program for Young Excellent Talents in Henan Universities and the Foundation of Henan University (07YB2R006).

supplementary crystallographic information

Comment

In current electronic and supramolecular chemistry, the rational design of macrocyclic compound represents one of the most exciting and rapidly developing fields, owing to their potential as functional materials (Krömer et al., 2000). Mostly, the compounds with central COT ring have the "saddle" form (Rajca et al., 1997, Mak & Wong, 1987, Rajca et al., 2000, Wang et al., 2007), such as tetra-o-phenylene, tetra-o-thiophene. In these "saddle" form molecules, the average dihedral angle of "saddle" form is different when the structural unit is different. Cycloocta[l,2-b:4,3-b':5,6-b":8,7-b"']tetrathionaphthene (I), with benza[b]thiophene as the structural unit was synthesized by Kauffmann et al. in 1978. In our ongoing studies of macrocyclic compounds, we find the structural unit plays an important role on the crystal structure and intermolecular interaction. In present paper, we report the crystal structure of I.

As shown in I (Fig. 1), three orthogonal C2 axes of symmetry are compatible with the D2 point group. One pair of the orthogonal chiral axes (e.g., R,R) corresponds to the two 1,1'-linkages and the other pair (e.g., S,S) corresponds to the two 2,2'-linkages of the benza[b]thiophene moieties. The four dihedral angles are 61.329 (35)° between C24—C25—C26—C27—C28—C29—C30—S4—C31 and C16—C17—C18—C23—C22—C21—C20—C19—S3, 61.610 (39)° between C8—C9—C10—C11—C12—C13—C14—S2—C15 and C1—C2—C3—C4—C5- C6—C7—C32—S1, 56.443 (14)° between C16—C17—C18—C23—C22—C21—C20—C19—S3 and C8—C9—C10—C11—C12—C13—C14—S2—C15, 58.315 (34)° between C24—C25—C26—C27—C28—C29—C30—S4—C31 and C1—C2—C3—C4—C5—C6—C7—C32—S1. The average value (59.4°) of the four dihedral angles is smaller than that in tetra-o-phenylene with 65° (Rajca et al., 1997) and larger than that in tetra-o-thiophene with 51.7° (Wang et al., 2007). The distance between S1 and the centroid of plane (C25, C26, C27, C28, C29, C30) is 3.378 Å, which indicating obvious S-π interaction between the neighboring molecules. Under the effect of S-π interaction, the molecular arranges with the reversal one in the crystal packing as shown in Fig. 2.

Experimental

The title compound was synthesized according to the method of Kauffmann (1978). The overall yield was improved from 11% to 42.4%. To a solution of 3,3'-bibenzo[b]thiophene (0.3850 g, 1.45 mmol) in anhyd Et2O (50 ml), n-BuLi (2.28 M, 1.46 ml, 3.32 mmol, 2.3 eq) was added dropwise at -78 °C, then the reaction mixture was warmed slowly to 50 °C with refluxing for 2 h and then cooled to -78 °C. Dry CuCl2 (0.9741 g, 7.22 mmol, 5.0 equiv) was added at -78 °C and warmed slowly to -55 °C for 1 h, and then slowly warmed to ambient temperature overnight. After normal work-up, the crude product was purified by column chromatography on silica gel with PE (60–90 °C) /CHCl3 (3:1, v/v) as eluent to yield I (0.1621 g, 42.4%) as a white solid. mp>300 °C. 1H NMR (400 MHz, DMSO-d6): δ 8.12 (d, J = 8.0 Hz, 4H), 7.48 (t, J = 7.8 Hz, 4H), 7.37 (t, J = 7.4 Hz, 4H), 7.25 (d, J = 7.6 Hz, 4H). 13C NMR (100 MHz, CDCl3): δ 140.8, 138.6, 134.8, 131.3, 125.1, 124.7, 124.4, 122.3. IR: 3056, 2922 (C—H), 1435.5 (C=C) cm-1. HRMS (MAIDI-TOF MS EI+) m/z calcd for [C32H16S4] 528.0135, found 528.0131. Yellow blocks of (I) were obtained by slow evaporation of benzene solution over a period of two weeks.

Refinement

The H atoms were geometrically placed (C—H = 0.93Å) and refined as riding with Uiso(H)=1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

S-π interactions in crystal packing of (I).

Crystal data

C32H16S4·1.5C6H6 Z = 2
Mr = 645.85 F(000) = 670
Triclinic, P1 Dx = 1.350 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 9.5167 (10) Å Cell parameters from 3538 reflections
b = 13.3035 (14) Å θ = 0.00–0.00°
c = 13.9186 (15) Å µ = 0.33 mm1
α = 65.674 (1)° T = 294 K
β = 84.646 (1)° Block, yellow
γ = 81.955 (1)° 0.41 × 0.25 × 0.15 mm
V = 1588.7 (3) Å3

Data collection

Bruker SMART CCD diffractometer 5873 independent reflections
Radiation source: fine-focus sealed tube 4670 reflections with I > 2σ(I)
graphite Rint = 0.021
ω scans θmax = 25.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −11→11
Tmin = 0.877, Tmax = 0.952 k = −16→16
11927 measured reflections l = −16→16

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0507P)2 + 1.0002P] where P = (Fo2 + 2Fc2)/3
5873 reflections (Δ/σ)max = 0.001
394 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)are estimated using the full covariance matrix. The cell e.s.d.'s are takeninto account individually in the estimation of e.s.d.'s in distances, anglesand torsion angles; correlations between e.s.d.'s in cell parameters are onlyused when they are defined by crystal symmetry. An approximate (isotropic)treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1068 (3) 0.6386 (2) 0.2230 (2) 0.0397 (6)
C2 0.0961 (3) 0.5385 (2) 0.2153 (3) 0.0535 (7)
H2 0.0810 0.5372 0.1507 0.064*
C3 0.1082 (3) 0.4420 (2) 0.3052 (3) 0.0576 (8)
H3 0.1015 0.3747 0.3013 0.069*
C4 0.1304 (3) 0.4435 (2) 0.4019 (2) 0.0518 (7)
H4 0.1388 0.3773 0.4617 0.062*
C5 0.1400 (3) 0.5421 (2) 0.4101 (2) 0.0423 (6)
H5 0.1547 0.5423 0.4751 0.051*
C6 0.1276 (2) 0.6421 (2) 0.31980 (19) 0.0344 (5)
C7 0.1259 (2) 0.75439 (19) 0.31116 (18) 0.0319 (5)
C8 0.1456 (2) 0.78278 (18) 0.40068 (18) 0.0321 (5)
C9 0.2687 (2) 0.74267 (19) 0.46507 (18) 0.0347 (5)
C10 0.3936 (3) 0.6788 (2) 0.4529 (2) 0.0440 (6)
H10 0.4040 0.6542 0.3988 0.053*
C11 0.5009 (3) 0.6526 (2) 0.5222 (2) 0.0521 (7)
H11 0.5836 0.6094 0.5150 0.063*
C12 0.4870 (3) 0.6902 (2) 0.6029 (2) 0.0524 (7)
H12 0.5608 0.6719 0.6486 0.063*
C13 0.3664 (3) 0.7535 (2) 0.6163 (2) 0.0475 (7)
H13 0.3576 0.7785 0.6700 0.057*
C14 0.2573 (3) 0.7792 (2) 0.54677 (19) 0.0380 (6)
C15 0.0472 (3) 0.84729 (19) 0.43395 (18) 0.0332 (5)
C16 −0.0901 (2) 0.90222 (18) 0.38884 (18) 0.0323 (5)
C17 −0.1138 (2) 0.97723 (18) 0.28804 (18) 0.0326 (5)
C18 −0.2632 (3) 1.01481 (19) 0.27136 (19) 0.0358 (5)
C19 −0.3476 (3) 0.9663 (2) 0.3631 (2) 0.0398 (6)
C20 −0.4957 (3) 0.9883 (2) 0.3643 (3) 0.0529 (7)
H20 −0.5503 0.9551 0.4256 0.063*
C21 −0.5581 (3) 1.0605 (3) 0.2721 (3) 0.0611 (8)
H21 −0.6563 1.0774 0.2714 0.073*
C22 −0.4768 (3) 1.1085 (3) 0.1800 (3) 0.0592 (8)
H22 −0.5216 1.1562 0.1184 0.071*
C23 −0.3308 (3) 1.0868 (2) 0.1784 (2) 0.0469 (6)
H23 −0.2777 1.1197 0.1163 0.056*
C24 0.0004 (2) 1.01805 (19) 0.20673 (18) 0.0338 (5)
C25 0.0249 (3) 1.1333 (2) 0.15376 (18) 0.0362 (5)
C26 −0.0462 (3) 1.2254 (2) 0.1694 (2) 0.0448 (6)
H26 −0.1216 1.2167 0.2187 0.054*
C27 −0.0033 (4) 1.3285 (2) 0.1110 (2) 0.0567 (8)
H27 −0.0507 1.3899 0.1208 0.068*
C28 0.1104 (4) 1.3430 (2) 0.0372 (3) 0.0626 (9)
H28 0.1383 1.4135 −0.0007 0.075*
C29 0.1816 (3) 1.2545 (2) 0.0197 (2) 0.0532 (7)
H29 0.2564 1.2643 −0.0301 0.064*
C30 0.1387 (3) 1.1492 (2) 0.07885 (19) 0.0407 (6)
C31 0.0942 (3) 0.9515 (2) 0.17253 (18) 0.0355 (5)
C32 0.1042 (2) 0.83069 (19) 0.21043 (18) 0.0339 (5)
C33 0.2633 (3) 0.3588 (4) 0.7185 (2) 0.1020 (15)
H33 0.1831 0.3940 0.6795 0.122*
C34 0.3502 (5) 0.4197 (2) 0.7428 (3) 0.1141 (19)
H34 0.3282 0.4961 0.7200 0.137*
C35 0.4697 (4) 0.3670 (4) 0.8010 (3) 0.118 (2)
H35 0.5277 0.4081 0.8172 0.142*
C36 0.5032 (3) 0.2531 (4) 0.8351 (2) 0.1134 (18)
H36 0.5837 0.2179 0.8737 0.136*
C37 0.4159 (5) 0.1920 (2) 0.8112 (3) 0.1136 (18)
H37 0.4373 0.1155 0.8345 0.136*
C38 0.2969 (4) 0.2450 (4) 0.7526 (3) 0.1034 (16)
H38 0.2391 0.2039 0.7360 0.124*
C39 0.4111 (5) 0.4474 (5) 0.0892 (4) 0.1025 (15)
H39 0.3517 0.4117 0.1468 0.123*
C40 0.5457 (6) 0.4043 (3) 0.0777 (4) 0.0949 (14)
H40 0.5791 0.3391 0.1330 0.114*
C41 0.6349 (5) 0.4453 (5) −0.0039 (5) 0.1049 (15)
H41 0.7238 0.4075 −0.0073 0.126*
S1 0.08749 (7) 0.77085 (6) 0.12239 (5) 0.04378 (18)
S2 0.09726 (7) 0.86121 (6) 0.54491 (5) 0.04315 (18)
S3 −0.24494 (7) 0.87555 (5) 0.46789 (5) 0.04184 (18)
S4 0.21218 (7) 1.02532 (6) 0.07232 (5) 0.04525 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0360 (13) 0.0424 (14) 0.0456 (15) −0.0014 (11) −0.0032 (11) −0.0235 (12)
C2 0.0588 (18) 0.0521 (18) 0.0627 (19) −0.0048 (14) −0.0055 (15) −0.0361 (16)
C3 0.0627 (19) 0.0404 (16) 0.079 (2) −0.0048 (14) −0.0038 (16) −0.0334 (16)
C4 0.0505 (17) 0.0332 (14) 0.0655 (19) −0.0007 (12) −0.0030 (14) −0.0150 (13)
C5 0.0404 (14) 0.0366 (14) 0.0457 (15) 0.0000 (11) −0.0030 (11) −0.0136 (12)
C6 0.0302 (12) 0.0353 (13) 0.0400 (13) −0.0012 (10) −0.0030 (10) −0.0180 (11)
C7 0.0289 (12) 0.0340 (12) 0.0335 (12) 0.0007 (9) −0.0036 (9) −0.0150 (10)
C8 0.0369 (13) 0.0277 (12) 0.0294 (12) −0.0030 (10) −0.0037 (10) −0.0089 (10)
C9 0.0361 (13) 0.0332 (13) 0.0313 (12) −0.0042 (10) −0.0038 (10) −0.0088 (10)
C10 0.0386 (14) 0.0479 (15) 0.0423 (15) 0.0001 (12) −0.0018 (11) −0.0167 (12)
C11 0.0365 (15) 0.0588 (18) 0.0518 (17) 0.0031 (13) −0.0085 (12) −0.0142 (14)
C12 0.0424 (16) 0.0625 (19) 0.0447 (16) −0.0080 (14) −0.0149 (12) −0.0107 (14)
C13 0.0498 (16) 0.0538 (17) 0.0402 (15) −0.0083 (13) −0.0102 (12) −0.0179 (13)
C14 0.0419 (14) 0.0351 (13) 0.0342 (13) −0.0050 (11) −0.0045 (11) −0.0104 (11)
C15 0.0394 (13) 0.0300 (12) 0.0282 (12) −0.0045 (10) −0.0028 (10) −0.0093 (10)
C16 0.0365 (13) 0.0274 (12) 0.0329 (12) −0.0015 (10) −0.0015 (10) −0.0128 (10)
C17 0.0367 (13) 0.0256 (12) 0.0359 (13) −0.0017 (10) −0.0040 (10) −0.0129 (10)
C18 0.0377 (13) 0.0281 (12) 0.0420 (14) −0.0016 (10) −0.0044 (11) −0.0146 (11)
C19 0.0383 (14) 0.0335 (13) 0.0470 (15) −0.0005 (11) −0.0032 (11) −0.0164 (12)
C20 0.0386 (15) 0.0533 (17) 0.0676 (19) −0.0058 (13) 0.0030 (14) −0.0260 (15)
C21 0.0336 (15) 0.064 (2) 0.082 (2) 0.0037 (14) −0.0114 (15) −0.0259 (18)
C22 0.0475 (17) 0.0550 (18) 0.068 (2) 0.0022 (14) −0.0223 (15) −0.0157 (16)
C23 0.0462 (16) 0.0415 (15) 0.0473 (16) −0.0028 (12) −0.0099 (12) −0.0113 (12)
C24 0.0354 (13) 0.0314 (12) 0.0315 (12) −0.0040 (10) −0.0074 (10) −0.0082 (10)
C25 0.0399 (13) 0.0333 (13) 0.0312 (12) −0.0045 (10) −0.0107 (10) −0.0069 (10)
C26 0.0528 (16) 0.0352 (14) 0.0433 (15) −0.0032 (12) −0.0115 (12) −0.0113 (12)
C27 0.074 (2) 0.0338 (15) 0.0590 (19) −0.0044 (14) −0.0219 (16) −0.0124 (14)
C28 0.073 (2) 0.0376 (16) 0.065 (2) −0.0198 (15) −0.0213 (17) −0.0003 (15)
C29 0.0536 (17) 0.0489 (17) 0.0443 (16) −0.0188 (14) −0.0070 (13) −0.0010 (13)
C30 0.0433 (14) 0.0392 (14) 0.0325 (13) −0.0090 (11) −0.0094 (11) −0.0043 (11)
C31 0.0373 (13) 0.0363 (13) 0.0301 (12) −0.0049 (10) −0.0038 (10) −0.0100 (10)
C32 0.0329 (12) 0.0363 (13) 0.0342 (13) −0.0038 (10) −0.0003 (10) −0.0160 (11)
C33 0.073 (3) 0.145 (5) 0.067 (3) −0.004 (3) 0.014 (2) −0.028 (3)
C34 0.137 (5) 0.065 (3) 0.125 (4) −0.030 (3) 0.063 (4) −0.032 (3)
C35 0.098 (4) 0.177 (6) 0.137 (5) −0.086 (4) 0.048 (3) −0.111 (5)
C36 0.057 (3) 0.182 (6) 0.090 (3) 0.013 (3) −0.001 (2) −0.053 (4)
C37 0.129 (4) 0.073 (3) 0.131 (4) −0.004 (3) 0.050 (4) −0.047 (3)
C38 0.099 (4) 0.139 (5) 0.111 (4) −0.058 (3) 0.036 (3) −0.084 (4)
C39 0.089 (3) 0.132 (4) 0.089 (3) −0.032 (3) −0.004 (3) −0.040 (3)
C40 0.139 (4) 0.054 (2) 0.079 (3) 0.003 (3) −0.039 (3) −0.010 (2)
C41 0.067 (3) 0.154 (5) 0.115 (4) 0.001 (3) −0.006 (3) −0.079 (4)
S1 0.0533 (4) 0.0462 (4) 0.0358 (3) −0.0035 (3) −0.0077 (3) −0.0201 (3)
S2 0.0516 (4) 0.0441 (4) 0.0374 (4) 0.0043 (3) −0.0097 (3) −0.0215 (3)
S3 0.0403 (4) 0.0389 (4) 0.0388 (4) −0.0031 (3) 0.0036 (3) −0.0097 (3)
S4 0.0438 (4) 0.0461 (4) 0.0380 (4) −0.0069 (3) 0.0046 (3) −0.0099 (3)

Geometric parameters (Å, °)

C1—C2 1.399 (4) C21—H21 0.9300
C1—C6 1.400 (3) C22—C23 1.379 (4)
C1—S1 1.737 (3) C22—H22 0.9300
C2—C3 1.374 (4) C23—H23 0.9300
C2—H2 0.9300 C24—C31 1.362 (3)
C3—C4 1.390 (4) C24—C25 1.444 (3)
C3—H3 0.9300 C25—C26 1.403 (4)
C4—C5 1.379 (4) C25—C30 1.405 (4)
C4—H4 0.9300 C26—C27 1.374 (4)
C5—C6 1.403 (3) C26—H26 0.9300
C5—H5 0.9300 C27—C28 1.397 (5)
C6—C7 1.446 (3) C27—H27 0.9300
C7—C32 1.364 (3) C28—C29 1.373 (4)
C7—C8 1.477 (3) C28—H28 0.9300
C8—C15 1.360 (3) C29—C30 1.398 (4)
C8—C9 1.445 (3) C29—H29 0.9300
C9—C14 1.400 (3) C30—S4 1.733 (3)
C9—C10 1.400 (3) C31—C32 1.462 (3)
C10—C11 1.379 (4) C31—S4 1.749 (2)
C10—H10 0.9300 C32—S1 1.743 (2)
C11—C12 1.395 (4) C33—C38 1.3855
C11—H11 0.9300 C33—C34 1.3860
C12—C13 1.370 (4) C33—H33 0.9300
C12—H12 0.9300 C34—C35 1.3869
C13—C14 1.395 (3) C34—H34 0.9300
C13—H13 0.9300 C35—C36 1.3868
C14—S2 1.741 (3) C35—H35 0.9300
C15—C16 1.464 (3) C36—C37 1.3868
C15—S2 1.745 (2) C36—H36 0.9300
C16—C17 1.363 (3) C37—C38 1.3862
C16—S3 1.741 (2) C37—H37 0.9300
C17—C18 1.447 (3) C38—H38 0.9300
C17—C24 1.478 (3) C39—C40 1.352 (6)
C18—C19 1.402 (3) C39—C41i 1.471 (7)
C18—C23 1.402 (3) C39—H39 0.9300
C19—C20 1.399 (4) C40—C41 1.322 (6)
C19—S3 1.739 (3) C40—H40 0.9300
C20—C21 1.374 (4) C41—C39i 1.471 (7)
C20—H20 0.9300 C41—H41 0.9300
C21—C22 1.388 (4)
C2—C1—C6 121.4 (3) C23—C22—H22 119.4
C2—C1—S1 126.9 (2) C21—C22—H22 119.4
C6—C1—S1 111.54 (18) C22—C23—C18 119.5 (3)
C3—C2—C1 118.5 (3) C22—C23—H23 120.3
C3—C2—H2 120.8 C18—C23—H23 120.3
C1—C2—H2 120.8 C31—C24—C25 112.1 (2)
C2—C3—C4 121.0 (3) C31—C24—C17 123.9 (2)
C2—C3—H3 119.5 C25—C24—C17 124.0 (2)
C4—C3—H3 119.5 C26—C25—C30 118.9 (2)
C5—C4—C3 120.8 (3) C26—C25—C24 128.9 (2)
C5—C4—H4 119.6 C30—C25—C24 112.2 (2)
C3—C4—H4 119.6 C27—C26—C25 119.2 (3)
C4—C5—C6 119.7 (3) C27—C26—H26 120.4
C4—C5—H5 120.2 C25—C26—H26 120.4
C6—C5—H5 120.2 C26—C27—C28 121.1 (3)
C1—C6—C5 118.6 (2) C26—C27—H27 119.4
C1—C6—C7 112.3 (2) C28—C27—H27 119.4
C5—C6—C7 129.0 (2) C29—C28—C27 120.9 (3)
C32—C7—C6 111.9 (2) C29—C28—H28 119.5
C32—C7—C8 124.2 (2) C27—C28—H28 119.5
C6—C7—C8 124.0 (2) C28—C29—C30 118.3 (3)
C15—C8—C9 112.2 (2) C28—C29—H29 120.9
C15—C8—C7 123.5 (2) C30—C29—H29 120.9
C9—C8—C7 124.2 (2) C29—C30—C25 121.5 (3)
C14—C9—C10 118.8 (2) C29—C30—S4 126.9 (2)
C14—C9—C8 112.2 (2) C25—C30—S4 111.60 (18)
C10—C9—C8 128.9 (2) C24—C31—C32 127.3 (2)
C11—C10—C9 119.3 (3) C24—C31—S4 112.96 (18)
C11—C10—H10 120.4 C32—C31—S4 119.71 (18)
C9—C10—H10 120.4 C7—C32—C31 127.2 (2)
C10—C11—C12 120.8 (3) C7—C32—S1 113.15 (18)
C10—C11—H11 119.6 C31—C32—S1 119.69 (17)
C12—C11—H11 119.6 C38—C33—C34 119.6
C13—C12—C11 121.2 (3) C38—C33—H33 120.2
C13—C12—H12 119.4 C34—C33—H33 120.2
C11—C12—H12 119.4 C33—C34—C35 120.1
C12—C13—C14 118.1 (3) C33—C34—H34 119.9
C12—C13—H13 121.0 C35—C34—H34 119.9
C14—C13—H13 121.0 C36—C35—C34 120.2
C13—C14—C9 121.8 (2) C36—C35—H35 119.9
C13—C14—S2 126.7 (2) C34—C35—H35 119.9
C9—C14—S2 111.44 (18) C35—C36—C37 119.7
C8—C15—C16 127.9 (2) C35—C36—H36 120.2
C8—C15—S2 113.03 (18) C37—C36—H36 120.2
C16—C15—S2 119.06 (17) C38—C37—C36 120.0
C17—C16—C15 127.1 (2) C38—C37—H37 120.0
C17—C16—S3 113.18 (18) C36—C37—H37 120.0
C15—C16—S3 119.76 (17) C33—C38—C37 120.4
C16—C17—C18 111.9 (2) C33—C38—H38 119.8
C16—C17—C24 123.9 (2) C37—C38—H38 119.8
C18—C17—C24 124.2 (2) C40—C39—C41i 115.2 (4)
C19—C18—C23 118.4 (2) C40—C39—H39 122.4
C19—C18—C17 112.2 (2) C41i—C39—H39 122.4
C23—C18—C17 129.3 (2) C41—C40—C39 126.8 (4)
C20—C19—C18 122.0 (2) C41—C40—H40 116.6
C20—C19—S3 126.6 (2) C39—C40—H40 116.6
C18—C19—S3 111.39 (18) C40—C41—C39i 117.8 (4)
C21—C20—C19 118.0 (3) C40—C41—H41 121.1
C21—C20—H20 121.0 C39i—C41—H41 121.1
C19—C20—H20 121.0 C1—S1—C32 91.15 (12)
C20—C21—C22 121.0 (3) C14—S2—C15 91.10 (12)
C20—C21—H21 119.5 C19—S3—C16 91.25 (12)
C22—C21—H21 119.5 C30—S4—C31 91.14 (12)
C23—C22—C21 121.1 (3)
C6—C1—C2—C3 −0.8 (4) C21—C22—C23—C18 0.1 (4)
S1—C1—C2—C3 −177.0 (2) C19—C18—C23—C22 0.6 (4)
C1—C2—C3—C4 0.1 (4) C17—C18—C23—C22 177.9 (3)
C2—C3—C4—C5 0.3 (5) C16—C17—C24—C31 60.4 (3)
C3—C4—C5—C6 −0.1 (4) C18—C17—C24—C31 −121.9 (3)
C2—C1—C6—C5 1.0 (4) C16—C17—C24—C25 −120.1 (3)
S1—C1—C6—C5 177.75 (18) C18—C17—C24—C25 57.7 (3)
C2—C1—C6—C7 −176.0 (2) C31—C24—C25—C26 −178.0 (2)
S1—C1—C6—C7 0.7 (3) C17—C24—C25—C26 2.4 (4)
C4—C5—C6—C1 −0.5 (4) C31—C24—C25—C30 0.6 (3)
C4—C5—C6—C7 175.9 (2) C17—C24—C25—C30 −179.0 (2)
C1—C6—C7—C32 0.0 (3) C30—C25—C26—C27 0.2 (4)
C5—C6—C7—C32 −176.6 (2) C24—C25—C26—C27 178.7 (2)
C1—C6—C7—C8 −179.8 (2) C25—C26—C27—C28 −0.5 (4)
C5—C6—C7—C8 3.6 (4) C26—C27—C28—C29 0.8 (5)
C32—C7—C8—C15 59.8 (3) C27—C28—C29—C30 −0.9 (4)
C6—C7—C8—C15 −120.5 (3) C28—C29—C30—C25 0.6 (4)
C32—C7—C8—C9 −122.4 (3) C28—C29—C30—S4 −179.3 (2)
C6—C7—C8—C9 57.4 (3) C26—C25—C30—C29 −0.3 (4)
C15—C8—C9—C14 0.3 (3) C24—C25—C30—C29 −179.0 (2)
C7—C8—C9—C14 −177.8 (2) C26—C25—C30—S4 179.67 (19)
C15—C8—C9—C10 −176.9 (2) C24—C25—C30—S4 0.9 (3)
C7—C8—C9—C10 5.0 (4) C25—C24—C31—C32 178.0 (2)
C14—C9—C10—C11 0.7 (4) C17—C24—C31—C32 −2.5 (4)
C8—C9—C10—C11 177.8 (2) C25—C24—C31—S4 −1.9 (3)
C9—C10—C11—C12 −0.8 (4) C17—C24—C31—S4 177.73 (18)
C10—C11—C12—C13 0.4 (4) C6—C7—C32—C31 179.1 (2)
C11—C12—C13—C14 0.2 (4) C8—C7—C32—C31 −1.1 (4)
C12—C13—C14—C9 −0.3 (4) C6—C7—C32—S1 −0.7 (3)
C12—C13—C14—S2 −177.9 (2) C8—C7—C32—S1 179.04 (18)
C10—C9—C14—C13 −0.2 (4) C24—C31—C32—C7 −58.1 (4)
C8—C9—C14—C13 −177.7 (2) S4—C31—C32—C7 121.7 (2)
C10—C9—C14—S2 177.79 (19) C24—C31—C32—S1 121.7 (2)
C8—C9—C14—S2 0.2 (3) S4—C31—C32—S1 −58.5 (2)
C9—C8—C15—C16 −180.0 (2) C38—C33—C34—C35 −0.1
C7—C8—C15—C16 −1.9 (4) C33—C34—C35—C36 0.1
C9—C8—C15—S2 −0.7 (3) C34—C35—C36—C37 −0.4
C7—C8—C15—S2 177.35 (18) C35—C36—C37—C38 0.7
C8—C15—C16—C17 −58.0 (4) C34—C33—C38—C37 0.4
S2—C15—C16—C17 122.8 (2) C36—C37—C38—C33 −0.7
C8—C15—C16—S3 123.5 (2) C41i—C39—C40—C41 −4.3 (8)
S2—C15—C16—S3 −55.7 (2) C39—C40—C41—C39i 4.4 (8)
C15—C16—C17—C18 −179.7 (2) C2—C1—S1—C32 175.6 (3)
S3—C16—C17—C18 −1.0 (3) C6—C1—S1—C32 −0.98 (19)
C15—C16—C17—C24 −1.7 (4) C7—C32—S1—C1 1.00 (19)
S3—C16—C17—C24 177.01 (18) C31—C32—S1—C1 −178.9 (2)
C16—C17—C18—C19 0.8 (3) C13—C14—S2—C15 177.3 (2)
C24—C17—C18—C19 −177.2 (2) C9—C14—S2—C15 −0.55 (19)
C16—C17—C18—C23 −176.6 (2) C8—C15—S2—C14 0.74 (19)
C24—C17—C18—C23 5.4 (4) C16—C15—S2—C14 −179.94 (19)
C23—C18—C19—C20 −0.4 (4) C20—C19—S3—C16 177.5 (2)
C17—C18—C19—C20 −178.1 (2) C18—C19—S3—C16 −0.24 (19)
C23—C18—C19—S3 177.46 (19) C17—C16—S3—C19 0.72 (19)
C17—C18—C19—S3 −0.3 (3) C15—C16—S3—C19 179.49 (19)
C18—C19—C20—C21 −0.4 (4) C29—C30—S4—C31 178.3 (2)
S3—C19—C20—C21 −178.0 (2) C25—C30—S4—C31 −1.62 (19)
C19—C20—C21—C22 1.2 (5) C24—C31—S4—C30 2.02 (19)
C20—C21—C22—C23 −1.0 (5) C32—C31—S4—C30 −177.8 (2)

Symmetry codes: (i) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2996).

References

  1. Bruker (2001). SAINT-Plus, SMART and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Kauffmann, T., Greving, B., Kriegesmann, R., Mitschker, A. & Woltermann, A. (1978). Chem. Ber.111, 1330–1336.
  3. Krömer, J., Rios-Carreras, I., Fuhrmann, G., Musch, C., Wunderlin, M., Debaerdemaeker, T., Mena-Osteritz, E. & Bäuerle, P. (2000). Angew. Chem. Int. Ed. Engl.39, 3481—3486. [PubMed]
  4. Mak, T. C. W. & Wong, H. N. C. (1987). Top. Curr. Chem.140, 141–164.
  5. Rajca, A., Safronov, A., Rajca, S. & Shoemaker, R. (1997). Angew. Chem. Int. Ed. Engl.36, 488–491.
  6. Rajca, A., Safronov, A., Rajca, S. & Wongsriratanakul, J. (2000). J. Am. Chem. Soc.122, 3351–3357.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Wang, Y., Wang, Z., Zhao, D., Wang, Z., Chen, Y. & Wang, H. (2007). Synlett, pp. 2390–2394.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809026178/hb2996sup1.cif

e-65-o1841-sup1.cif (27.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809026178/hb2996Isup2.hkl

e-65-o1841-Isup2.hkl (287.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES