Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 18;65(Pt 8):o1932. doi: 10.1107/S160053680902580X

2-[2-(Methyl­sulfon­yl)eth­yl]isoindoline-1,3-dione

Qiong Tang a, Qi Feng a, Jian Xu a, Cheng Yao a,*
PMCID: PMC2977474  PMID: 21583615

Abstract

In the mol­ecule of the title compound, C11H11NO4S, the isoindoline ring system is almost planar with a maximum deviation of 0.008 (3)Å. In the crystal structure, inter­molecular C—H⋯O inter­actions link the mol­ecules into a three-dimensional network. π–π contacts between the isoindoline rings [centroid–centroid distances = 3.592 (1) and 3.727 (1) Å] may further stabilize the structure.

Related literature

For a related structure, see: Kilburn et al. (2007). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-o1932-scheme1.jpg

Experimental

Crystal data

  • C11H11NO4S

  • M r = 253.27

  • Monoclinic, Inline graphic

  • a = 7.6030 (15) Å

  • b = 17.766 (4) Å

  • c = 8.9940 (18) Å

  • β = 112.31 (3)°

  • V = 1123.9 (5) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 294 K

  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.944, T max = 0.972

  • 2182 measured reflections

  • 2027 independent reflections

  • 1567 reflections with I > 2σ(I)

  • R int = 0.030

  • 3 standard reflections frequency: 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.144

  • S = 1.01

  • 2027 reflections

  • 154 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902580X/hk2730sup1.cif

e-65-o1932-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902580X/hk2730Isup2.hkl

e-65-o1932-Isup2.hkl (99.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O3i 0.93 2.34 3.189 (5) 152
C11—H11A⋯O1ii 0.96 2.51 3.463 (4) 175

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

Comment

The title compound is an important pharmaceutical intermediate, which is used in treatment of metabolic syndrome. As part of our studies in this area, we report herein the crystal structure of the title compound.

In the molecule of the title compound (Fig 1), the bond lengths (Allen et al., 1987) and angles are within normal ranges. Rings A (N/C4-C7) and B (C1-C4/C7/C8) are, of course, planar and the dihedral angle between them is A/B = 0.61 (3)°. The isoindoline ring system is planar with a maximum deviation of -0.008 (3) Å for atom N.

In the crystal structure, intermolecular C-H···O interactions (Table 1) link the molecules into a three-dimensional network, in which they may be effective in the stabilization of the structure. The π–π contacts between the isoindoline rings, Cg1—Cg2i and Cg2—Cg2ii [symmetry codes: (i) 2 - x, -y, 2 - z, (ii) 1 - x, -y, 2 - z, where Cg1 and Cg2 are centroids of the rings A (N/C4-C7) and B (C1-C4/C7/C8), respectively] may further stabilize the structure, with centroid-centroid distances of 3.592 (1) and 3.727 (1) Å, respectively.

Experimental

The title compound was prepared according to the literature method (Kilburn et al., 2007). Crystals suitable for X-ray analysis were obtained by dissolving the title compound (0.1 g) in acetone (25 ml) and evaporating the solvent slowly at room temperature for about 7 d.

Refinement

H atoms were positioned geometrically with C-H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H atoms, respectively, and constrained to ride on their parent atoms, with Uiso(H) = xUeq(C), where x = 1.5 for methyl H and x = 1.2 for all other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with the atom-numbering scheme.

Crystal data

C11H11NO4S F(000) = 528
Mr = 253.27 Dx = 1.497 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 25 reflections
a = 7.6030 (15) Å θ = 9–13°
b = 17.766 (4) Å µ = 0.29 mm1
c = 8.9940 (18) Å T = 294 K
β = 112.31 (3)° Block, colorless
V = 1123.9 (5) Å3 0.20 × 0.10 × 0.10 mm
Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer 1567 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.030
graphite θmax = 25.3°, θmin = 2.3°
ω/2θ scans h = 0→9
Absorption correction: ψ scan (North et al., 1968) k = 0→21
Tmin = 0.944, Tmax = 0.972 l = −10→9
2182 measured reflections 3 standard reflections every 120 min
2027 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.144 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.09P)2] where P = (Fo2 + 2Fc2)/3
2027 reflections (Δ/σ)max < 0.001
154 parameters Δρmax = 0.23 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.44021 (11) 0.29490 (4) 0.03299 (8) 0.0425 (3)
O1 0.8805 (3) 0.29528 (10) 0.4407 (3) 0.0524 (6)
O2 0.7221 (3) 0.50798 (11) 0.1325 (3) 0.0555 (6)
O3 0.3992 (4) 0.33791 (14) 0.1503 (3) 0.0700 (7)
O4 0.5068 (4) 0.21958 (12) 0.0776 (3) 0.0662 (7)
N 0.8004 (3) 0.39124 (12) 0.2541 (3) 0.0394 (6)
C1 0.7239 (5) 0.55296 (19) 0.6247 (4) 0.0582 (9)
H1A 0.6981 0.5972 0.6679 0.070*
C2 0.7703 (5) 0.4883 (2) 0.7187 (4) 0.0584 (9)
H2A 0.7765 0.4901 0.8239 0.070*
C3 0.8074 (4) 0.42096 (18) 0.6577 (4) 0.0496 (8)
H3A 0.8368 0.3774 0.7197 0.060*
C4 0.7993 (4) 0.42102 (15) 0.5027 (3) 0.0397 (7)
C5 0.8318 (4) 0.35948 (15) 0.4035 (3) 0.0390 (6)
C6 0.7531 (4) 0.46788 (15) 0.2484 (3) 0.0398 (7)
C7 0.7534 (4) 0.48617 (15) 0.4094 (3) 0.0399 (7)
C8 0.7155 (4) 0.55292 (16) 0.4690 (4) 0.0495 (8)
H8A 0.6854 0.5963 0.4066 0.059*
C9 0.8028 (4) 0.34924 (16) 0.1157 (3) 0.0447 (7)
H9A 0.8480 0.2986 0.1496 0.054*
H9B 0.8919 0.3730 0.0766 0.054*
C10 0.6092 (4) 0.34476 (15) −0.0211 (3) 0.0399 (7)
H10A 0.6228 0.3201 −0.1123 0.048*
H10B 0.5626 0.3954 −0.0538 0.048*
C11 0.2381 (5) 0.29295 (18) −0.1438 (4) 0.0541 (8)
H11A 0.1381 0.2665 −0.1253 0.081*
H11B 0.2668 0.2677 −0.2263 0.081*
H11C 0.1978 0.3435 −0.1773 0.081*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0537 (5) 0.0383 (4) 0.0401 (4) −0.0056 (3) 0.0229 (3) −0.0007 (3)
O1 0.0670 (15) 0.0347 (12) 0.0607 (13) 0.0102 (10) 0.0302 (11) 0.0087 (9)
O2 0.0708 (16) 0.0379 (11) 0.0535 (13) 0.0018 (10) 0.0189 (11) 0.0063 (10)
O3 0.0893 (18) 0.0790 (17) 0.0613 (14) −0.0205 (14) 0.0507 (14) −0.0248 (12)
O4 0.0747 (17) 0.0441 (13) 0.0763 (16) −0.0027 (11) 0.0248 (13) 0.0196 (11)
N 0.0463 (14) 0.0293 (12) 0.0421 (13) 0.0008 (10) 0.0161 (11) −0.0030 (9)
C1 0.053 (2) 0.0501 (19) 0.077 (2) −0.0085 (15) 0.0302 (18) −0.0260 (18)
C2 0.054 (2) 0.072 (2) 0.057 (2) −0.0098 (17) 0.0289 (16) −0.0198 (17)
C3 0.0470 (18) 0.0546 (19) 0.0502 (18) −0.0024 (14) 0.0219 (14) 0.0019 (14)
C4 0.0328 (15) 0.0393 (15) 0.0475 (16) −0.0028 (11) 0.0158 (13) −0.0039 (12)
C5 0.0365 (15) 0.0337 (15) 0.0458 (16) −0.0012 (12) 0.0147 (12) 0.0020 (12)
C6 0.0378 (15) 0.0293 (14) 0.0483 (16) −0.0010 (12) 0.0117 (13) −0.0003 (12)
C7 0.0336 (14) 0.0344 (15) 0.0515 (17) −0.0033 (12) 0.0159 (13) −0.0065 (12)
C8 0.0469 (18) 0.0367 (16) 0.064 (2) −0.0022 (13) 0.0199 (15) −0.0097 (14)
C9 0.0505 (18) 0.0384 (16) 0.0490 (17) 0.0016 (13) 0.0231 (14) −0.0025 (12)
C10 0.0516 (17) 0.0323 (14) 0.0404 (15) −0.0016 (12) 0.0227 (13) 0.0002 (11)
C11 0.052 (2) 0.057 (2) 0.0540 (18) −0.0038 (15) 0.0208 (16) 0.0012 (15)

Geometric parameters (Å, °)

S—O3 1.430 (2) C3—H3A 0.9300
S—O4 1.433 (2) C4—C7 1.394 (4)
S—C11 1.743 (3) C4—C5 1.490 (4)
S—C10 1.774 (3) C6—C7 1.483 (4)
O1—C5 1.207 (3) C7—C8 1.376 (4)
N—C5 1.392 (3) C8—H8A 0.9300
N—C6 1.404 (3) C9—C10 1.520 (4)
N—C9 1.457 (3) C9—H9A 0.9700
C1—C8 1.377 (5) C9—H9B 0.9700
C1—C2 1.391 (5) C10—H10A 0.9700
C1—H1A 0.9300 C10—H10B 0.9700
O2—C6 1.210 (3) C11—H11A 0.9600
C2—C3 1.389 (4) C11—H11B 0.9600
C2—H2A 0.9300 C11—H11C 0.9600
C3—C4 1.371 (4)
O3—S—O4 116.42 (16) N—C6—C7 105.8 (2)
O3—S—C10 108.61 (14) C8—C7—C4 121.5 (3)
O3—S—C11 108.68 (16) C8—C7—C6 130.2 (3)
O4—S—C10 109.11 (14) C4—C7—C6 108.2 (2)
O4—S—C11 109.42 (15) C7—C8—C1 117.4 (3)
C11—S—C10 103.86 (15) C7—C8—H8A 121.3
C5—N—C6 112.1 (2) C1—C8—H8A 121.3
C5—N—C9 124.3 (2) N—C9—C10 113.3 (2)
C6—N—C9 123.5 (2) N—C9—H9A 108.9
C8—C1—C2 121.4 (3) C10—C9—H9A 108.9
C8—C1—H1A 119.3 N—C9—H9B 108.9
C2—C1—H1A 119.3 C10—C9—H9B 108.9
C3—C2—C1 120.9 (3) H9A—C9—H9B 107.7
C3—C2—H2A 119.5 C9—C10—S 112.58 (19)
C1—C2—H2A 119.5 C9—C10—H10A 109.1
C4—C3—C2 117.6 (3) S—C10—H10A 109.1
C4—C3—H3A 121.2 C9—C10—H10B 109.1
C2—C3—H3A 121.2 S—C10—H10B 109.1
C3—C4—C7 121.1 (3) H10A—C10—H10B 107.8
C3—C4—C5 130.9 (3) S—C11—H11A 109.5
C7—C4—C5 108.0 (2) S—C11—H11B 109.5
O1—C5—N 124.9 (3) H11A—C11—H11B 109.5
O1—C5—C4 129.1 (3) S—C11—H11C 109.5
N—C5—C4 105.9 (2) H11A—C11—H11C 109.5
O2—C6—N 124.4 (3) H11B—C11—H11C 109.5
O2—C6—C7 129.8 (3)
C8—C1—C2—C3 −0.8 (5) C5—C4—C7—C8 −179.9 (3)
C1—C2—C3—C4 0.9 (5) C3—C4—C7—C6 −179.1 (3)
C2—C3—C4—C7 −0.6 (4) C5—C4—C7—C6 0.7 (3)
C2—C3—C4—C5 179.7 (3) O2—C6—C7—C8 1.3 (5)
C6—N—C5—O1 −177.4 (3) N—C6—C7—C8 −179.5 (3)
C9—N—C5—O1 6.6 (4) O2—C6—C7—C4 −179.4 (3)
C6—N—C5—C4 0.8 (3) N—C6—C7—C4 −0.2 (3)
C9—N—C5—C4 −175.2 (2) C4—C7—C8—C1 −0.2 (4)
C3—C4—C5—O1 −3.1 (5) C6—C7—C8—C1 179.0 (3)
C7—C4—C5—O1 177.2 (3) C2—C1—C8—C7 0.5 (5)
C3—C4—C5—N 178.8 (3) C5—N—C9—C10 112.9 (3)
C7—C4—C5—N −0.9 (3) C6—N—C9—C10 −62.6 (3)
C5—N—C6—O2 178.9 (3) N—C9—C10—S −63.7 (3)
C9—N—C6—O2 −5.1 (4) O3—S—C10—C9 67.7 (2)
C5—N—C6—C7 −0.4 (3) O4—S—C10—C9 −60.2 (2)
C9—N—C6—C7 175.6 (2) C11—S—C10—C9 −176.8 (2)
C3—C4—C7—C8 0.3 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O3i 0.93 2.34 3.189 (5) 152
C11—H11A···O1ii 0.96 2.51 3.463 (4) 175

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, −y+1/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2730).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
  2. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. Kilburn, J. P., Andersen, H. S., Kampen, G. C. T. & Ebdrup, S. (2007). PCT Int. Appl. WO 2007051811.
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902580X/hk2730sup1.cif

e-65-o1932-sup1.cif (17.1KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902580X/hk2730Isup2.hkl

e-65-o1932-Isup2.hkl (99.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES