Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 22;65(Pt 8):o1946–o1947. doi: 10.1107/S1600536809028050

3-Methyl-3,4-dihydro-9H-carbazol-1(2H)-one

A Thomas Gunaseelan a, K Prabakaran b, K J Rajendra Prasad b, A Thiruvalluvar a,*, R J Butcher c
PMCID: PMC2977477  PMID: 21583627

Abstract

In the title mol­ecule, C13H13NO, the dihedral angle between the benzene ring and the fused pyrrole ring is 2.03 (5)°. The methyl group at the 3-position has an equatorial orientation. The cyclo­hexene ring adopts an envelope conformation. Three C atoms of the cyclo­hexene ring, with their attached H atoms, and all atoms of the methyl group are disordered over two positions, the site-occupancy factors being 0.883 (2) and 0.117 (2). In the crystal structure, mol­ecules are stabilized by inter­molecular N—H⋯O hydrogen bonds. A C—H⋯π inter­action, involving the benzene ring, is also found.

Related literature

For the biological activity of substituted 2,3,4,9-tetra­hydro­carbazoles, see: Mooradian et al. (1977); Jean et al. (2004); Biere et al. (1973); Lacoume (1973). For carbazole alkaloids, such as clausenapin, murrayafoline-A, murrayafoline-B, murrayastine, murrayaquinone-A, with a methyl substituent at the C-3 position, see: Knolker & Reddy (2002). For the preparation of 1-oxo compounds via their corresponding hydrazones, see: Sowmithran & Rajendra Prasad (1986); Rajendra Prasad & Vijayalakshmi (1994); Gunaseelan et al. (2007a ,b ); Sridharan et al. (2008); Thiruvalluvar et al. (2007).graphic file with name e-65-o1946-scheme1.jpg

Experimental

Crystal data

  • C13H13NO

  • M r = 199.24

  • Triclinic, Inline graphic

  • a = 5.8301 (3) Å

  • b = 8.4348 (5) Å

  • c = 10.8000 (7) Å

  • α = 78.094 (5)°

  • β = 75.942 (5)°

  • γ = 87.166 (5)°

  • V = 504.11 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 110 K

  • 0.54 × 0.14 × 0.10 mm

Data collection

  • Oxford Diffraction Xcalibur Ruby diffractometer

  • Absorption correction: multi-scan (CrysAlis Pro; Oxford Diffraction, 2009) T min = 0.753, T max = 1.000 (expected range = 0.747–0.992)

  • 5927 measured reflections

  • 3292 independent reflections

  • 2400 reflections with I > 2σ(I)

  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.053

  • wR(F 2) = 0.153

  • S = 1.00

  • 3292 reflections

  • 144 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: CrysAlis Pro (Oxford Diffraction, 2009); cell refinement: CrysAlis Pro; data reduction: CrysAlis Pro; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809028050/wn2337sup1.cif

e-65-o1946-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028050/wn2337Isup2.hkl

e-65-o1946-Isup2.hkl (158.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O1i 0.960 (17) 1.939 (16) 2.848 (1) 157.2 (13)
C4A—H4BCg1ii 0.99 2.83 3.779 (1) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic. Cg1 is the centroid of the C4D,C5–C8,C8A ring.

Acknowledgments

RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

supplementary crystallographic information

Comment

Substituted 2,3,4,9-tetrahydrocarbazoles have been reported to possess many biological properties, such as central nervous system activity (Mooradian et al., 1977), antihistamine (Jean et al., 2004), antidiabetic (Biere et al., 1973) and anti-inflammatory properties (Lacoume, 1973). We have attached importance to the title compound since some of the carbazole alkaloids, such as clausenapin, murrayafoline-A, murrayafoline-B, murrayastine, murrayaquinone-A have the methyl group as substituent at the C-3 position (Knolker & Reddy, 2002). The preparation of 1-oxo compounds via their corresponding hydrazones have been reported (Sowmithran & Rajendra Prasad, 1986; Rajendra Prasad & Vijayalakshmi, 1994). Guanaseelan et al. (2007a,b), Thiruvalluvar et al. (2007) and Sridharan et al. (2008) have reported the crystal structures of substituted carbazole derivatives, in which the carbazole units are not planar.

In the title molecule, C13H13NO, the dihedral angle between the benzene ring and the fused pyrrole ring is 2.03 (5)°. The methyl group at position 3 has an equatorial oreintation. The cyclohexene ring adopts an envelope conformation. In the crystal structure, the molecules are stabilized by intermolecular N9—H9···O1(-1 - x, 1 - y, 1 - z) hydrogen bonds. Furthermore, a C4A—H4B···π(-x, -y, 1 - z) interaction, involving the benzene ring(C4D—C8A), is also found in the crystal stucture.

Experimental

A solution of 2-(2-phenylhydrazono)-5-methylcyclohexanone (0.216 g. 0.001 mol) in a mixture of acetic acid (20 ml) and hydrochloric acid (5 ml) was refluxed on an oil bath pre-heated to 398 K for 2 h. The contents were then cooled and poured into cold water with stirring. The brown solid which was separated by passing through a column of silica gel and eluted with a (98:2, v/v) petroleum ether-ethyl acetate mixture to yield the title compound (0.148 g, 74%). This was recrystallized from ethanol.

Refinement

Atoms C2A, C3A, C4A of the cyclohexene ring, with attached hydrogen atoms, and all atoms of the methyl group are disordered over two positions; the site occupancy factors refined to 0.883 (2) and 0.117 (2). The H atom bonded to N9 was located in a difference Fourier map and refined isotropically. Other H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95–1.00 Å and Uiso(H) = xUeq(parent atom), where x = 1.5 for methyl and 1.2 for all other carbon-bound H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atom-numbering scheme and displacement ellipsoids drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius. Only the major disorder component is shown.

Fig. 2.

Fig. 2.

The molecular packing of the title compound, viewed down the a axis. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding have been omitted. Only the major disorder component is shown.

Crystal data

C13H13NO Z = 2
Mr = 199.24 F(000) = 212
Triclinic, P1 Dx = 1.313 Mg m3
Hall symbol: -P 1 Melting point: 462 K
a = 5.8301 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.4348 (5) Å Cell parameters from 2953 reflections
c = 10.8000 (7) Å θ = 4.9–32.7°
α = 78.094 (5)° µ = 0.08 mm1
β = 75.942 (5)° T = 110 K
γ = 87.166 (5)° Needle, pale-yellow
V = 504.11 (5) Å3 0.54 × 0.14 × 0.10 mm

Data collection

Oxford Diffraction Xcalibur Ruby diffractometer 3292 independent reflections
Radiation source: fine-focus sealed tube 2400 reflections with I > 2σ(I)
graphite Rint = 0.028
Detector resolution: 10.5081 pixels mm-1 θmax = 32.7°, θmin = 4.9°
ω scans h = −7→8
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2009) k = −10→12
Tmin = 0.753, Tmax = 1.000 l = −13→15
5927 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.153 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.1015P)2] where P = (Fo2 + 2Fc2)/3
3292 reflections (Δ/σ)max = 0.001
144 parameters Δρmax = 0.50 e Å3
0 restraints Δρmin = −0.27 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 −0.36537 (13) 0.49067 (9) 0.31075 (7) 0.0255 (2)
N9 −0.24180 (15) 0.34526 (10) 0.55707 (8) 0.0202 (2)
C1 −0.18847 (17) 0.40400 (12) 0.31405 (9) 0.0202 (2)
C2A −0.03045 (19) 0.36084 (14) 0.19199 (10) 0.0265 (3) 0.883 (2)
C3A 0.22713 (19) 0.32688 (14) 0.19735 (10) 0.0199 (3) 0.883 (2)
C4A 0.24963 (17) 0.20104 (12) 0.31810 (9) 0.0202 (2) 0.883 (2)
C4C 0.08447 (16) 0.24013 (11) 0.43740 (9) 0.0179 (2)
C4D 0.09067 (17) 0.19671 (11) 0.57178 (9) 0.0189 (2)
C5 0.25223 (18) 0.11247 (12) 0.63950 (10) 0.0237 (3)
C6 0.2021 (2) 0.09443 (13) 0.77313 (10) 0.0279 (3)
C7 −0.0090 (2) 0.15661 (13) 0.84233 (10) 0.0275 (3)
C8 −0.17079 (19) 0.24034 (12) 0.77927 (10) 0.0237 (3)
C8A −0.11770 (17) 0.26304 (11) 0.64282 (9) 0.0190 (2)
C9A −0.11878 (16) 0.33125 (11) 0.43268 (9) 0.0184 (2)
C13A 0.3667 (2) 0.27429 (16) 0.07206 (11) 0.0331 (3) 0.883 (2)
C4B 0.24963 (17) 0.20104 (12) 0.31810 (9) 0.0202 (2) 0.117 (2)
C13B 0.3667 (2) 0.27429 (16) 0.07206 (11) 0.0331 (3) 0.117 (2)
C2B −0.03045 (19) 0.36084 (14) 0.19199 (10) 0.0265 (3) 0.117 (2)
C3B 0.1473 (15) 0.2369 (11) 0.1984 (8) 0.0199 (3) 0.117 (2)
H3A 0.29806 0.43037 0.20208 0.0239* 0.883 (2)
H5 0.39331 0.06882 0.59392 0.0285*
H4A 0.41424 0.19960 0.32791 0.0243* 0.883 (2)
H4B 0.21248 0.09211 0.30741 0.0243* 0.883 (2)
H8 −0.31286 0.28115 0.82635 0.0285*
H9 −0.379 (3) 0.4111 (17) 0.5785 (14) 0.041 (4)*
H13A 0.35221 0.35751 −0.00372 0.0496* 0.883 (2)
H13B 0.53365 0.26031 0.07418 0.0496* 0.883 (2)
H13C 0.30307 0.17155 0.06591 0.0496* 0.883 (2)
H6 0.31134 0.03927 0.81953 0.0335*
H7 −0.04011 0.14027 0.93458 0.0329*
H2A −0.09634 0.26383 0.17480 0.0318* 0.883 (2)
H2B −0.03456 0.45104 0.11761 0.0318* 0.883 (2)
H2C 0.05134 0.46162 0.13969 0.0318* 0.117 (2)
H2D −0.13550 0.32986 0.14135 0.0318* 0.117 (2)
H3B 0.07301 0.13410 0.19484 0.0239* 0.117 (2)
H4C 0.39691 0.26440 0.29933 0.0243* 0.117 (2)
H4D 0.29160 0.08475 0.33572 0.0243* 0.117 (2)
H13D 0.30671 0.29814 −0.00707 0.0496* 0.117 (2)
H13E 0.45547 0.36781 0.07648 0.0496* 0.117 (2)
H13F 0.47089 0.17958 0.07016 0.0496* 0.117 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0174 (3) 0.0308 (4) 0.0286 (4) 0.0122 (3) −0.0071 (3) −0.0076 (3)
N9 0.0155 (3) 0.0238 (4) 0.0195 (4) 0.0088 (3) −0.0018 (3) −0.0049 (3)
C1 0.0136 (4) 0.0234 (4) 0.0237 (4) 0.0058 (3) −0.0045 (3) −0.0065 (3)
C2A 0.0206 (5) 0.0381 (6) 0.0213 (4) 0.0140 (4) −0.0068 (3) −0.0085 (4)
C3A 0.0151 (5) 0.0232 (5) 0.0196 (5) 0.0072 (4) −0.0028 (4) −0.0034 (4)
C4A 0.0146 (4) 0.0234 (4) 0.0213 (4) 0.0075 (3) −0.0025 (3) −0.0052 (3)
C4C 0.0137 (4) 0.0182 (4) 0.0200 (4) 0.0056 (3) −0.0018 (3) −0.0039 (3)
C4D 0.0160 (4) 0.0182 (4) 0.0207 (4) 0.0056 (3) −0.0021 (3) −0.0037 (3)
C5 0.0204 (5) 0.0239 (5) 0.0247 (5) 0.0107 (4) −0.0045 (4) −0.0036 (4)
C6 0.0289 (5) 0.0291 (5) 0.0240 (5) 0.0128 (4) −0.0087 (4) −0.0018 (4)
C7 0.0318 (5) 0.0266 (5) 0.0205 (5) 0.0095 (4) −0.0042 (4) −0.0016 (4)
C8 0.0236 (5) 0.0231 (4) 0.0209 (4) 0.0064 (4) 0.0000 (3) −0.0041 (4)
C8A 0.0165 (4) 0.0176 (4) 0.0209 (4) 0.0051 (3) −0.0021 (3) −0.0033 (3)
C9A 0.0135 (4) 0.0211 (4) 0.0195 (4) 0.0063 (3) −0.0028 (3) −0.0042 (3)
C13A 0.0254 (5) 0.0475 (7) 0.0212 (5) 0.0185 (5) −0.0010 (4) −0.0047 (4)
C4B 0.0146 (4) 0.0234 (4) 0.0213 (4) 0.0075 (3) −0.0025 (3) −0.0052 (3)
C13B 0.0254 (5) 0.0475 (7) 0.0212 (5) 0.0185 (5) −0.0010 (4) −0.0047 (4)
C2B 0.0206 (5) 0.0381 (6) 0.0213 (4) 0.0140 (4) −0.0068 (3) −0.0085 (4)
C3B 0.0151 (5) 0.0232 (5) 0.0196 (5) 0.0072 (4) −0.0028 (4) −0.0034 (4)

Geometric parameters (Å, °)

O1—C1 1.2377 (13) C8—C8A 1.4043 (14)
N9—C8A 1.3686 (13) C2A—H2A 0.9900
N9—C9A 1.3864 (12) C2A—H2B 0.9900
N9—H9 0.960 (17) C2B—H2C 0.9900
C1—C2A 1.5146 (14) C2B—H2D 0.9900
C1—C2B 1.5146 (14) C3A—H3A 1.0000
C1—C9A 1.4446 (13) C3B—H3B 1.0000
C2A—C3A 1.5276 (16) C4A—H4A 0.9900
C2B—C3B 1.439 (9) C4A—H4B 0.9900
C3A—C4A 1.5306 (15) C4B—H4C 0.9900
C3A—C13A 1.5385 (16) C4B—H4D 0.9900
C3B—C13B 1.616 (9) C5—H5 0.9500
C3B—C4B 1.521 (9) C6—H6 0.9500
C4A—C4C 1.4957 (13) C7—H7 0.9500
C4B—C4C 1.4957 (13) C8—H8 0.9500
C4C—C4D 1.4306 (13) C13A—H13B 0.9800
C4C—C9A 1.3859 (14) C13A—H13C 0.9800
C4D—C5 1.4075 (15) C13A—H13A 0.9800
C4D—C8A 1.4264 (14) C13B—H13D 0.9800
C5—C6 1.3785 (15) C13B—H13E 0.9800
C6—C7 1.4140 (16) C13B—H13F 0.9800
C7—C8 1.3784 (16)
O1···N9 2.9322 (11) H3A···O1iv 2.6400
O1···C3Ai 3.3896 (14) H3A···C9A 3.0300
O1···C4Ai 3.3747 (13) H3A···C8iii 2.8700
O1···C4Bi 3.3747 (13) H3A···H8iii 2.3900
O1···N9ii 2.8481 (12) H3B···C7v 2.6200
O1···H4Ai 2.7800 H3B···C13A 2.1300
O1···H3Ai 2.6400 H3B···C2A 1.9700
O1···H4Ci 2.4500 H3B···C4A 2.0500
O1···H9 2.813 (15) H3B···C5v 2.8900
O1···H9ii 1.939 (16) H3B···C6v 2.4800
N9···O1 2.9322 (11) H4A···C1iv 2.9100
N9···O1ii 2.8481 (12) H4A···O1iv 2.7800
C1···C8Aiii 3.5679 (14) H4A···H5viii 2.5500
C1···C8iii 3.5708 (15) H4B···C4Dv 2.9600
C2B···C13A 2.5175 (17) H4B···H13C 2.4900
C2B···C4A 2.5384 (15) H4B···C8Av 2.9900
C3A···O1iv 3.3896 (14) H4C···O1iv 2.4500
C3B···C6v 3.458 (9) H4C···C1iv 2.7900
C3B···C7v 3.592 (9) H4C···C2A 3.0000
C4A···O1iv 3.3747 (13) H4C···C13A 2.4900
C4B···C2A 2.5384 (15) H4C···H13E 2.3300
C4B···O1iv 3.3747 (13) H4D···H5viii 2.3800
C4B···C13A 2.5282 (15) H4D···C8Av 3.1000
C6···C3Bv 3.458 (9) H4D···C13A 2.9100
C7···C3Bv 3.592 (9) H5···H4Dviii 2.3800
C8···C1iii 3.5708 (15) H5···H4Aviii 2.5500
C8A···C1iii 3.5679 (14) H5···H5viii 2.5700
C13B···C2A 2.5175 (17) H6···H13Fviii 2.4600
C13B···C4A 2.5282 (15) H7···H7ix 2.5800
C1···H4Ci 2.7900 H8···H13Dx 2.5100
C1···H9ii 3.012 (16) H8···C13Ax 2.8400
C1···H4Ai 2.9100 H8···H13Ax 2.4900
C4D···H4Bv 2.9600 H8···H13Bx 2.5800
C5···H3Bv 2.8900 H8···C13Bx 2.8400
C6···H2Av 3.0200 H8···H3Aiii 2.3900
C6···H3Bv 2.4800 H9···O1ii 1.939 (16)
C7···H3Bv 2.6200 H9···O1 2.813 (15)
C8···H2Ciii 2.9900 H9···C1ii 3.012 (16)
C8···H3Aiii 2.8700 H13A···H8vi 2.4900
C8A···H4Bv 2.9900 H13A···H2B 2.5000
C8A···H4Dv 3.1000 H13B···H8vi 2.5800
C9A···H3A 3.0300 H13C···H4B 2.4900
C13A···H8vi 2.8400 H13C···H2A 2.5100
C13B···H8vi 2.8400 H13D···H8vi 2.5100
H2A···H13C 2.5100 H13D···C2A 2.6600
H2A···C6v 3.0200 H13D···H2C 2.4900
H2B···H2Bvii 2.4400 H13E···C2A 2.8000
H2B···H13A 2.5000 H13E···C4A 2.7100
H2C···C13A 2.4400 H13E···H2C 2.4300
H2C···H13D 2.4900 H13E···H4C 2.3300
H2C···C8iii 2.9900 H13E···H13Exi 2.4800
H2C···H13E 2.4300 H13F···C4A 2.7100
H2C···C4A 2.9900 H13F···H6viii 2.4600
H2D···C13A 2.8800
C8A—N9—C9A 107.71 (8) C1—C2B—H2C 107.00
C9A—N9—H9 126.1 (9) C1—C2B—H2D 107.00
C8A—N9—H9 125.8 (9) C3B—C2B—H2C 107.00
O1—C1—C9A 123.78 (9) C3B—C2B—H2D 107.00
O1—C1—C2A 121.93 (9) H2C—C2B—H2D 107.00
C2B—C1—C9A 114.27 (9) C4A—C3A—H3A 108.00
C2A—C1—C9A 114.27 (9) C13A—C3A—H3A 108.00
O1—C1—C2B 121.93 (9) C2A—C3A—H3A 108.00
C1—C2A—C3A 114.98 (9) C2B—C3B—H3B 107.00
C1—C2B—C3B 121.6 (3) C4B—C3B—H3B 107.00
C2A—C3A—C13A 110.39 (9) C13B—C3B—H3B 107.00
C2A—C3A—C4A 112.21 (9) C3A—C4A—H4A 110.00
C4A—C3A—C13A 110.93 (9) C4C—C4A—H4A 110.00
C4B—C3B—C13B 107.3 (5) C4C—C4A—H4B 110.00
C2B—C3B—C4B 118.1 (6) C3A—C4A—H4B 110.00
C2B—C3B—C13B 110.9 (5) H4A—C4A—H4B 108.00
C3A—C4A—C4C 110.43 (8) C4C—C4B—H4D 109.00
C3B—C4B—C4C 113.5 (3) C3B—C4B—H4C 109.00
C4A—C4C—C4D 131.07 (9) C3B—C4B—H4D 109.00
C4A—C4C—C9A 122.53 (8) H4C—C4B—H4D 108.00
C4D—C4C—C9A 106.40 (8) C4C—C4B—H4C 109.00
C4B—C4C—C4D 131.07 (9) C4D—C5—H5 121.00
C4B—C4C—C9A 122.53 (8) C6—C5—H5 121.00
C4C—C4D—C5 134.36 (9) C7—C6—H6 119.00
C4C—C4D—C8A 106.39 (8) C5—C6—H6 119.00
C5—C4D—C8A 119.23 (9) C8—C7—H7 119.00
C4D—C5—C6 118.82 (10) C6—C7—H7 119.00
C5—C6—C7 121.15 (10) C8A—C8—H8 121.00
C6—C7—C8 121.64 (10) C7—C8—H8 121.00
C7—C8—C8A 117.49 (10) H13B—C13A—H13C 109.00
N9—C8A—C4D 109.02 (8) H13A—C13A—H13C 109.00
N9—C8A—C8 129.38 (9) C3A—C13A—H13A 109.00
C4D—C8A—C8 121.61 (9) C3A—C13A—H13B 109.00
N9—C9A—C1 125.11 (9) C3A—C13A—H13C 109.00
N9—C9A—C4C 110.47 (8) H13A—C13A—H13B 109.00
C1—C9A—C4C 124.40 (9) C3B—C13B—H13D 109.00
C1—C2A—H2A 109.00 C3B—C13B—H13E 109.00
C1—C2A—H2B 109.00 C3B—C13B—H13F 109.00
C3A—C2A—H2A 109.00 H13D—C13B—H13E 109.00
C3A—C2A—H2B 109.00 H13D—C13B—H13F 109.00
H2A—C2A—H2B 108.00 H13E—C13B—H13F 109.00
C9A—N9—C8A—C4D 0.74 (11) C9A—C4C—C4D—C5 −176.89 (11)
C9A—N9—C8A—C8 −179.21 (10) C9A—C4C—C4D—C8A 1.25 (11)
C8A—N9—C9A—C1 −178.64 (9) C4A—C4C—C9A—N9 178.40 (9)
C8A—N9—C9A—C4C 0.06 (12) C4A—C4C—C9A—C1 −2.88 (15)
O1—C1—C2A—C3A 152.13 (10) C4D—C4C—C9A—N9 −0.84 (11)
C9A—C1—C2A—C3A −29.84 (13) C4D—C4C—C9A—C1 177.89 (9)
O1—C1—C9A—N9 1.63 (16) C4C—C4D—C5—C6 178.95 (11)
O1—C1—C9A—C4C −176.91 (10) C8A—C4D—C5—C6 1.00 (15)
C2A—C1—C9A—N9 −176.36 (9) C4C—C4D—C8A—N9 −1.24 (11)
C2A—C1—C9A—C4C 5.10 (14) C4C—C4D—C8A—C8 178.71 (9)
C1—C2A—C3A—C4A 52.21 (13) C5—C4D—C8A—N9 177.23 (9)
C1—C2A—C3A—C13A 176.50 (10) C5—C4D—C8A—C8 −2.82 (15)
C2A—C3A—C4A—C4C −47.27 (12) C4D—C5—C6—C7 1.00 (16)
C13A—C3A—C4A—C4C −171.26 (9) C5—C6—C7—C8 −1.31 (17)
C3A—C4A—C4C—C4D −156.71 (10) C6—C7—C8—C8A −0.46 (16)
C3A—C4A—C4C—C9A 24.26 (13) C7—C8—C8A—N9 −177.55 (10)
C4A—C4C—C4D—C5 3.97 (19) C7—C8—C8A—C4D 2.50 (15)
C4A—C4C—C4D—C8A −177.90 (10)

Symmetry codes: (i) x−1, y, z; (ii) −x−1, −y+1, −z+1; (iii) −x, −y+1, −z+1; (iv) x+1, y, z; (v) −x, −y, −z+1; (vi) x+1, y, z−1; (vii) −x, −y+1, −z; (viii) −x+1, −y, −z+1; (ix) −x, −y, −z+2; (x) x−1, y, z+1; (xi) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N9—H9···O1ii 0.960 (17) 1.939 (16) 2.848 (1) 157.2 (13)
C4A—H4B···Cg1v 0.99 2.83 3.779 (1) 162

Symmetry codes: (ii) −x−1, −y+1, −z+1; (v) −x, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2337).

References

  1. Biere, H., Rufer, C., Ahrens, H., Schröder, E., Losert, W., Loge, O. & Schillinger, E. (1973). Patent DE 2226702 (A1).
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007a). Acta Cryst. E63, o2413–o2414.
  4. Gunaseelan, A. T., Thiruvalluvar, A., Martin, A. E. & Prasad, K. J. R. (2007b). Acta Cryst. E63, o2729–o2730.
  5. Jean, C. F., Rangisetty, J. B., Dukat, M., Setola, V., Raffay, T., Roth, B. & Glennon, R. A. (2004). Bioorg. Med. Chem. Lett.14, 1961–1964. [DOI] [PubMed]
  6. Knolker, H. J. & Reddy, K. R. (2002). Chem. Rev.102, 4303–4427. [DOI] [PubMed]
  7. Lacoume, B. (1973). Patent AU 3217771 (A).
  8. Mooradian, A., Dupont, P. E., Hlavac, A. G., Aceto, M. D. & Pearl, J. (1977). J. Med. Chem.20, 487–492. [DOI] [PubMed]
  9. Oxford Diffraction (2009). CrysAlis Pro Oxford Diffraction Ltd, Yarnton, England.
  10. Rajendra Prasad, K. J. & Vijayalakshmi, C. S. (1994). Indian J. Chem. Sect. B, 33, 481–482.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sowmithran, D. & Rajendra Prasad, K. J. (1986). Heterocycles, 24, 711–717.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Sridharan, M., Prasad, K. J. R., Gunaseelan, A. T., Thiruvalluvar, A. & Linden, A. (2008). Acta Cryst. E64, o763–o764. [DOI] [PMC free article] [PubMed]
  15. Thiruvalluvar, A., Gunaseelan, A. T., Martin, A. E., Prasad, K. J. R. & Butcher, R. J. (2007). Acta Cryst. E63, o3524.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809028050/wn2337sup1.cif

e-65-o1946-sup1.cif (23.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028050/wn2337Isup2.hkl

e-65-o1946-Isup2.hkl (158.2KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES