Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 18;65(Pt 8):o1887–o1888. doi: 10.1107/S1600536809027354

3,4-Diamino­pyridinium 4-nitro­benzoate–4-nitro­benzoic acid (1/1)

Hoong-Kun Fun a,*,, Kasthuri Balasubramani a
PMCID: PMC2977481  PMID: 21583579

Abstract

In the title compound, C5H8N3 +·C7H4NO4 ·C7H5NO4, the non-H atoms of the 3,4-diamino­pyridinium cation are coplanar, with a maximum deviation of 0.022 (1) Å. The carboxyl­ate and nitro groups of the 4-nitro­benzoate anion are twisted out of the attached ring planes by dihedral angles of 15.89 (8) and 10.20 (8)°, respectively. In the 4-nitro­benzoic acid mol­ecule, the carboxyl and nitro groups form dihedral angles of 18.25 (8) and 6.55 (8)°, respectively, with the benzene ring. In the crystal, the constituent units form two-dimensional networks parallel to (001) by O—H⋯O, N—-H⋯O and C—H⋯O hydrogen bonds. Weak π–π inter­actions involving inversion-related 4-nitro­benzoic acid mol­ecules [centroid–centroid distance = 3.7325 (8) Å] and inversion-related 4-nitro­benzoate mol­ecules [centroid–centroid distance = 3.7124 (8) Å] are also observed.

Related literature

For general background to substituted pyridines, see: Pozharski et al. (1997); Katritzky et al. (1996); For related structures, see: Opozda et al. (2006); Rubin-Preminger & Englert (2007); Koleva et al. (2007, 2008); Fun & Balasubramani (2009). For bond-length data, see: Allen et al. (1987). For hydrogen-bond motifs, see: Bernstein et al. (1995). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-65-o1887-scheme1.jpg

Experimental

Crystal data

  • C5H8N3 +·C7H4NO4 ·C7H5NO4

  • M r = 443.38

  • Triclinic, Inline graphic

  • a = 6.8073 (2) Å

  • b = 6.8087 (2) Å

  • c = 21.0171 (5) Å

  • α = 80.859 (1)°

  • β = 83.253 (1)°

  • γ = 78.549 (1)°

  • V = 938.88 (5) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.56 × 0.20 × 0.17 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.934, T max = 0.979

  • 27907 measured reflections

  • 5435 independent reflections

  • 4025 reflections with I > 2σ(I)

  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.190

  • S = 1.05

  • 5435 reflections

  • 353 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.81 e Å−3

  • Δρmin = −0.44 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809027354/ci2849sup1.cif

e-65-o1887-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027354/ci2849Isup2.hkl

e-65-o1887-Isup2.hkl (260.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3B—H1O3⋯O3Ai 0.82 1.65 2.463 (2) 173
N3—H1N3⋯O4Bii 1.05 (3) 2.08 (3) 3.008 (3) 146 (2)
N3—H2N3⋯O2Biii 0.92 (3) 2.39 (3) 3.129 (2) 138 (2)
N2—H1N2⋯O3Biv 1.00 (2) 2.00 (2) 2.929 (2) 154 (2)
N4—H1N4⋯O4Ai 0.90 (2) 2.18 (2) 3.068 (2) 169 (2)
N4—H2N4⋯O3Av 0.89 (2) 2.35 (2) 3.152 (2) 150 (2)
C1B—H1B⋯O4Bii 0.94 (2) 2.52 (2) 3.231 (2) 133 (2)
C4B—H4B⋯O1Bvi 0.97 (2) 2.54 (2) 3.250 (2) 130 (2)
C12—H12⋯O4Bvii 0.89 (2) 2.50 (2) 3.376 (2) 165 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

HKF and KB thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. KB thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). 3,4-Diaminopyridine is used as a component in Schiff base reactions (Opozda et al., 2006). The crystal structure of 3,4-diaminopyridine (Rubin-Preminger & Englert, 2007), 3,4-diaminopyridinium hydrogen squarate (Koleva et al., 2007), 3,4-diaminopyridinium hydrogen tartarate (Koleva et al., 2008) and 3,4-diaminopyridinium hydrogen succinate (Fun & Balasubramani, 2009) have been reported. Since our aim is to study some interesting hydrogen-bonding interactions, the synthesis and structure of the title compound, (I), is presented here.

The asymmetric unit of (I) contains a 3,4-diaminopyridinium cation, a 4-nitrobenzoate anion and a 4-nitrobenzoic acid molecule (Fig 1). The bond lengths (Allen et al., 1987) and angles are normal.

In the 3,4-diaminopyridinium cation, the protonation of atom N2 has lead to a slight increase in C8—N2—C12 angle to 120.32 (15)° compared to 115.69 (19)° in 3,4-diaminopyridine (Rubin-Preminger & Englert, 2007). The non-H atoms of the 3,4-diaminopyridinium cation are coplanar, with a maximum deviation of 0.022 (1) Å for atom N4. The sum of bond angles associated with atoms N3 and N4 suggests that atom N3 is sp3 hybridized while atom N4 is sp2 hybridized.

In the 4-nitrobenzoate anion, the carboxylate group is twisted slightly from the attached ring; the dihedral angle between C1A-C6A and O3A/O4A/C3A/C7A planes is 15.89 (8)°. The nitro group is twisted away from the attached benzene ring by 10.20 (8)°. In the neutral 4-nitrobenzoic acid molecule, the carboxylic acid (O3B/O4b/C3B/C7B) and nitro (O1B/O2B/N1B/C6B) groups form dihedral angles of 18.25 (8)° and 6.55 (8)°, respectively, with the attached C1B-C6B benzene ring.

The dihedral angle between the benzene rings of 4-nitrobenzoate (C1A-C6A) anion and 4-nitrobenzoic acid (C1B-C6B) molecule is 6.16 (6)°. The pyridine ring (N2/C8-C12) forms dihedral angles of 71.75 (8)° and 65.83 (8)°, respectively, with the C1A-C6A and C1B-C6B rings.

In the crystal packing (Fig. 2), the two amino groups (N3 and N4) are involved in N—H···O hydrogen bonding with two 4-nitrobenzoate O atoms (O3A and O4A), one 4-nitrobenzoic acid O atom (O4B) and with one nitro group O atom (O2B). The 4-nitrobenzoic acid hydrogen, H1O3, is hydrogen-bonded to the carboxylate oxygen atom of 4-nitrobenzoate through O—H···O bonds. The 4-nitrobenzoic acid carbon atoms (C1B & C4B) are involved in C—H···O hydrogen bonding with the carboxylic acid and nitro group O atoms O4B and O1B, to form an R22(10) ring motif (Bernstein et al., 1995). The O—H···O, N—H···O and C—H···O hydrogen bonds (Table 1) link all the constituent units to form a two-dimensional network parallel to the (001). The crystal structure is further stabilized by π-π interactions. The inversion related 4-nitrobenzoic acid molecules are stacked with a centroid-to-centroid distance of 3.7325 (8) Å. Similarly, the inversion related 4-nitrobenzoate molecules are stacked with a centroid-to-centroid distance of 3.7124 (8) Å.

Experimental

Hot methanol solutions (20 ml) of 3,4-diaminopyridine (27 mg, Aldrich) and 4-nitrobenzoic acid (42 mg, Merck) were mixed and warmed over a heating magnetic stirrer for 5 minutes. The resulting solution was allowed to cool slowly at room temperature. Crystals of (I) appeared from the mother liquor after a few days.

Refinement

All the H atoms (except carboxyl oxygen) were located from the difference Fourier map [N–H = 0.89 (2)–1.05 (3) Å, C–H = 0.89 (2)–1.00 (2) Å and allowed to refine freely. The oxygen H atom was positioned geometrically (O–H = 0.82 Å) and refined using a riding model Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

Part of the crystal packing in the title compound, showing a two-dimensional network parallel to the (001). Hydrogen bonds are shown as dashed lines.

Crystal data

C5H8N3+·C7H4NO4·C7H5NO4 Z = 2
Mr = 443.38 F(000) = 460
Triclinic, P1 Dx = 1.568 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.8073 (2) Å Cell parameters from 7405 reflections
b = 6.8087 (2) Å θ = 3.1–33.7°
c = 21.0171 (5) Å µ = 0.13 mm1
α = 80.859 (1)° T = 100 K
β = 83.253 (1)° Block, yellow
γ = 78.549 (1)° 0.56 × 0.20 × 0.17 mm
V = 938.88 (5) Å3

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 5435 independent reflections
Radiation source: fine-focus sealed tube 4025 reflections with I > 2σ(I)
graphite Rint = 0.041
φ and ω scans θmax = 30.0°, θmin = 1.0°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −9→9
Tmin = 0.934, Tmax = 0.979 k = −9→9
27907 measured reflections l = −29→28

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.190 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.1091P)2 + 0.3802P] where P = (Fo2 + 2Fc2)/3
5435 reflections (Δ/σ)max = 0.001
353 parameters Δρmax = 0.81 e Å3
0 restraints Δρmin = −0.44 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 1.39968 (18) 0.6458 (2) 0.56237 (6) 0.0292 (3)
O2A 1.1299 (2) 0.6247 (2) 0.62692 (6) 0.0282 (3)
O3A 0.84687 (17) 0.9461 (2) 0.30121 (6) 0.0235 (3)
O4A 0.56283 (19) 0.8966 (2) 0.36256 (7) 0.0342 (4)
C7A 0.7456 (2) 0.8934 (2) 0.35545 (8) 0.0193 (3)
C1A 0.8875 (2) 0.7614 (2) 0.52810 (8) 0.0175 (3)
C2A 0.7744 (2) 0.8188 (2) 0.47485 (8) 0.0178 (3)
C3A 0.8705 (2) 0.8287 (2) 0.41221 (7) 0.0160 (3)
C4A 1.0802 (2) 0.7779 (2) 0.40257 (8) 0.0173 (3)
C5A 1.1946 (2) 0.7216 (2) 0.45525 (7) 0.0166 (3)
C6A 1.0950 (2) 0.7158 (2) 0.51679 (7) 0.0155 (3)
N1A 1.2168 (2) 0.6579 (2) 0.57258 (7) 0.0186 (3)
O1B 0.08979 (19) 0.3360 (2) −0.05503 (7) 0.0309 (3)
O2B 0.3609 (2) 0.3677 (2) −0.11725 (6) 0.0285 (3)
O3B 0.64656 (17) 0.0180 (2) 0.20718 (6) 0.0239 (3)
H1O3 0.7184 0.0014 0.2370 0.036*
O4B 0.91654 (18) 0.1156 (2) 0.14870 (6) 0.0276 (3)
C7B 0.7393 (2) 0.0931 (2) 0.15458 (8) 0.0185 (3)
C1B 0.2910 (2) 0.2478 (2) 0.05366 (8) 0.0177 (3)
C2B 0.4051 (2) 0.1875 (2) 0.10658 (7) 0.0170 (3)
C3B 0.6149 (2) 0.1559 (2) 0.09760 (8) 0.0164 (3)
C4B 0.7116 (2) 0.1852 (2) 0.03518 (8) 0.0180 (3)
C5B 0.5997 (2) 0.2440 (2) −0.01814 (8) 0.0177 (3)
C6B 0.3922 (2) 0.2731 (2) −0.00739 (7) 0.0163 (3)
N1B 0.2727 (2) 0.3303 (2) −0.06376 (7) 0.0188 (3)
N2 0.3773 (2) 0.7229 (2) 0.23610 (7) 0.0261 (3)
N3 −0.0247 (2) 0.4644 (3) 0.21167 (9) 0.0355 (4)
N4 0.2251 (2) 0.1578 (2) 0.28541 (7) 0.0254 (3)
C8 0.4928 (3) 0.5748 (3) 0.27289 (9) 0.0243 (4)
C9 0.4450 (3) 0.3893 (3) 0.28994 (9) 0.0242 (4)
C10 0.2719 (2) 0.3463 (3) 0.27034 (8) 0.0204 (3)
C11 0.1493 (2) 0.5011 (3) 0.23126 (8) 0.0229 (3)
C12 0.2073 (3) 0.6893 (3) 0.21562 (9) 0.0241 (4)
H1N3 −0.023 (4) 0.312 (4) 0.2071 (13) 0.048 (7)*
H2N3 −0.080 (4) 0.564 (4) 0.1805 (15) 0.060 (8)*
H1N2 0.431 (3) 0.851 (4) 0.2220 (12) 0.036 (6)*
H1N4 0.312 (3) 0.070 (3) 0.3102 (11) 0.028 (5)*
H2N4 0.098 (3) 0.146 (3) 0.2834 (11) 0.028 (6)*
H1A 0.820 (3) 0.765 (3) 0.5715 (11) 0.027 (5)*
H2A 0.630 (4) 0.852 (3) 0.4818 (11) 0.034 (6)*
H4A 1.145 (3) 0.772 (3) 0.3597 (11) 0.023 (5)*
H5A 1.333 (3) 0.687 (3) 0.4501 (11) 0.027 (5)*
H8A 0.599 (4) 0.613 (4) 0.2850 (14) 0.052 (8)*
H1B 0.150 (4) 0.265 (3) 0.0608 (11) 0.033 (6)*
H2B 0.340 (3) 0.173 (3) 0.1505 (11) 0.029 (6)*
H4B 0.857 (4) 0.163 (4) 0.0290 (12) 0.036 (6)*
H5B 0.668 (4) 0.250 (4) −0.0633 (12) 0.036 (6)*
H9 0.524 (4) 0.285 (4) 0.3184 (12) 0.041 (7)*
H12 0.147 (3) 0.800 (4) 0.1914 (12) 0.034 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0199 (6) 0.0440 (8) 0.0234 (7) −0.0055 (5) −0.0076 (5) −0.0003 (6)
O2A 0.0303 (7) 0.0390 (7) 0.0133 (6) −0.0033 (5) −0.0016 (5) −0.0015 (5)
O3A 0.0195 (6) 0.0354 (7) 0.0147 (6) −0.0023 (5) −0.0024 (4) −0.0030 (5)
O4A 0.0216 (6) 0.0494 (8) 0.0304 (7) −0.0152 (6) −0.0123 (5) 0.0159 (6)
C7A 0.0211 (7) 0.0166 (7) 0.0216 (8) −0.0049 (6) −0.0082 (6) −0.0007 (6)
C1A 0.0199 (7) 0.0178 (7) 0.0150 (7) −0.0043 (5) −0.0003 (6) −0.0026 (5)
C2A 0.0156 (7) 0.0178 (7) 0.0201 (8) −0.0033 (5) −0.0021 (6) −0.0022 (6)
C3A 0.0173 (7) 0.0151 (6) 0.0158 (7) −0.0034 (5) −0.0034 (5) −0.0010 (5)
C4A 0.0194 (7) 0.0183 (7) 0.0140 (7) −0.0032 (5) −0.0020 (5) −0.0018 (5)
C5A 0.0156 (7) 0.0186 (7) 0.0158 (7) −0.0029 (5) −0.0015 (5) −0.0029 (5)
C6A 0.0178 (7) 0.0154 (6) 0.0138 (7) −0.0029 (5) −0.0043 (5) −0.0017 (5)
N1A 0.0223 (7) 0.0190 (6) 0.0151 (6) −0.0033 (5) −0.0047 (5) −0.0026 (5)
O1B 0.0201 (6) 0.0475 (8) 0.0244 (7) −0.0067 (5) −0.0078 (5) 0.0025 (6)
O2B 0.0286 (6) 0.0405 (7) 0.0124 (6) 0.0004 (5) −0.0014 (5) −0.0008 (5)
O3B 0.0206 (6) 0.0375 (7) 0.0136 (6) −0.0041 (5) −0.0057 (4) −0.0020 (5)
O4B 0.0197 (6) 0.0396 (7) 0.0237 (6) −0.0069 (5) −0.0077 (5) 0.0014 (5)
C7B 0.0193 (7) 0.0195 (7) 0.0172 (7) −0.0010 (6) −0.0052 (6) −0.0042 (6)
C1B 0.0146 (7) 0.0212 (7) 0.0179 (7) −0.0024 (5) −0.0019 (5) −0.0050 (6)
C2B 0.0182 (7) 0.0206 (7) 0.0125 (7) −0.0033 (5) −0.0023 (5) −0.0034 (5)
C3B 0.0173 (7) 0.0165 (7) 0.0158 (7) −0.0025 (5) −0.0038 (5) −0.0028 (5)
C4B 0.0164 (7) 0.0206 (7) 0.0174 (7) −0.0028 (5) −0.0022 (5) −0.0040 (6)
C5B 0.0199 (7) 0.0189 (7) 0.0143 (7) −0.0040 (5) −0.0011 (5) −0.0025 (5)
C6B 0.0185 (7) 0.0170 (7) 0.0137 (7) −0.0025 (5) −0.0047 (5) −0.0019 (5)
N1B 0.0214 (6) 0.0186 (6) 0.0161 (6) −0.0015 (5) −0.0054 (5) −0.0021 (5)
N2 0.0330 (8) 0.0230 (7) 0.0230 (8) −0.0063 (6) 0.0024 (6) −0.0071 (6)
N3 0.0229 (8) 0.0494 (11) 0.0333 (9) −0.0102 (7) −0.0129 (7) 0.0087 (8)
N4 0.0211 (7) 0.0290 (8) 0.0251 (8) −0.0062 (6) −0.0041 (6) 0.0025 (6)
C8 0.0315 (9) 0.0230 (8) 0.0215 (8) −0.0065 (7) −0.0059 (7) −0.0080 (6)
C9 0.0279 (8) 0.0240 (8) 0.0204 (8) −0.0003 (7) −0.0063 (6) −0.0049 (6)
C10 0.0203 (7) 0.0244 (8) 0.0156 (7) −0.0019 (6) 0.0019 (6) −0.0057 (6)
C11 0.0168 (7) 0.0332 (9) 0.0177 (8) −0.0018 (6) 0.0002 (6) −0.0048 (6)
C12 0.0248 (8) 0.0243 (8) 0.0202 (8) 0.0018 (6) 0.0007 (6) −0.0036 (6)

Geometric parameters (Å, °)

O1A—N1A 1.2269 (18) C2B—C3B 1.396 (2)
O2A—N1A 1.2317 (18) C2B—H2B 0.98 (2)
O3A—C7A 1.299 (2) C3B—C4B 1.400 (2)
O4A—C7A 1.232 (2) C4B—C5B 1.390 (2)
C7A—C3A 1.504 (2) C4B—H4B 0.97 (2)
C1A—C6A 1.386 (2) C5B—C6B 1.384 (2)
C1A—C2A 1.393 (2) C5B—H5B 1.00 (2)
C1A—H1A 0.97 (2) C6B—N1B 1.473 (2)
C2A—C3A 1.397 (2) N2—C8 1.347 (2)
C2A—H2A 0.96 (2) N2—C12 1.353 (2)
C3A—C4A 1.399 (2) N2—H1N2 1.00 (2)
C4A—C5A 1.389 (2) N3—C11 1.379 (2)
C4A—H4A 0.96 (2) N3—H1N3 1.05 (3)
C5A—C6A 1.386 (2) N3—H2N3 0.92 (3)
C5A—H5A 0.92 (2) N4—C10 1.364 (2)
C6A—N1A 1.4727 (19) N4—H1N4 0.90 (2)
O1B—N1B 1.2307 (18) N4—H2N4 0.89 (2)
O2B—N1B 1.2247 (18) C8—C9 1.349 (2)
O3B—C7B 1.2913 (19) C8—H8A 0.89 (3)
O3B—H1O3 0.82 C9—C10 1.390 (2)
O4B—C7B 1.2355 (19) C9—H9 0.97 (2)
C7B—C3B 1.505 (2) C10—C11 1.421 (2)
C1B—C6B 1.386 (2) C11—C12 1.394 (3)
C1B—C2B 1.393 (2) C12—H12 0.89 (2)
C1B—H1B 0.94 (2)
O4A—C7A—O3A 125.20 (15) C5B—C4B—C3B 120.32 (14)
O4A—C7A—C3A 120.56 (15) C5B—C4B—H4B 119.7 (14)
O3A—C7A—C3A 114.22 (13) C3B—C4B—H4B 120.0 (14)
C6A—C1A—C2A 118.09 (14) C6B—C5B—C4B 118.05 (14)
C6A—C1A—H1A 122.4 (13) C6B—C5B—H5B 121.0 (14)
C2A—C1A—H1A 119.3 (13) C4B—C5B—H5B 120.6 (14)
C1A—C2A—C3A 120.10 (14) C5B—C6B—C1B 123.32 (14)
C1A—C2A—H2A 119.2 (14) C5B—C6B—N1B 118.39 (14)
C3A—C2A—H2A 120.7 (14) C1B—C6B—N1B 118.28 (13)
C2A—C3A—C4A 120.26 (14) O2B—N1B—O1B 123.15 (14)
C2A—C3A—C7A 119.19 (14) O2B—N1B—C6B 118.26 (13)
C4A—C3A—C7A 120.55 (14) O1B—N1B—C6B 118.58 (13)
C5A—C4A—C3A 120.19 (14) C8—N2—C12 120.32 (15)
C5A—C4A—H4A 119.4 (12) C8—N2—H1N2 116.5 (14)
C3A—C4A—H4A 120.3 (12) C12—N2—H1N2 122.9 (14)
C6A—C5A—C4A 118.16 (14) C11—N3—H1N3 114.8 (14)
C6A—C5A—H5A 120.1 (14) C11—N3—H2N3 112.8 (18)
C4A—C5A—H5A 121.7 (14) H1N3—N3—H2N3 119 (2)
C1A—C6A—C5A 123.18 (14) C10—N4—H1N4 113.8 (14)
C1A—C6A—N1A 118.74 (13) C10—N4—H2N4 117.7 (14)
C5A—C6A—N1A 118.08 (13) H1N4—N4—H2N4 124 (2)
O1A—N1A—O2A 123.50 (14) N2—C8—C9 121.67 (17)
O1A—N1A—C6A 118.07 (13) N2—C8—H8A 113.6 (18)
O2A—N1A—C6A 118.43 (13) C9—C8—H8A 124.7 (18)
C7B—O3B—H1O3 109.5 C8—C9—C10 120.49 (16)
O4B—C7B—O3B 125.03 (14) C8—C9—H9 121.6 (14)
O4B—C7B—C3B 119.89 (14) C10—C9—H9 117.7 (14)
O3B—C7B—C3B 115.08 (13) N4—C10—C9 121.17 (15)
C6B—C1B—C2B 117.96 (14) N4—C10—C11 120.42 (16)
C6B—C1B—H1B 123.3 (15) C9—C10—C11 118.34 (16)
C2B—C1B—H1B 118.7 (15) N3—C11—C12 121.98 (16)
C1B—C2B—C3B 120.33 (14) N3—C11—C10 119.85 (16)
C1B—C2B—H2B 120.5 (13) C12—C11—C10 118.13 (16)
C3B—C2B—H2B 119.1 (13) N2—C12—C11 121.03 (16)
C2B—C3B—C4B 120.01 (14) N2—C12—H12 110.3 (14)
C2B—C3B—C7B 120.67 (14) C11—C12—H12 128.6 (15)
C4B—C3B—C7B 119.31 (13)
C6A—C1A—C2A—C3A 0.1 (2) O3B—C7B—C3B—C4B −162.32 (14)
C1A—C2A—C3A—C4A 1.0 (2) C2B—C3B—C4B—C5B −0.6 (2)
C1A—C2A—C3A—C7A −179.27 (14) C7B—C3B—C4B—C5B −179.72 (14)
O4A—C7A—C3A—C2A −15.2 (2) C3B—C4B—C5B—C6B 0.3 (2)
O3A—C7A—C3A—C2A 163.72 (14) C4B—C5B—C6B—C1B 0.4 (2)
O4A—C7A—C3A—C4A 164.48 (16) C4B—C5B—C6B—N1B −178.44 (13)
O3A—C7A—C3A—C4A −16.6 (2) C2B—C1B—C6B—C5B −0.8 (2)
C2A—C3A—C4A—C5A −1.4 (2) C2B—C1B—C6B—N1B 178.02 (13)
C7A—C3A—C4A—C5A 178.91 (14) C5B—C6B—N1B—O2B −6.6 (2)
C3A—C4A—C5A—C6A 0.6 (2) C1B—C6B—N1B—O2B 174.52 (14)
C2A—C1A—C6A—C5A −1.0 (2) C5B—C6B—N1B—O1B 172.62 (14)
C2A—C1A—C6A—N1A 179.05 (13) C1B—C6B—N1B—O1B −6.3 (2)
C4A—C5A—C6A—C1A 0.7 (2) C12—N2—C8—C9 0.6 (3)
C4A—C5A—C6A—N1A −179.40 (13) N2—C8—C9—C10 −0.7 (3)
C1A—C6A—N1A—O1A −169.88 (14) C8—C9—C10—N4 177.85 (16)
C5A—C6A—N1A—O1A 10.2 (2) C8—C9—C10—C11 1.0 (3)
C1A—C6A—N1A—O2A 10.0 (2) N4—C10—C11—N3 4.0 (3)
C5A—C6A—N1A—O2A −169.97 (14) C9—C10—C11—N3 −179.15 (16)
C6B—C1B—C2B—C3B 0.5 (2) N4—C10—C11—C12 −178.05 (16)
C1B—C2B—C3B—C4B 0.2 (2) C9—C10—C11—C12 −1.2 (2)
C1B—C2B—C3B—C7B 179.27 (14) C8—N2—C12—C11 −0.8 (3)
O4B—C7B—C3B—C2B −161.34 (15) N3—C11—C12—N2 179.05 (17)
O3B—C7B—C3B—C2B 18.6 (2) C10—C11—C12—N2 1.1 (2)
O4B—C7B—C3B—C4B 17.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3B—H1O3···O3Ai 0.82 1.65 2.463 (2) 173
N3—H1N3···O4Bii 1.05 (3) 2.08 (3) 3.008 (3) 146 (2)
N3—H2N3···O2Biii 0.92 (3) 2.39 (3) 3.129 (2) 138 (2)
N2—H1N2···O3Biv 1.00 (2) 2.00 (2) 2.929 (2) 154 (2)
N4—H1N4···O4Ai 0.90 (2) 2.18 (2) 3.068 (2) 169 (2)
N4—H2N4···O3Av 0.89 (2) 2.35 (2) 3.152 (2) 150 (2)
C1B—H1B···O4Bii 0.94 (2) 2.52 (2) 3.231 (2) 133 (2)
C4B—H4B···O1Bvi 0.97 (2) 2.54 (2) 3.250 (2) 130 (2)
C12—H12···O4Bvii 0.89 (2) 2.50 (2) 3.376 (2) 165 (2)

Symmetry codes: (i) x, y−1, z; (ii) x−1, y, z; (iii) −x, −y+1, −z; (iv) x, y+1, z; (v) x−1, y−1, z; (vi) x+1, y, z; (vii) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2849).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  5. Fun, H.-K. & Balasubramani, K. (2009). Acta Cryst. E65, o1531–o1532. [DOI] [PMC free article] [PubMed]
  6. Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Editors. Comprehensive Heterocyclic Chemistry II Oxford: Pergamon Press.
  7. Koleva, B., Kolev, T., Tsanev, T., Kotov, S., Mayer-Figge, H., Seidel, R. W. & Sheldrich, W. S. (2008). J. Mol. Struct.881, 146–155.
  8. Koleva, B., Tsanev, T., Kolev, T., Mayer-Figge, H. & Sheldrick, W. S. (2007). Acta Cryst. E63, o3356.
  9. Opozda, E. M., Lasocha, W. & Wlodarczyk–Gajda, B. (2006). J. Mol. Struct.784, 149–156.
  10. Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society New York: Wiley.
  11. Rubin-Preminger, J. M. & Englert, U. (2007). Acta Cryst. E63, o757–o758.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809027354/ci2849sup1.cif

e-65-o1887-sup1.cif (21.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027354/ci2849Isup2.hkl

e-65-o1887-Isup2.hkl (260.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES