Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 25;65(Pt 8):o1976. doi: 10.1107/S1600536809028840

N-(3,4-Dichloro­phen­yl)-2,4-dimethyl­benzene­sulfonamide

B Thimme Gowda a,*, Sabine Foro b, P G Nirmala a, Hartmut Fuess b
PMCID: PMC2977482  PMID: 21583652

Abstract

In the crystal structure of the title compound, C14H13Cl2NO2S, the configurations of the N—C bond with respect to the S=O bonds are trans and gauche. The mol­ecule is bent at the S atom with a C—SO2—NH—C torsion angle of −69.7 (2)°. The conformation of the N—H bond is syn to the 3-chloro group in the substituted aniline ring. The two benzene rings are tilted with respect to each other by 82.4 (1)°. The presence of N—H⋯O(S) hydrogen bonding packs the mol­ecules into supra­molecular chains along the b axis.

Related literature

For our study of the effect of substituents on the structures of N-(ar­yl)-aryl­sulfonamides, see: Gowda et al. (2008; 2009a,b ). For related structures, see: Gelbrich et al. (2007); Perlovich et al. (2006).graphic file with name e-65-o1976-scheme1.jpg

Experimental

Crystal data

  • C14H13Cl2NO2S

  • M r = 330.21

  • Monoclinic, Inline graphic

  • a = 8.8046 (7) Å

  • b = 9.2688 (8) Å

  • c = 18.947 (1) Å

  • β = 99.644 (8)°

  • V = 1524.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.56 mm−1

  • T = 299 K

  • 0.44 × 0.40 × 0.38 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) T min = 0.790, T max = 0.815

  • 10274 measured reflections

  • 3064 independent reflections

  • 2618 reflections with I > 2σ(I)

  • R int = 0.013

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.100

  • S = 1.05

  • 3064 reflections

  • 186 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028840/tk2510sup1.cif

e-65-o1976-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028840/tk2510Isup2.hkl

e-65-o1976-Isup2.hkl (150.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.833 (16) 2.176 (17) 2.984 (2) 164 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

BTG thanks the Alexander von Humboldt Foundation, Bonn, Germany, for extensions of his research fellowship.

supplementary crystallographic information

Comment

As part of a study of substituent effects on the structures of N-(aryl)-arylsulfonamides (Gowda et al., 2008, 2009a, b), in the present work, the structure of 2,4-dimethyl-N-(3,4-dichlorophenyl)benzenesulfonamide (I) has been determined. The conformations of the N—C bond in the C—SO2—NH—C segment are trans and gauche to the S=O bonds (Fig. 1). The molecule is bent at the S atom with the C—SO2—NH—C torsion angle of -69.7 (2)°, compared to the values of -48.2 (2)° in 2,4-dichloro-N-(3,4-dichlorophenyl)benzenesulfonamide (II) (Gowda et al., 2009b), and 46.1 (3)° and 47.7 (3)° in the two independent molecules of 2,4-dimethyl-N-(phenyl)benzenesulfonamide (III) (Gowda et al., 2009a). The conformation of the N—H bond is syn to the meta-chloro group in the substituted aniline ring. The two benzene rings in (I) are tilted by 82.4 (1)° to each other compared to the values of 68.9 (1)° in II, and 67.5 (1)° and 72.9 (1)° in III. The other bond parameters in (I) are similar to those observed in II, III, and other aryl sulfonamides (Gowda et al., 2008; Perlovich et al., 2006; Gelbrich et al., 2007). The crystal packing of molecules in (I) is via N—H···O(S) hydrogen bonding (Table 1) leading to a supramolecular chain.

Experimental

A solution of 1,3-xylene (10 ml) in chloroform (40 ml) was treated dropwise with chlorosulfonic acid (25 ml) at 0 ° C. After the initial evolution of hydrogen chloride subsided, the reaction mixture was brought to room temperature and poured into crushed ice in a beaker. The chloroform layer was separated, washed with cold water and allowed to evaporate slowly. The residual 2,4-dimethylbenzenesulfonylchloride was treated with 3,4-dichloroaniline in a stoichiometric ratio and boiled for ten minutes. The reaction mixture was then cooled to room temperature and added to ice-cold water (100 ml). The resultant solid, 2,4-dimethyl-N-(3,4-dichlorophenyl)benzenesulfonamide, was filtered under suction and washed thoroughly with cold water. It was then recrystallized to constant melting point from dilute ethanol. The prisms used in the X-ray analysis were grown in ethanolic solution by a slow evaporation at room temperature.

Refinement

The H atom of the NH group was located in difference map and was refined with restrained geometry to 0.86 (2) Å. The other H atoms were positioned with idealized geometry using a riding model [C—H = 0.93—0.96 Å], and were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labelling scheme and displacement ellipsoids are drawn at the 50% probability level

Crystal data

C14H13Cl2NO2S F(000) = 680
Mr = 330.21 Dx = 1.439 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 4751 reflections
a = 8.8046 (7) Å θ = 3.0–27.6°
b = 9.2688 (8) Å µ = 0.56 mm1
c = 18.947 (1) Å T = 299 K
β = 99.644 (8)° Prism, colourless
V = 1524.4 (2) Å3 0.44 × 0.40 × 0.38 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 3064 independent reflections
Radiation source: fine-focus sealed tube 2618 reflections with I > 2σ(I)
graphite Rint = 0.013
Rotation method data acquisition using ω and φ scans θmax = 26.4°, θmin = 2.9°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009) h = −9→10
Tmin = 0.790, Tmax = 0.815 k = −11→11
10274 measured reflections l = −23→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0506P)2 + 0.7353P] where P = (Fo2 + 2Fc2)/3
3064 reflections (Δ/σ)max = 0.007
186 parameters Δρmax = 0.27 e Å3
1 restraint Δρmin = −0.39 e Å3

Special details

Experimental. CrysAlis RED (Oxford Diffraction, 2009) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7751 (2) 0.1105 (2) 0.26937 (9) 0.0342 (4)
C2 0.7595 (2) 0.0272 (2) 0.32852 (10) 0.0405 (4)
H2 0.8407 −0.0308 0.3497 0.049*
C3 0.6243 (2) 0.0301 (2) 0.35611 (10) 0.0425 (5)
C4 0.5020 (2) 0.1148 (2) 0.32506 (10) 0.0425 (5)
C5 0.5178 (2) 0.1972 (3) 0.26616 (10) 0.0472 (5)
H5 0.4360 0.2544 0.2449 0.057*
C6 0.6528 (2) 0.1963 (2) 0.23813 (10) 0.0441 (5)
H6 0.6618 0.2529 0.1985 0.053*
C7 0.8600 (2) 0.1276 (2) 0.09846 (9) 0.0334 (4)
C8 0.8733 (2) −0.0147 (2) 0.07500 (10) 0.0363 (4)
C9 0.7833 (2) −0.0518 (2) 0.01025 (10) 0.0410 (4)
H9 0.7907 −0.1453 −0.0067 0.049*
C10 0.6828 (2) 0.0432 (2) −0.03070 (10) 0.0403 (4)
C11 0.6726 (2) 0.1824 (2) −0.00542 (10) 0.0434 (5)
H11 0.6057 0.2479 −0.0317 0.052*
C12 0.7608 (2) 0.2250 (2) 0.05836 (10) 0.0406 (4)
H12 0.7537 0.3191 0.0746 0.049*
C13 0.9776 (3) −0.1262 (2) 0.11551 (13) 0.0515 (5)
H13A 0.9396 −0.1519 0.1584 0.062*
H13B 1.0797 −0.0874 0.1277 0.062*
H13C 0.9800 −0.2103 0.0862 0.062*
C14 0.5881 (3) −0.0036 (3) −0.10031 (11) 0.0529 (5)
H14A 0.5855 −0.1071 −0.1026 0.064*
H14B 0.6331 0.0336 −0.1394 0.064*
H14C 0.4851 0.0328 −0.1035 0.064*
N1 0.91696 (19) 0.1015 (2) 0.24438 (8) 0.0407 (4)
H1N 0.976 (2) 0.035 (2) 0.2605 (12) 0.049*
O1 0.92732 (17) 0.33947 (15) 0.18616 (7) 0.0471 (4)
O2 1.12802 (16) 0.15602 (19) 0.18124 (8) 0.0530 (4)
Cl1 0.61158 (9) −0.07351 (7) 0.43079 (4) 0.0753 (2)
Cl2 0.33330 (7) 0.12189 (9) 0.36022 (3) 0.0680 (2)
S1 0.96962 (5) 0.19135 (5) 0.17881 (2) 0.03717 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0378 (10) 0.0348 (9) 0.0301 (8) −0.0019 (7) 0.0057 (7) −0.0059 (7)
C2 0.0482 (11) 0.0329 (10) 0.0418 (10) 0.0070 (8) 0.0121 (8) 0.0008 (8)
C3 0.0561 (12) 0.0323 (10) 0.0428 (10) −0.0013 (9) 0.0190 (9) −0.0015 (8)
C4 0.0378 (10) 0.0490 (12) 0.0424 (10) −0.0053 (9) 0.0116 (8) −0.0117 (9)
C5 0.0372 (11) 0.0635 (14) 0.0389 (10) 0.0079 (9) 0.0010 (8) −0.0018 (9)
C6 0.0414 (11) 0.0577 (13) 0.0325 (9) 0.0056 (9) 0.0045 (8) 0.0039 (9)
C7 0.0347 (9) 0.0356 (10) 0.0313 (8) −0.0044 (7) 0.0093 (7) 0.0007 (7)
C8 0.0373 (9) 0.0337 (9) 0.0398 (9) −0.0012 (8) 0.0121 (7) 0.0019 (7)
C9 0.0476 (11) 0.0346 (10) 0.0421 (10) −0.0028 (8) 0.0112 (8) −0.0050 (8)
C10 0.0438 (11) 0.0453 (11) 0.0330 (9) −0.0057 (9) 0.0100 (8) −0.0020 (8)
C11 0.0520 (12) 0.0418 (11) 0.0353 (9) 0.0052 (9) 0.0037 (8) 0.0059 (8)
C12 0.0517 (11) 0.0336 (10) 0.0370 (9) 0.0028 (8) 0.0087 (8) 0.0008 (8)
C13 0.0532 (13) 0.0401 (11) 0.0588 (13) 0.0051 (10) 0.0027 (10) 0.0035 (10)
C14 0.0577 (13) 0.0602 (14) 0.0391 (11) −0.0061 (11) 0.0032 (9) −0.0050 (10)
N1 0.0381 (9) 0.0497 (10) 0.0350 (8) 0.0079 (7) 0.0080 (7) 0.0061 (7)
O1 0.0542 (9) 0.0374 (8) 0.0481 (8) −0.0112 (6) 0.0038 (6) −0.0065 (6)
O2 0.0326 (7) 0.0724 (11) 0.0544 (9) −0.0062 (7) 0.0087 (6) −0.0024 (7)
Cl1 0.0973 (5) 0.0599 (4) 0.0818 (5) 0.0169 (3) 0.0531 (4) 0.0292 (3)
Cl2 0.0443 (3) 0.0965 (5) 0.0679 (4) −0.0024 (3) 0.0234 (3) −0.0037 (3)
S1 0.0339 (2) 0.0413 (3) 0.0365 (2) −0.00631 (19) 0.00630 (18) −0.00184 (19)

Geometric parameters (Å, °)

C1—C2 1.387 (3) C9—C10 1.389 (3)
C1—C6 1.389 (3) C9—H9 0.9300
C1—N1 1.410 (2) C10—C11 1.385 (3)
C2—C3 1.379 (3) C10—C14 1.501 (3)
C2—H2 0.9300 C11—C12 1.380 (3)
C3—C4 1.382 (3) C11—H11 0.9300
C3—Cl1 1.729 (2) C12—H12 0.9300
C4—C5 1.378 (3) C13—H13A 0.9600
C4—Cl2 1.7283 (19) C13—H13B 0.9600
C5—C6 1.381 (3) C13—H13C 0.9600
C5—H5 0.9300 C14—H14A 0.9600
C6—H6 0.9300 C14—H14B 0.9600
C7—C12 1.391 (3) C14—H14C 0.9600
C7—C8 1.403 (3) N1—S1 1.6264 (17)
C7—S1 1.7623 (18) N1—H1N 0.833 (16)
C8—C9 1.387 (3) O1—S1 1.4353 (15)
C8—C13 1.505 (3) O2—S1 1.4258 (15)
C2—C1—C6 119.25 (18) C9—C10—C14 121.03 (19)
C2—C1—N1 116.83 (17) C12—C11—C10 120.66 (18)
C6—C1—N1 123.92 (17) C12—C11—H11 119.7
C3—C2—C1 120.29 (18) C10—C11—H11 119.7
C3—C2—H2 119.9 C11—C12—C7 120.17 (18)
C1—C2—H2 119.9 C11—C12—H12 119.9
C2—C3—C4 120.68 (18) C7—C12—H12 119.9
C2—C3—Cl1 118.55 (16) C8—C13—H13A 109.5
C4—C3—Cl1 120.77 (15) C8—C13—H13B 109.5
C5—C4—C3 118.87 (18) H13A—C13—H13B 109.5
C5—C4—Cl2 120.05 (16) C8—C13—H13C 109.5
C3—C4—Cl2 121.06 (16) H13A—C13—H13C 109.5
C4—C5—C6 121.20 (19) H13B—C13—H13C 109.5
C4—C5—H5 119.4 C10—C14—H14A 109.5
C6—C5—H5 119.4 C10—C14—H14B 109.5
C5—C6—C1 119.71 (18) H14A—C14—H14B 109.5
C5—C6—H6 120.1 C10—C14—H14C 109.5
C1—C6—H6 120.1 H14A—C14—H14C 109.5
C12—C7—C8 121.01 (17) H14B—C14—H14C 109.5
C12—C7—S1 117.22 (14) C1—N1—S1 127.44 (14)
C8—C7—S1 121.76 (14) C1—N1—H1N 117.1 (16)
C9—C8—C7 116.59 (17) S1—N1—H1N 114.8 (16)
C9—C8—C13 119.36 (18) O2—S1—O1 119.00 (9)
C7—C8—C13 124.05 (18) O2—S1—N1 105.08 (9)
C8—C9—C10 123.55 (18) O1—S1—N1 107.69 (9)
C8—C9—H9 118.2 O2—S1—C7 109.99 (9)
C10—C9—H9 118.2 O1—S1—C7 106.92 (9)
C11—C10—C9 118.01 (18) N1—S1—C7 107.66 (9)
C11—C10—C14 120.96 (19)
C6—C1—C2—C3 −0.2 (3) C8—C9—C10—C11 0.2 (3)
N1—C1—C2—C3 −179.96 (17) C8—C9—C10—C14 −179.83 (18)
C1—C2—C3—C4 0.5 (3) C9—C10—C11—C12 0.4 (3)
C1—C2—C3—Cl1 −179.00 (14) C14—C10—C11—C12 −179.54 (19)
C2—C3—C4—C5 −0.3 (3) C10—C11—C12—C7 −0.7 (3)
Cl1—C3—C4—C5 179.16 (16) C8—C7—C12—C11 0.3 (3)
C2—C3—C4—Cl2 −178.74 (15) S1—C7—C12—C11 179.45 (15)
Cl1—C3—C4—Cl2 0.7 (2) C2—C1—N1—S1 −177.17 (15)
C3—C4—C5—C6 −0.1 (3) C6—C1—N1—S1 3.1 (3)
Cl2—C4—C5—C6 178.33 (16) C1—N1—S1—O2 173.04 (16)
C4—C5—C6—C1 0.4 (3) C1—N1—S1—O1 45.23 (19)
C2—C1—C6—C5 −0.2 (3) C1—N1—S1—C7 −69.74 (18)
N1—C1—C6—C5 179.52 (18) C12—C7—S1—O2 −129.57 (15)
C12—C7—C8—C9 0.3 (3) C8—C7—S1—O2 49.56 (17)
S1—C7—C8—C9 −178.82 (13) C12—C7—S1—O1 0.97 (17)
C12—C7—C8—C13 −179.77 (19) C8—C7—S1—O1 −179.90 (14)
S1—C7—C8—C13 1.1 (3) C12—C7—S1—N1 116.45 (15)
C7—C8—C9—C10 −0.6 (3) C8—C7—S1—N1 −64.42 (16)
C13—C8—C9—C10 179.49 (19)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.83 (2) 2.18 (2) 2.984 (2) 164 (2)

Symmetry codes: (i) −x+2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2510).

References

  1. Gelbrich, T., Hursthouse, M. B. & Threlfall, T. L. (2007). Acta Cryst. B63, 621–632. [DOI] [PubMed]
  2. Gowda, B. T., Foro, S., Babitha, K. S. & Fuess, H. (2008). Acta Cryst. E64, o1825. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T., Foro, S., Nirmala, P. G., Babitha, K. S. & Fuess, H. (2009a). Acta Cryst. E65, o576. [DOI] [PMC free article] [PubMed]
  4. Gowda, B. T., Foro, S., Nirmala, P. G. & Fuess, H. (2009b). Acta Cryst. E65, o1940. [DOI] [PMC free article] [PubMed]
  5. Oxford Diffraction (2009). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  6. Perlovich, G. L., Tkachev, V. V., Schaper, K.-J. & Raevsky, O. A. (2006). Acta Cryst. E62, o780–o782.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809028840/tk2510sup1.cif

e-65-o1976-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809028840/tk2510Isup2.hkl

e-65-o1976-Isup2.hkl (150.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES