Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 15;65(Pt 8):m922. doi: 10.1107/S160053680902683X

Poly[μ2-aqua-aqua-μ4-pyridine-2,4-dicarboxyl­ato-strontium]

Janet Soleimannejad a,*, Yaghoub Mohammadzadeh a, Hossein Aghabozorg b, Zohreh Derikvand c
PMCID: PMC2977487  PMID: 21583378

Abstract

In the title polymeric complex, [Sr(C7H3NO4)(H2O)2]n, the SrII atom is eight-coordinated by four O atoms and one N atom of four pyridine-2,4-dicarboxyl­ate (py-2,4-dc) ligands and three O atoms of three coordinated water mol­ecules in a dodeca­hedral geometry. These units are connected via the carboxyl­ate O atoms and water mol­ecules, building polymeric layers parallel to (100). In the crystal structure, non-covalent inter­actions consisting of O—H⋯O hydrogen bonds and π–π stacking inter­actions [centroid–centroid distances = 3.862 (17) and 3.749 (17) Å] connect the various components, forming a three-dimensional structure.

Related literature

For related structures, see: Aghabozorg, Manteghi & Sheshmani (2008); Aghabozorg, Nemati et al. (2008); Liang (2008); Soleimannejad et al. (2007).graphic file with name e-65-0m922-scheme1.jpg

Experimental

Crystal data

  • [Sr(C7H3NO4)(H2O)2]

  • M r = 288.76

  • Monoclinic, Inline graphic

  • a = 6.8860 (5) Å

  • b = 19.7801 (13) Å

  • c = 6.5642 (4) Å

  • β = 91.892 (5)°

  • V = 893.59 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 6.04 mm−1

  • T = 296 K

  • 0.08 × 0.05 × 0.05 mm

Data collection

  • Bruker SMART 1000 diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.560, T max = 0.752

  • 6370 measured reflections

  • 2321 independent reflections

  • 1795 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030

  • wR(F 2) = 0.070

  • S = 1.03

  • 2321 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.76 e Å−3

  • Δρmin = −0.59 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902683X/pv2167sup1.cif

e-65-0m922-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902683X/pv2167Isup2.hkl

e-65-0m922-Isup2.hkl (114.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O4i 0.85 1.95 2.759 (3) 158
O5—H5A⋯O4ii 0.85 1.92 2.730 (3) 160
O5—H5A⋯O3ii 0.85 2.37 3.051 (3) 137
O6—H6B⋯O3iii 0.85 2.12 2.958 (3) 169
O6—H6A⋯O4iv 0.85 2.10 2.833 (3) 144

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

We have previously reported two complexes of SrII with pyridine-3,5-dicarpoxylic and pyridine-2,6-dicarboxylic acid [Sr(C7H3NO4)(H2O)4]n (Aghabozorg et al., 2008; Aghabozorg, Manteghi et al., 2008) and (C10H10N2)[Sr(C7H3NO4)2(H2O)3].3H2O (Soleimannejad et al, 2007). The co-crystal of this acid has been published C7H5NO4.C3H7NO3 (Liang, 2008).

Here we repot on the crystal structure of the title polymeric complex which is a two-dimensional polymer (Fig. 1). The Sr–O distances are in the range of 2.511 (2)–2.688 (2) Å, and the bond angles and bond distances around SrII atom show that the coordination environment of SrII atom is distored dodecahedron.

The carboxylate groups from py-2,4-dc (where py = pyridine and dc = dicarboxylate) link four SrII centers by four O atoms (O1i, O1ii, O2 and O3), [symmetry cods: (i) x, y, 1 + z, (ii), x,1.5 - y, 1/2 + z.] and one N1 atom result in the formation of two-dimensional polymeric chain in the crystal structure. There are a number of O–H···O hydrogen bonds with distances ranging 2.759 (3) Å to 3.052 (3) Å (Table 1). In the crystal structure there are many pores that can be used for storage of gas and elimination of guest molecules. Noncovalent interactions consist of hydrogen bonding and π–π stacking interactions with centroied-centroied distances [3.862 (17) Å and 3.749 (17) Å] connect the various components to form a supramolecular structure (Fig. 2).

Experimental

An aqueous solution of 4,4'-bipyridine (100 mg, 2 mmol) and pyridine-2,4-dicarboxylic acid (53 mg, 1 mmol) was refluxed for an hour. A solution of Sr(NO3)2 (134 mg, 0.5 mmol) in water (3 ml) was added to the solution and refluxed for an hour. Colorless crystals were obtained after one week by the slow evaporation of the solvent at room temperature.

Refinement

The H atoms of the water molecule these were located from low theta Fourier maps and all H-atoms were included in calculated positions and refined by a constrained rigid type geometry in a riding mode with O—H = 0.85 Å and C—H = 0.93 Å and Uiso(H) = 1.2Ueq(parent O or C-atom).

Figures

Fig. 1.

Fig. 1.

The molecular structure of polymeric complex, [Sr(C7H3NO4)(H2O)2]n. Displacement ellipsoids are drawn at the 50% probability level. Symmetry codes: (A) x, y, z - 1; (B) x, -y + 3/2, z - 1/2; (C) x, -y + 3/2, z + 1/2; (D) -x + 3, -y + 1, -z.

Fig. 2.

Fig. 2.

Crystal packing of the title complex, dashed lines indicate hydrogen bonds.

Crystal data

[Sr(C7H3NO4)(H2O)2] F(000) = 568
Mr = 288.76 Dx = 2.146 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1756 reflections
a = 6.8860 (5) Å θ = 4.4–28.4°
b = 19.7801 (13) Å µ = 6.04 mm1
c = 6.5642 (4) Å T = 296 K
β = 91.892 (5)° Plate, colourless
V = 893.59 (10) Å3 0.08 × 0.05 × 0.05 mm
Z = 4

Data collection

Bruker SMART 1000 diffractometer 2321 independent reflections
Radiation source: fine-focus sealed tube 1795 reflections with I > 2σ(I)
graphite Rint = 0.042
Detector resolution: 100 pixels mm-1 θmax = 28.9°, θmin = 4.1°
ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −22→26
Tmin = 0.560, Tmax = 0.752 l = −8→8
6370 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.070 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0326P)2 + 0.0723P] where P = (Fo2 + 2Fc2)/3
2321 reflections (Δ/σ)max = 0.001
136 parameters Δρmax = 0.76 e Å3
0 restraints Δρmin = −0.58 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sr1 1.41849 (4) 0.689568 (14) −0.36705 (4) 0.00741 (8)
N1 1.2631 (4) 0.57709 (13) −0.2058 (4) 0.0096 (5)
O1 1.3664 (3) 0.68543 (10) 0.0213 (3) 0.0094 (4)
O2 1.3348 (3) 0.62646 (11) 0.3099 (3) 0.0127 (5)
O3 1.2609 (3) 0.37523 (11) 0.2554 (3) 0.0112 (5)
O4 1.1524 (3) 0.33289 (11) −0.0422 (3) 0.0103 (4)
O5 1.6546 (3) 0.72846 (10) −0.6459 (3) 0.0103 (4)
H5B 1.7139 0.7007 −0.7206 0.012*
H5A 1.7156 0.7648 −0.6172 0.012*
O6 1.0607 (3) 0.71224 (12) −0.3855 (4) 0.0172 (5)
H6B 0.9789 0.6826 −0.3505 0.021*
H6A 1.0167 0.7507 −0.3525 0.021*
C1 1.3325 (4) 0.63210 (15) 0.1201 (5) 0.0088 (6)
C2 1.2865 (4) 0.56895 (15) −0.0027 (4) 0.0085 (6)
C3 1.2705 (4) 0.50621 (15) 0.0904 (5) 0.0085 (6)
H3 1.2910 0.5020 0.2306 0.010*
C4 1.2238 (4) 0.45000 (15) −0.0267 (5) 0.0084 (6)
C5 1.2108 (4) 0.38080 (15) 0.0705 (5) 0.0092 (6)
C6 1.1917 (5) 0.45863 (15) −0.2358 (5) 0.0106 (6)
H6 1.1553 0.4224 −0.3187 0.013*
C7 1.2152 (5) 0.52224 (16) −0.3165 (5) 0.0124 (6)
H7 1.1968 0.5275 −0.4566 0.015*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sr1 0.01054 (14) 0.00559 (13) 0.00613 (13) −0.00023 (12) 0.00104 (9) 0.00023 (12)
N1 0.0119 (13) 0.0086 (13) 0.0083 (12) −0.0014 (10) 0.0002 (10) 0.0000 (10)
O1 0.0152 (11) 0.0050 (10) 0.0082 (10) −0.0018 (9) 0.0013 (8) −0.0012 (9)
O2 0.0198 (12) 0.0098 (11) 0.0086 (11) −0.0035 (9) 0.0029 (9) −0.0005 (9)
O3 0.0152 (12) 0.0079 (11) 0.0107 (11) 0.0003 (9) 0.0013 (9) 0.0028 (9)
O4 0.0132 (11) 0.0072 (10) 0.0107 (11) −0.0008 (8) 0.0013 (9) −0.0009 (8)
O5 0.0139 (11) 0.0066 (10) 0.0104 (11) −0.0004 (9) 0.0015 (9) −0.0028 (8)
O6 0.0136 (12) 0.0105 (11) 0.0277 (14) 0.0013 (9) 0.0050 (10) 0.0045 (10)
C1 0.0102 (15) 0.0073 (14) 0.0089 (14) 0.0007 (12) 0.0013 (11) −0.0030 (12)
C2 0.0086 (14) 0.0099 (14) 0.0071 (14) −0.0008 (12) 0.0025 (11) −0.0002 (12)
C3 0.0107 (15) 0.0082 (14) 0.0065 (14) 0.0010 (12) 0.0010 (11) 0.0018 (11)
C4 0.0083 (14) 0.0044 (13) 0.0128 (15) −0.0004 (11) 0.0025 (11) 0.0008 (11)
C5 0.0071 (14) 0.0078 (14) 0.0131 (15) 0.0026 (11) 0.0065 (11) 0.0029 (12)
C6 0.0136 (15) 0.0076 (15) 0.0108 (15) 0.0006 (12) 0.0015 (12) −0.0025 (12)
C7 0.0201 (17) 0.0097 (15) 0.0073 (15) 0.0001 (13) 0.0001 (12) −0.0003 (12)

Geometric parameters (Å, °)

Sr1—O6 2.503 (2) O4—C5 1.260 (4)
Sr1—O2i 2.511 (2) O5—Sr1ii 2.688 (2)
Sr1—O1 2.588 (2) O5—H5B 0.8500
Sr1—O1ii 2.600 (2) O5—H5A 0.8501
Sr1—O5 2.604 (2) O6—H6B 0.8500
Sr1—O3iii 2.636 (2) O6—H6A 0.8500
Sr1—O5iv 2.688 (2) C1—C2 1.514 (4)
Sr1—N1 2.700 (3) C2—C3 1.389 (4)
N1—C7 1.341 (4) C3—C4 1.384 (4)
N1—C2 1.347 (4) C3—H3 0.9300
O1—C1 1.264 (3) C4—C6 1.394 (4)
O1—Sr1iv 2.600 (2) C4—C5 1.514 (4)
O2—C1 1.250 (4) C6—C7 1.377 (4)
O2—Sr1v 2.511 (2) C6—H6 0.9300
O3—C5 1.256 (4) C7—H7 0.9300
O3—Sr1iii 2.636 (2)
O6—Sr1—O2i 81.38 (8) O5iv—Sr1—Sr1ii 93.74 (4)
O6—Sr1—O1 83.40 (7) N1—Sr1—Sr1ii 144.35 (5)
O2i—Sr1—O1 141.34 (7) Sr1iv—Sr1—Sr1ii 107.860 (13)
O6—Sr1—O1ii 71.92 (7) C7—N1—C2 117.3 (3)
O2i—Sr1—O1ii 102.07 (7) C7—N1—Sr1 123.20 (19)
O1—Sr1—O1ii 106.58 (6) C2—N1—Sr1 116.78 (19)
O6—Sr1—O5 123.32 (7) C1—O1—Sr1 124.46 (18)
O2i—Sr1—O5 71.61 (7) C1—O1—Sr1iv 132.46 (18)
O1—Sr1—O5 144.29 (7) Sr1—O1—Sr1iv 103.01 (7)
O1ii—Sr1—O5 66.71 (7) C1—O2—Sr1v 142.38 (19)
O6—Sr1—O3iii 156.15 (7) C5—O3—Sr1iii 120.82 (19)
O2i—Sr1—O3iii 99.20 (7) Sr1—O5—Sr1ii 100.21 (7)
O1—Sr1—O3iii 81.53 (7) Sr1—O5—H5B 122.5
O1ii—Sr1—O3iii 130.33 (7) Sr1ii—O5—H5B 111.9
O5—Sr1—O3iii 78.61 (7) Sr1—O5—H5A 114.2
O6—Sr1—O5iv 119.66 (7) Sr1ii—O5—H5A 84.0
O2i—Sr1—O5iv 150.91 (7) H5B—O5—H5A 115.5
O1—Sr1—O5iv 65.67 (6) Sr1—O6—H6B 121.5
O1ii—Sr1—O5iv 69.75 (6) Sr1—O6—H6A 120.4
O5—Sr1—O5iv 79.68 (5) H6B—O6—H6A 107.7
O3iii—Sr1—O5iv 69.94 (7) O2—C1—O1 126.1 (3)
O6—Sr1—N1 76.37 (8) O2—C1—C2 116.9 (3)
O2i—Sr1—N1 80.71 (7) O1—C1—C2 117.0 (2)
O1—Sr1—N1 61.18 (7) N1—C2—C3 122.2 (3)
O1ii—Sr1—N1 147.27 (7) N1—C2—C1 116.4 (3)
O5—Sr1—N1 141.60 (7) C3—C2—C1 121.4 (3)
O3iii—Sr1—N1 80.18 (7) C4—C3—C2 119.6 (3)
O5iv—Sr1—N1 121.72 (7) C4—C3—H3 120.2
O6—Sr1—Sr1iv 84.69 (6) C2—C3—H3 120.2
O2i—Sr1—Sr1iv 165.72 (5) C3—C4—C6 118.4 (3)
O1—Sr1—Sr1iv 38.61 (4) C3—C4—C5 120.5 (3)
O1ii—Sr1—Sr1iv 70.38 (5) C6—C4—C5 121.1 (3)
O5—Sr1—Sr1iv 114.26 (5) O3—C5—O4 125.0 (3)
O3iii—Sr1—Sr1iv 94.81 (5) O3—C5—C4 117.9 (3)
O5iv—Sr1—Sr1iv 39.14 (5) O4—C5—C4 117.0 (3)
N1—Sr1—Sr1iv 99.07 (5) C7—C6—C4 118.3 (3)
O6—Sr1—Sr1ii 83.20 (5) C7—C6—H6 120.9
O2i—Sr1—Sr1ii 67.43 (5) C4—C6—H6 120.9
O1—Sr1—Sr1ii 144.96 (5) N1—C7—C6 124.1 (3)
O1ii—Sr1—Sr1ii 38.38 (5) N1—C7—H7 117.9
O5—Sr1—Sr1ii 40.65 (5) C6—C7—H7 117.9
O3iii—Sr1—Sr1ii 119.25 (5)
O6—Sr1—N1—C7 91.7 (2) O2i—Sr1—O5—Sr1ii 76.49 (7)
O2i—Sr1—N1—C7 8.4 (2) O1—Sr1—O5—Sr1ii −122.21 (10)
O1—Sr1—N1—C7 −178.4 (3) O1ii—Sr1—O5—Sr1ii −36.03 (6)
O1ii—Sr1—N1—C7 106.3 (2) O3iii—Sr1—O5—Sr1ii −179.69 (8)
O5—Sr1—N1—C7 −35.5 (3) O5iv—Sr1—O5—Sr1ii −108.29 (10)
O3iii—Sr1—N1—C7 −92.7 (2) N1—Sr1—O5—Sr1ii 122.61 (10)
O5iv—Sr1—N1—C7 −151.7 (2) Sr1iv—Sr1—O5—Sr1ii −89.51 (6)
Sr1iv—Sr1—N1—C7 173.9 (2) Sr1v—O2—C1—O1 −7.3 (6)
Sr1ii—Sr1—N1—C7 34.8 (3) Sr1v—O2—C1—C2 172.1 (2)
O6—Sr1—N1—C2 −107.5 (2) Sr1—O1—C1—O2 168.8 (2)
O2i—Sr1—N1—C2 169.2 (2) Sr1iv—O1—C1—O2 −7.8 (5)
O1—Sr1—N1—C2 −17.58 (19) Sr1—O1—C1—C2 −10.6 (4)
O1ii—Sr1—N1—C2 −92.9 (2) Sr1iv—O1—C1—C2 172.84 (18)
O5—Sr1—N1—C2 125.3 (2) C7—N1—C2—C3 2.7 (4)
O3iii—Sr1—N1—C2 68.1 (2) Sr1—N1—C2—C3 −159.3 (2)
O5iv—Sr1—N1—C2 9.2 (2) C7—N1—C2—C1 −177.6 (3)
Sr1iv—Sr1—N1—C2 −25.3 (2) Sr1—N1—C2—C1 20.4 (3)
Sr1ii—Sr1—N1—C2 −164.33 (16) O2—C1—C2—N1 172.9 (3)
O6—Sr1—O1—C1 92.9 (2) O1—C1—C2—N1 −7.7 (4)
O2i—Sr1—O1—C1 25.6 (3) O2—C1—C2—C3 −7.4 (4)
O1ii—Sr1—O1—C1 161.74 (19) O1—C1—C2—C3 172.1 (3)
O5—Sr1—O1—C1 −125.3 (2) N1—C2—C3—C4 −1.8 (4)
O3iii—Sr1—O1—C1 −68.6 (2) C1—C2—C3—C4 178.5 (3)
O5iv—Sr1—O1—C1 −140.3 (2) C2—C3—C4—C6 −0.8 (4)
N1—Sr1—O1—C1 14.8 (2) C2—C3—C4—C5 178.4 (3)
Sr1iv—Sr1—O1—C1 −177.4 (3) Sr1iii—O3—C5—O4 69.3 (4)
Sr1ii—Sr1—O1—C1 161.01 (19) Sr1iii—O3—C5—C4 −109.7 (2)
O6—Sr1—O1—Sr1iv −89.74 (8) C3—C4—C5—O3 −6.4 (4)
O2i—Sr1—O1—Sr1iv −157.03 (9) C6—C4—C5—O3 172.7 (3)
O1ii—Sr1—O1—Sr1iv −20.87 (12) C3—C4—C5—O4 174.4 (3)
O5—Sr1—O1—Sr1iv 52.12 (14) C6—C4—C5—O4 −6.4 (4)
O3iii—Sr1—O1—Sr1iv 108.81 (8) C3—C4—C6—C7 2.4 (4)
O5iv—Sr1—O1—Sr1iv 37.06 (7) C5—C4—C6—C7 −176.8 (3)
N1—Sr1—O1—Sr1iv −167.79 (10) C2—N1—C7—C6 −1.0 (5)
Sr1ii—Sr1—O1—Sr1iv −21.60 (12) Sr1—N1—C7—C6 159.8 (2)
O6—Sr1—O5—Sr1ii 10.55 (10) C4—C6—C7—N1 −1.6 (5)

Symmetry codes: (i) x, y, z−1; (ii) x, −y+3/2, z−1/2; (iii) −x+3, −y+1, −z; (iv) x, −y+3/2, z+1/2; (v) x, y, z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O5—H5B···O4vi 0.85 1.95 2.759 (3) 158
O5—H5A···O4vii 0.85 1.92 2.730 (3) 160
O5—H5A···O3vii 0.85 2.37 3.051 (3) 137
O6—H6B···O3viii 0.85 2.12 2.958 (3) 169
O6—H6A···O4ix 0.85 2.10 2.833 (3) 144

Symmetry codes: (vi) −x+3, −y+1, −z−1; (vii) −x+3, y+1/2, −z−1/2; (viii) −x+2, −y+1, −z; (ix) −x+2, y+1/2, −z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2167).

References

  1. Aghabozorg, H., Manteghi, F. & Sheshmani, S. (2008). J. Iran. Chem. Soc 5, 184–227.
  2. Aghabozorg, H., Nemati, A., Derikvand, Z., Ghadermazi, M. & Daneshvar, S. (2008). Acta Cryst. E64, m376. [DOI] [PMC free article] [PubMed]
  3. Bruker (1998). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Liang, P. (2008). Acta Cryst. E64, o43. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Soleimannejad, J., Aghabozorg, H., Hooshmand, S. & Adams, H. (2007). Acta Cryst. E63, m3089–m3090.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902683X/pv2167sup1.cif

e-65-0m922-sup1.cif (19.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902683X/pv2167Isup2.hkl

e-65-0m922-Isup2.hkl (114.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES