Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 18;65(Pt 8):o1889–o1890. doi: 10.1107/S160053680902741X

Tris{2-[4-(2-pyrid­yl)pyrimidin-2-ylsulfan­yl]eth­yl}amine

Jian-Quan Wang a, Ya-Wen Zhang a, Lin Cheng a,*
PMCID: PMC2977494  PMID: 21583580

Abstract

The tripodal character of the title compound, C33H30N10S3, arises from the three thio­ether arms surrounding a central amine N atom. The three arms have approximately the same conformation but distinct geometries in a trans–trans–cis conformation, resulting in a short pyridine–sulfanyl N⋯S distance of 4.320 (7) Å. The distances of the central N atom to the N atoms of three pyridine rings in the arms are 8.305 (7), 8.032 (7) and 5.076 (9)Å. In the crystal, mol­ecules are joined into a three-dimensional supra­molecular network via effective π–π stacking between adjacent heterocycles [centroid–centroid distances of 3.700 (3)–4.118 (4) Å between adjacent inter­layer pyrimidine rings and 3.676 (4) Å between the pyridine rings].

Related literature

For the use of tripodal ligands in crystal engineering, see: Hammes et al. (1998); Hiraoka et al. (2005). For the use of thio­ether ligands in crystal engineering, see: Dong et al. (2008a ,b ); Zhang et al. (2008).graphic file with name e-65-o1889-scheme1.jpg

Experimental

Crystal data

  • C33H30N10S3

  • M r = 662.85

  • Orthorhombic, Inline graphic

  • a = 16.169 (3) Å

  • b = 25.670 (5) Å

  • c = 7.6166 (14) Å

  • V = 3161.3 (10) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.28 mm−1

  • T = 295 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2000) T min = 0.922, T max = 0.947

  • 16502 measured reflections

  • 6104 independent reflections

  • 3099 reflections with I > 2σ(I)

  • R int = 0.105

Refinement

  • R[F 2 > 2σ(F 2)] = 0.070

  • wR(F 2) = 0.123

  • S = 1.06

  • 6104 reflections

  • 415 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.25 e Å−3

  • Absolute structure: Flack (1983), 2750 Friedel pairs

  • Flack parameter: −0.33 (12)

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902741X/si2186sup1.cif

e-65-o1889-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902741X/si2186Isup2.hkl

e-65-o1889-Isup2.hkl (298.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Program for Young Excellent Talents in Southeast University for financial support.

supplementary crystallographic information

Comment

Recently, tripodal ligands have attracted much attention because they can be used to construct interesting topologies such as moleular cages and boxes (Hammes et al. 1998, Hiraoka et al. 2005). Meanwhile, flexible thioethers have been well established ligands in coordination and metallosupramolecular chemistry because of their rich structural information (Dong et al. 2008a, b; Zhang et al. 2008). Herein, we report the crystal structure of the title compound, C33H30N10S3, based on a tripodal dithioether ligand -tris(2-(4-(pyridin-3-yl)pyrimidin-2-ylthio)ethyl)amine.

The tripodal character of the title compound arises from the three thioether arms surrounding a central amine nitrogen. The three arms have approximately the same conformation but distinct geometries, in a trans-trans-cis conformation (Fig. 1). The distances of the central nitrogen atom to the nitrogen atoms of three pyridine rings in the arms are 8.305 (7), 8.032 (7) and 5.076 (9)°, respectively. Two different heterocyclic rings in each arm are not coplanar with the angle of 18.0 (3), 11.9 (3) and 26.4 (2)°, respectively. The discrete molecules are joined into a three-dimensional supramolecular network via effective π—π stacking (Fig. 2) between the interlayer adjacent pyrimidine rings with the Cg3···Cg5i separation of 3.700 (3) to 4.118 (4) Å, with a torsion angle of 7.24°, and a Cg4···Cg6ii distance between pyridine rings of 3.676 (4) Å, with a torsion angle of 4.64°. Cg3 and Cg5 are the centroids of the pyrimidine rings (N5 C11 C12 C13 N4 C10) and (N8 C20 C21 C22 N7 C19), and Cg4 and Cg6 are the centroids of the pyridine rings (C14 C15 C16 C17 N6 C18) and (C23 C24 N9 C25 C26 C27). Symmetry codes: (i = 1 - x, 1 - y, 1/2 + z; ii = 1 - x, 1 - y, -1/2 + z).

Experimental

An ethanol solution (50 ml) of tris(2-bromoethyl)amine (3.35 g, 10 mmol) was added to a dry ethanol solution (300 ml) containing 4-(pyridin-3-yl)pyrimidine-2-thiol (5.67 g, 30 mmol) and sodium hydroxide (1.20 g, 30 mmol). The solution was stirred and refluxed for 8 h. Yellow precipitates were filtered out, washed by water and ethanol, and dried in vacuum. Yield (3.24 g) 48.9%. The yellow crystals were obtained after the filter slowly evaporated.

Refinement

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å and with Uiso(H) = 1.2Uiso(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with labelled non-hydrogen atoms. Displacement ellipsoids are drawn at the 20% probability level.

Fig. 2.

Fig. 2.

A section of the three-dimensional supramolecular network of the title compound viewed down the c-axis.

Crystal data

C33H30N10S3 F(000) = 1384
Mr = 662.85 Dx = 1.393 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 787 reflections
a = 16.169 (3) Å θ = 2.4–28.0°
b = 25.670 (5) Å µ = 0.28 mm1
c = 7.6166 (14) Å T = 295 K
V = 3161.3 (10) Å3 Block, yellow
Z = 4 0.30 × 0.20 × 0.20 mm

Data collection

Bruker SMART CCD diffractometer 6104 independent reflections
Radiation source: fine-focus sealed tube 3099 reflections with I > 2σ(I)
graphite Rint = 0.105
φ and ω scans θmax = 26.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) h = −19→18
Tmin = 0.922, Tmax = 0.947 k = −25→31
16502 measured reflections l = −9→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.070 H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0045P)2 + 0.8P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
6104 reflections Δρmax = 0.41 e Å3
415 parameters Δρmin = −0.25 e Å3
1 restraint Absolute structure: Flack (1983), 2750 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: −0.33 (12)

Special details

Experimental. A trial to refine the structure by interchanging the C16 and N6 atoms resulted in slightly worse R-values and larger anisotropic displacement parameters. A further trial to treat the N6 pyridine as a rotational disordered group, using EADP and PART instructions did not show any improvement. The large negative Flack parameter may result from an unresolved twinning problem or from tiny intergrown material that contribute to additional intensities in the data set. This may also explain the relatively large Rint and R(sigma) values after absorption correction and data reduction.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.83661 (8) 0.33092 (6) 0.0846 (3) 0.0824 (6)
S2 0.41967 (9) 0.46398 (6) 0.0662 (3) 0.0677 (5)
S3 0.78712 (8) 0.58482 (6) 0.0894 (3) 0.0695 (5)
C1 0.9379 (3) 0.3547 (2) 0.1233 (9) 0.0600 (19)
C2 1.0620 (3) 0.3334 (3) 0.2283 (10) 0.071 (2)
H2 1.0985 0.3099 0.2795 0.085*
C3 1.0900 (4) 0.3824 (2) 0.1879 (9) 0.0692 (19)
H3 1.1450 0.3915 0.2062 0.083*
C4 1.0356 (3) 0.4172 (2) 0.1206 (7) 0.0461 (15)
C5 1.0572 (3) 0.4721 (2) 0.0830 (10) 0.0564 (15)
C6 1.1378 (3) 0.4874 (3) 0.0554 (11) 0.077 (2)
H6 1.1787 0.4619 0.0539 0.092*
C7 1.1010 (4) 0.5729 (3) 0.0369 (11) 0.093 (3)
H7 1.1157 0.6078 0.0236 0.112*
C8 1.0201 (4) 0.5610 (2) 0.0618 (11) 0.080 (2)
H8 0.9801 0.5870 0.0600 0.096*
C9 0.9983 (3) 0.5105 (2) 0.0894 (10) 0.0723 (18)
H9 0.9435 0.5020 0.1126 0.087*
C10 0.3913 (4) 0.4001 (2) 0.0151 (8) 0.0567 (18)
C11 0.2849 (4) 0.3452 (3) −0.0115 (9) 0.074 (2)
H11 0.2288 0.3377 −0.0033 0.089*
C12 0.3360 (4) 0.3062 (3) −0.0749 (9) 0.0715 (19)
H12 0.3159 0.2739 −0.1098 0.086*
C13 0.4198 (4) 0.3189 (2) −0.0827 (7) 0.0521 (16)
C14 0.4821 (4) 0.2805 (3) −0.1415 (9) 0.0622 (18)
C15 0.4630 (5) 0.2367 (3) −0.2312 (10) 0.084 (2)
H15 0.4077 0.2298 −0.2550 0.101*
C16 0.5189 (7) 0.2033 (4) −0.2863 (13) 0.105 (3)
H16 0.5044 0.1741 −0.3516 0.126*
C17 0.5973 (8) 0.2132 (4) −0.2445 (14) 0.130 (4)
H17 0.6364 0.1889 −0.2805 0.155*
C18 0.5641 (5) 0.2892 (3) −0.1054 (10) 0.083 (2)
H18 0.5785 0.3194 −0.0452 0.099*
C19 0.7194 (3) 0.6319 (2) 0.0044 (7) 0.0524 (16)
C20 0.7130 (4) 0.7117 (2) −0.1116 (8) 0.0663 (18)
H20 0.7384 0.7419 −0.1517 0.080*
C21 0.6267 (3) 0.7084 (2) −0.1158 (8) 0.0607 (17)
H21 0.5946 0.7356 −0.1588 0.073*
C22 0.5919 (3) 0.6642 (2) −0.0549 (7) 0.0412 (13)
C23 0.5002 (3) 0.6563 (2) −0.0429 (7) 0.0412 (13)
C24 0.4472 (4) 0.6917 (2) −0.1183 (9) 0.0606 (17)
H24 0.4703 0.7185 −0.1842 0.073*
C25 0.3355 (3) 0.6511 (3) −0.0095 (9) 0.069 (2)
H25 0.2784 0.6494 0.0051 0.082*
C26 0.3812 (3) 0.6136 (2) 0.0675 (9) 0.0636 (17)
H26 0.3566 0.5866 0.1302 0.076*
C27 0.4666 (3) 0.6166 (2) 0.0496 (8) 0.0523 (16)
H27 0.5004 0.5915 0.1008 0.063*
C28 0.7832 (3) 0.3846 (2) −0.0206 (9) 0.0719 (19)
H28A 0.8232 0.4102 −0.0603 0.086*
H28B 0.7532 0.3719 −0.1222 0.086*
C29 0.7245 (3) 0.4093 (2) 0.1049 (9) 0.0671 (17)
H29A 0.6929 0.3824 0.1639 0.080*
H29B 0.7554 0.4283 0.1932 0.080*
C30 0.5859 (3) 0.4472 (2) 0.1069 (8) 0.0635 (17)
H30A 0.5698 0.4127 0.1462 0.076*
H30B 0.5893 0.4699 0.2085 0.076*
C31 0.5245 (3) 0.4676 (2) −0.0191 (8) 0.0654 (19)
H31A 0.5278 0.4478 −0.1273 0.078*
H31B 0.5376 0.5036 −0.0461 0.078*
C32 0.7063 (3) 0.4951 (2) −0.0204 (7) 0.0576 (17)
H32A 0.6712 0.5140 −0.1019 0.069*
H32B 0.7587 0.4889 −0.0787 0.069*
C33 0.7220 (3) 0.5299 (2) 0.1391 (8) 0.066 (2)
H33A 0.7479 0.5094 0.2309 0.079*
H33B 0.6695 0.5425 0.1837 0.079*
N1 0.9562 (2) 0.40316 (17) 0.0839 (7) 0.0566 (12)
N2 0.9844 (3) 0.31788 (18) 0.1973 (7) 0.0644 (15)
N3 1.1603 (3) 0.5370 (2) 0.0307 (9) 0.097 (2)
N4 0.4466 (3) 0.36629 (19) −0.0387 (6) 0.0526 (13)
N5 0.3090 (3) 0.39190 (19) 0.0383 (7) 0.0636 (15)
N6 0.6259 (4) 0.2555 (3) −0.1540 (10) 0.121 (3)
N7 0.6377 (2) 0.62430 (16) 0.0073 (6) 0.0452 (12)
N8 0.7597 (3) 0.6734 (2) −0.0528 (7) 0.0618 (14)
N9 0.3649 (3) 0.6902 (2) −0.1038 (8) 0.0729 (16)
N10 0.6680 (3) 0.44486 (18) 0.0158 (6) 0.0588 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0393 (8) 0.0613 (10) 0.1466 (17) 0.0050 (7) −0.0129 (14) 0.0014 (14)
S2 0.0528 (9) 0.0678 (11) 0.0827 (12) −0.0013 (7) 0.0077 (11) −0.0170 (12)
S3 0.0376 (7) 0.0688 (10) 0.1021 (13) 0.0047 (7) −0.0071 (11) 0.0067 (13)
C1 0.033 (3) 0.055 (4) 0.092 (6) −0.002 (3) −0.011 (3) −0.011 (4)
C2 0.044 (4) 0.057 (4) 0.112 (6) 0.012 (3) −0.017 (4) 0.015 (4)
C3 0.041 (4) 0.067 (5) 0.100 (6) 0.000 (3) −0.017 (4) 0.009 (4)
C4 0.039 (3) 0.051 (4) 0.048 (4) 0.008 (3) 0.000 (3) 0.005 (3)
C5 0.046 (3) 0.057 (4) 0.066 (4) 0.007 (3) 0.002 (4) 0.005 (4)
C6 0.048 (4) 0.074 (4) 0.109 (6) 0.004 (3) 0.010 (5) 0.027 (5)
C7 0.082 (5) 0.064 (5) 0.134 (8) −0.002 (4) −0.012 (5) 0.028 (5)
C8 0.049 (4) 0.063 (4) 0.129 (7) 0.011 (3) −0.005 (5) 0.019 (5)
C9 0.047 (3) 0.067 (4) 0.103 (5) 0.001 (3) 0.002 (4) 0.027 (5)
C10 0.054 (4) 0.051 (4) 0.065 (5) 0.006 (3) −0.002 (3) −0.004 (3)
C11 0.045 (4) 0.070 (5) 0.106 (6) −0.005 (4) −0.009 (4) 0.012 (4)
C12 0.065 (5) 0.055 (4) 0.094 (6) −0.001 (4) 0.004 (4) 0.007 (4)
C13 0.052 (4) 0.060 (5) 0.044 (4) 0.013 (3) −0.001 (3) 0.014 (3)
C14 0.069 (5) 0.055 (5) 0.063 (5) 0.007 (4) 0.003 (4) 0.014 (4)
C15 0.100 (6) 0.053 (5) 0.100 (7) 0.008 (5) 0.013 (5) −0.002 (5)
C16 0.147 (9) 0.075 (7) 0.094 (7) 0.015 (7) 0.007 (8) 0.004 (5)
C17 0.196 (12) 0.086 (8) 0.107 (9) 0.075 (9) 0.048 (9) 0.005 (6)
C18 0.082 (5) 0.068 (5) 0.098 (6) 0.034 (4) 0.021 (5) 0.008 (4)
C19 0.048 (4) 0.050 (4) 0.059 (5) 0.001 (3) 0.000 (3) −0.007 (3)
C20 0.055 (4) 0.046 (4) 0.098 (5) −0.014 (3) 0.009 (4) 0.006 (4)
C21 0.037 (3) 0.054 (4) 0.090 (5) 0.004 (3) 0.006 (3) 0.012 (4)
C22 0.040 (3) 0.043 (4) 0.041 (4) −0.001 (3) 0.005 (3) 0.001 (3)
C23 0.041 (3) 0.044 (4) 0.039 (4) 0.002 (3) 0.002 (3) 0.001 (3)
C24 0.053 (4) 0.042 (4) 0.087 (5) −0.006 (3) −0.001 (4) 0.010 (4)
C25 0.031 (3) 0.087 (5) 0.088 (6) 0.000 (4) 0.001 (3) −0.008 (4)
C26 0.044 (3) 0.071 (4) 0.076 (5) −0.010 (3) 0.001 (4) −0.005 (5)
C27 0.042 (3) 0.058 (4) 0.057 (4) 0.000 (3) −0.003 (3) 0.005 (4)
C28 0.045 (3) 0.082 (5) 0.088 (5) 0.009 (3) −0.012 (4) 0.001 (4)
C29 0.070 (4) 0.059 (4) 0.072 (5) 0.008 (3) 0.004 (4) 0.004 (4)
C30 0.059 (4) 0.073 (4) 0.058 (4) 0.012 (3) −0.004 (4) 0.008 (4)
C31 0.061 (4) 0.066 (4) 0.069 (5) −0.005 (3) 0.013 (4) −0.002 (4)
C32 0.045 (4) 0.081 (5) 0.047 (4) 0.020 (3) −0.005 (3) −0.003 (4)
C33 0.044 (4) 0.068 (4) 0.085 (6) 0.004 (3) 0.001 (3) 0.020 (4)
N1 0.039 (2) 0.053 (3) 0.078 (4) 0.003 (2) 0.000 (3) −0.018 (3)
N2 0.043 (3) 0.049 (3) 0.101 (4) 0.007 (3) −0.010 (3) 0.007 (3)
N3 0.062 (4) 0.081 (4) 0.148 (7) −0.002 (3) 0.017 (4) 0.030 (5)
N4 0.048 (3) 0.054 (3) 0.056 (3) 0.006 (3) 0.004 (3) 0.000 (3)
N5 0.044 (3) 0.065 (3) 0.082 (5) 0.003 (2) 0.001 (3) 0.006 (3)
N6 0.103 (5) 0.120 (6) 0.139 (7) 0.053 (5) 0.029 (5) 0.007 (5)
N7 0.031 (2) 0.040 (3) 0.064 (4) 0.001 (2) −0.003 (2) 0.001 (2)
N8 0.033 (3) 0.056 (3) 0.097 (4) −0.008 (3) 0.003 (3) −0.004 (3)
N9 0.039 (3) 0.071 (4) 0.109 (5) 0.009 (3) −0.009 (3) 0.002 (4)
N10 0.051 (3) 0.052 (3) 0.073 (4) 0.009 (3) 0.002 (3) 0.003 (3)

Geometric parameters (Å, °)

S1—C1 1.773 (5) C17—H17 0.9300
S1—C28 1.812 (6) C18—N6 1.372 (8)
S2—C10 1.747 (6) C18—H18 0.9300
S2—C31 1.818 (6) C19—N8 1.324 (6)
S3—C19 1.754 (6) C19—N7 1.334 (6)
S3—C33 1.799 (5) C20—N8 1.318 (6)
C1—N1 1.312 (6) C20—C21 1.399 (7)
C1—N2 1.333 (7) C20—H20 0.9300
C2—N2 1.336 (6) C21—C22 1.348 (7)
C2—C3 1.372 (8) C21—H21 0.9300
C2—H2 0.9300 C22—N7 1.350 (6)
C3—C4 1.356 (7) C22—C23 1.500 (7)
C3—H3 0.9300 C23—C27 1.353 (7)
C4—N1 1.361 (6) C23—C24 1.373 (7)
C4—C5 1.479 (7) C24—N9 1.337 (7)
C5—C9 1.371 (7) C24—H24 0.9300
C5—C6 1.378 (7) C25—N9 1.323 (7)
C6—N3 1.338 (7) C25—C26 1.350 (7)
C6—H6 0.9300 C25—H25 0.9300
C7—N3 1.331 (7) C26—C27 1.389 (6)
C7—C8 1.358 (8) C26—H26 0.9300
C7—H7 0.9300 C27—H27 0.9300
C8—C9 1.359 (7) C28—C29 1.489 (7)
C8—H8 0.9300 C28—H28A 0.9700
C9—H9 0.9300 C28—H28B 0.9700
C10—N4 1.312 (6) C29—N10 1.459 (7)
C10—N5 1.358 (6) C29—H29A 0.9700
C11—N5 1.317 (7) C29—H29B 0.9700
C11—C12 1.385 (8) C30—C31 1.477 (7)
C11—H11 0.9300 C30—N10 1.499 (6)
C12—C13 1.394 (7) C30—H30A 0.9700
C12—H12 0.9300 C30—H30B 0.9700
C13—N4 1.335 (7) C31—H31A 0.9700
C13—C14 1.479 (8) C31—H31B 0.9700
C14—C15 1.352 (8) C32—N10 1.457 (7)
C14—C18 1.372 (8) C32—C33 1.530 (7)
C15—C16 1.314 (10) C32—H32A 0.9700
C15—H15 0.9300 C32—H32B 0.9700
C16—C17 1.331 (12) C33—H33A 0.9700
C16—H16 0.9300 C33—H33B 0.9700
C17—N6 1.367 (12)
C1—S1—C28 104.5 (3) C21—C22—N7 122.1 (5)
C10—S2—C31 102.3 (3) C21—C22—C23 123.2 (5)
C19—S3—C33 104.6 (3) N7—C22—C23 114.7 (5)
N1—C1—N2 129.9 (5) C27—C23—C24 117.8 (5)
N1—C1—S1 119.8 (4) C27—C23—C22 122.0 (5)
N2—C1—S1 110.3 (5) C24—C23—C22 120.1 (5)
N2—C2—C3 122.9 (6) N9—C24—C23 124.6 (6)
N2—C2—H2 118.5 N9—C24—H24 117.7
C3—C2—H2 118.5 C23—C24—H24 117.7
C4—C3—C2 118.4 (5) N9—C25—C26 125.5 (6)
C4—C3—H3 120.8 N9—C25—H25 117.3
C2—C3—H3 120.8 C26—C25—H25 117.3
C3—C4—N1 120.9 (5) C25—C26—C27 117.5 (6)
C3—C4—C5 123.3 (5) C25—C26—H26 121.2
N1—C4—C5 115.8 (5) C27—C26—H26 121.2
C9—C5—C6 117.3 (5) C23—C27—C26 119.5 (5)
C9—C5—C4 120.9 (5) C23—C27—H27 120.3
C6—C5—C4 121.6 (5) C26—C27—H27 120.3
N3—C6—C5 123.3 (5) C29—C28—S1 110.1 (5)
N3—C6—H6 118.3 C29—C28—H28A 109.6
C5—C6—H6 118.3 S1—C28—H28A 109.6
N3—C7—C8 122.9 (6) C29—C28—H28B 109.6
N3—C7—H7 118.6 S1—C28—H28B 109.6
C8—C7—H7 118.6 H28A—C28—H28B 108.2
C7—C8—C9 119.1 (6) N10—C29—C28 111.6 (6)
C7—C8—H8 120.4 N10—C29—H29A 109.3
C9—C8—H8 120.4 C28—C29—H29A 109.3
C8—C9—C5 120.0 (5) N10—C29—H29B 109.3
C8—C9—H9 120.0 C28—C29—H29B 109.3
C5—C9—H9 120.0 H29A—C29—H29B 108.0
N4—C10—N5 127.4 (5) C31—C30—N10 108.0 (5)
N4—C10—S2 120.7 (4) C31—C30—H30A 110.1
N5—C10—S2 111.9 (4) N10—C30—H30A 110.1
N5—C11—C12 125.6 (6) C31—C30—H30B 110.1
N5—C11—H11 117.2 N10—C30—H30B 110.1
C12—C11—H11 117.2 H30A—C30—H30B 108.4
C11—C12—C13 115.2 (6) C30—C31—S2 112.1 (4)
C11—C12—H12 122.4 C30—C31—H31A 109.2
C13—C12—H12 122.4 S2—C31—H31A 109.2
N4—C13—C12 121.2 (5) C30—C31—H31B 109.2
N4—C13—C14 117.4 (5) S2—C31—H31B 109.2
C12—C13—C14 121.3 (6) H31A—C31—H31B 107.9
C15—C14—C18 117.2 (7) N10—C32—C33 116.0 (4)
C15—C14—C13 123.4 (7) N10—C32—H32A 108.3
C18—C14—C13 119.4 (6) C33—C32—H32A 108.3
C16—C15—C14 123.1 (8) N10—C32—H32B 108.3
C16—C15—H15 118.4 C33—C32—H32B 108.3
C14—C15—H15 118.4 H32A—C32—H32B 107.4
C15—C16—C17 117.0 (10) C32—C33—S3 112.8 (4)
C15—C16—H16 121.5 C32—C33—H33A 109.0
C17—C16—H16 121.5 S3—C33—H33A 109.0
C16—C17—N6 126.5 (10) C32—C33—H33B 109.0
C16—C17—H17 116.8 S3—C33—H33B 109.0
N6—C17—H17 116.8 H33A—C33—H33B 107.8
C14—C18—N6 123.1 (8) C1—N1—C4 114.6 (5)
C14—C18—H18 118.4 C1—N2—C2 113.1 (5)
N6—C18—H18 118.4 C7—N3—C6 117.3 (5)
N8—C19—N7 127.6 (5) C10—N4—C13 117.3 (5)
N8—C19—S3 111.6 (4) C11—N5—C10 113.1 (5)
N7—C19—S3 120.8 (4) C17—N6—C18 113.0 (8)
N8—C20—C21 122.4 (5) C19—N7—C22 115.2 (5)
N8—C20—H20 118.8 C20—N8—C19 115.5 (5)
C21—C20—H20 118.8 C25—N9—C24 115.1 (6)
C22—C21—C20 117.2 (5) C32—N10—C29 112.0 (4)
C22—C21—H21 121.4 C32—N10—C30 115.4 (4)
C20—C21—H21 121.4 C29—N10—C30 111.4 (5)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2186).

References

  1. Bruker (2000). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dong, H. Z., Yang, J., Liu, X. & Gou, S. H. (2008a). Inorg. Chem.47, 2913–2915. [DOI] [PubMed]
  3. Dong, H. Z., Zhu, H. B., Liu, X. & Gou, S. H. (2008b). Polyhedron, 27, 2167–2174.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Hammes, B. S., Ramos-Maldonado, D., Yap, G. P. A., Rheingold, A. L., Young, V. G. & Borovik, A. S. (1998). Coord. Chem. Rev.174, 241–253.
  6. Hiraoka, S., Harano, K., Shiro, M. & Shionoya, M. (2005). Angew. Chem. Int. Ed.44, 2727–2731. [DOI] [PubMed]
  7. Sheldrick, G. M. (2000). SADABS University of Göttingen, Germany.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  10. Zhang, Y.-W., Dong, H.-Z. & Cheng, L. (2008). Acta Cryst. E64, m868. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680902741X/si2186sup1.cif

e-65-o1889-sup1.cif (23.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680902741X/si2186Isup2.hkl

e-65-o1889-Isup2.hkl (298.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES