Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 18;65(Pt 8):m941. doi: 10.1107/S1600536809027676

Chlorido(chloro­diphenyl­phosphine-κP)(diphenyl­piperidinophosphine-κP)(η5-penta­methyl­cyclo­penta­dien­yl)ruthenium(II)

Florian Jantscher a, Karl Kirchner a, Kurt Mereiter b,*
PMCID: PMC2977503  PMID: 21583392

Abstract

The title compound, [Ru(C10H15)Cl(C12H10ClP)(C17H20NP)], is a half-sandwich complex of RuII with the chloro­diphenyl­phosphine ligand formed from the diphenyl­piperidinophosphine and chlorine of the precursor complex [Ru(η5-C5Me5)(κ1P—Ph2PNC5H10)Cl2] by an unexpected reaction with NaBH4. The complex has a three-legged piano-stool geometry, with Ru—P bond lengths of 2.2598 (5) Å for the chloro­phosphine and 2.3303 (5) Å for the amino­phosphine.

Related literature

For general background to the reaction of half-sandwich ruthenium amino­phosphine complexes with diynes, see: Pavlik et al. (2006). For the unexpected formation and the crystal structure of a related Ru chloro­diphenyl­phosphine complex, see: Torres-Lubia et al. (1999). For the unexpected formation of another Mn chloro­diphenyl­phosphine complex, see: Liu et al. (1995). For the preparation of [Ru(Cp*)Cl2]2, see: Oshima et al. (1984).graphic file with name e-65-0m941-scheme1.jpg

Experimental

Crystal data

  • [Ru(C10H15)Cl(C12H10ClP)(C17H20NP)]

  • M r = 761.67

  • Monoclinic, Inline graphic

  • a = 17.5427 (12) Å

  • b = 9.1014 (6) Å

  • c = 22.3459 (15) Å

  • β = 98.881 (1)°

  • V = 3525.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.72 mm−1

  • T = 173 K

  • 0.58 × 0.45 × 0.39 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.61, T max = 0.76

  • 26236 measured reflections

  • 10162 independent reflections

  • 8628 reflections with I > 2σ(I)

  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033

  • wR(F 2) = 0.083

  • S = 1.03

  • 10162 reflections

  • 411 parameters

  • H-atom parameters constrained

  • Δρmax = 1.10 e Å−3

  • Δρmin = −0.97 e Å−3

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT, SADABS and XPREP (Bruker, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809027676/gk2223sup1.cif

e-65-0m941-sup1.cif (36.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027676/gk2223Isup2.hkl

e-65-0m941-Isup2.hkl (497KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ru—C1 2.251 (2)
Ru—C2 2.274 (2)
Ru—C3 2.209 (2)
Ru—C4 2.240 (2)
Ru—C5 2.250 (2)
Ru—Cl1 2.4587 (5)

Acknowledgments

Financial support by the FWF Austrian Science Fund (project No. P16600-N11) is gratefully acknowledged.

supplementary crystallographic information

Comment

We found that halfsandwich ruthenium aminophosphine complexes [Ru(Cp')(κ1P—Ph2PNRR')2(CH3CN)2]+ (Cp' is either Cp = cyclopentadienyl or Cp* = pentamethylcyclopentadienyl; Ph = phenyl; NRR' = NHnPr, NEt2, or NC5H10 = piperidin-1-yl) react with diynes to afford novel η3-phosphaallyl-η2-vinylamine complexes and may transform under certain conditions to aminocarbenes (Pavlik et al., 2006). In continuation of this work we were interested to react [Ru(Cp*)(κ1P—Ph2PNC5H10)Cl2], a Ru(III) complex, with NaBH4 in order to obtain a hydrido or borohydride complex. After workup of the reaction, NMR spectra indicated that another unknown Ru complex must have formed which was studied subsequently with X-ray diffraction and is reported here. The title compound, (I), turned out to contain, in addition to an intact piperidinodiphenylphosphine (Ph2PNC5H10), a chlorodiphenylphosphine as the second phosphine ligand of a half-sandwich complex with a three-legged piano-stool structure (Fig. 1). It is a RuII complex with the chemical formula [Ru(Cp*)(κ1P—Ph2PCl)(κ1P—Ph2PNC5H10)Cl] that bears similarities to [Ru(Cp*)(κ1P—Ph2PCl)2Cl] (Torres-Lubia et al., 1999) with respect to stereochemistry of the complex, but also with respect to its formation. In case of [Ru(Cp*)(κ1P—Ph2PCl)2Cl] the chlorophosphine was not directly introduced but formed from [Ru(Cp*)(κ1P—Ph2PH)2Cl] (Ph2PH = hydridodiphenylphosphine) in CDCl3 as the solvent in the presence of the strong base DBN (1,5-diazabicyclo[4.3.0]non-5-ene) by a stepwise chlorine/hydride exchange between the solvent and the two hydridophosphines. In a related way the title compound must have formed from [Ru(Cp*)(κ1P—Ph2PNC5H10)Cl2] and NaBH4. However, there were no chlorinated solvents present in our reaction and the chlorine of the generated chlorophosphine must originate from the starting complex. It can be speculated that the formation of the title compound involves the intermediary formation of a hydridodiphenylphosphine, which by a hydride/chloride substitution leads to the chlorodiphenylphosphine of the title compound obtained in a poor yield of only 9%. A related and also unexpected transformation of a thiol-substituted hydridodiphenylphosphine into a thiol-substituted chlorodiphenylphosphine was observed in the reaction with Mn(CO)5Br in chloroform (Liu et al., 1995). Bond lengths and angles in the title compound (see Table 1 and supplementary materials) are similar to those of [Ru(Cp*)(κ1P—Ph2PCl)2Cl] (Torres-Lubia et al., 1999), which has <Ru—C> = 2.246 (20) Å (2.245 (21) Å for (I)), Ru—P = 2.242 (2) and 2.257 (2) Å, Ru—Cl = 2.438 (2) Å, and P—Cl = 2.085 (3) Å. Both Ru complexes adopt related conformations and have in common that the Ru-bonded and the P-bonded Cl lie on opposite sides. In both complexes the phosphine ligands adopt orientations that lead to a stabilization by intramolecular π-π-stacking between the two adjacent phenyl rings (Fig. 1) with a shortest contact distance of C(12)···C(28) = 3.183 (3) Å in the title compound (ring-ring centroid distance 3.717 (2) Å, ring-ring inclination angle 12.96°). Moreover, it is remarkable that the title compound shows eight intramolecular C—H···Cl/N interactions (seven to Cl, one to N), but only one intermolecular C—H···Cl interaction (see supplementary materials).

Experimental

The synthesis of [Ru(Cp*)(κ1P-PPh2NC5H10)(κ1P-PPh2Cl)Cl], (I), was carried out as follows: A solution of [Ru(Cp*)Cl2]2 (322 mg, 0.52 mmol) (Oshima et al., 1984) in THF (10 ml) in THF (10 ml) was treated with Ph2PNC5H10 (300 mg, 1.2 mmol) and the solution was stirred for 1 h at room temperature. After that NaBH4 (150 mg, 4.0 mmol) was added and the mixture was stirred for 12 h. After evaporation of the solvent an oily residue was obtained from which the product was extracted with pentane (2 x 10 ml). The volume of the solution was then reduced to about 0.5 ml whereupon red crystals of the title compound were obtained. Yield: 42 mg (9%). 1H NMR (C6D6, 293 K, δ, p.p.m.): 7.50 - 6.51 [m, 20H, Ph], 3.03 – 2.72 [m, 4H, CH2], 1.40 [s, 15H, Cp*], 1.33 – 1.26 [m, 4H, CH2], 1.00 – 0.89 [m, 2H, CH2]. 13C{1H} NMR (C6D6, 293 K, δ, p.p.m.): 137.1 – 125.7 [Ph], 93.2 [Cp*], 45.86 [CH2], 26.2 [CH2], 24.6 [CH2], 8.9 [Cp*]. 31P{1H} NMR (acetone-d6, 293 K, δ, p.p.m.): 93.1 [d, JHP = 37.2 Hz, PPh2Cl], 36.0 [d, JHP = 38.5 Hz, PPh2N]. Crystals for X-ray diffraction were obtained by cooling a pentane solution to -20°C.

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93–0.98 Å, and were thereafter treated as riding, with Uiso(H) values of 1.5Ueq(C) for methyl groups and 1.2Ueq(C) for others.

Figures

Fig. 1.

Fig. 1.

Perspective view of the title compound with the atom numbering scheme. Displacement ellipsoids are at the 30% probability level.

Crystal data

[Ru(C10H15)Cl(C12H10ClP)(C17H20NP)] F(000) = 1576
Mr = 761.67 Dx = 1.435 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 8233 reflections
a = 17.5427 (12) Å θ = 2.3–30.0°
b = 9.1014 (6) Å µ = 0.72 mm1
c = 22.3459 (15) Å T = 173 K
β = 98.881 (1)° Block, orange
V = 3525.0 (4) Å3 0.58 × 0.45 × 0.39 mm
Z = 4

Data collection

Bruker SMART APEX CCD diffractometer 10162 independent reflections
Radiation source: fine-focus sealed tube 8628 reflections with I > 2σ(I)
graphite Rint = 0.025
ω scans θmax = 30.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −24→20
Tmin = 0.61, Tmax = 0.76 k = −12→11
26236 measured reflections l = −30→31

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.083 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0326P)2 + 2.7631P] where P = (Fo2 + 2Fc2)/3
10162 reflections (Δ/σ)max = 0.001
411 parameters Δρmax = 1.10 e Å3
0 restraints Δρmin = −0.97 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ru 0.319239 (8) 0.284822 (17) 0.404551 (6) 0.02488 (4)
Cl1 0.35958 (3) 0.03019 (6) 0.39015 (2) 0.03404 (10)
Cl2 0.22523 (4) 0.50673 (8) 0.27604 (3) 0.05243 (16)
P1 0.19442 (3) 0.22618 (5) 0.41995 (2) 0.02501 (9)
P2 0.29029 (3) 0.31711 (6) 0.30332 (2) 0.03087 (11)
N1 0.18748 (9) 0.12798 (18) 0.48395 (7) 0.0268 (3)
C1 0.40816 (12) 0.2978 (2) 0.48857 (9) 0.0345 (4)
C2 0.34730 (11) 0.3924 (2) 0.49720 (9) 0.0323 (4)
C3 0.33811 (12) 0.5006 (2) 0.44971 (10) 0.0355 (4)
C4 0.39950 (13) 0.4777 (3) 0.41486 (10) 0.0388 (5)
C5 0.44181 (11) 0.3528 (3) 0.43769 (10) 0.0372 (4)
C6 0.43962 (14) 0.1718 (3) 0.52760 (11) 0.0486 (6)
H6A 0.4953 0.1848 0.5399 0.073*
H6B 0.4300 0.0799 0.5048 0.073*
H6C 0.4143 0.1681 0.5637 0.073*
C7 0.30928 (13) 0.3945 (3) 0.55296 (10) 0.0412 (5)
H7A 0.3482 0.4133 0.5886 0.062*
H7B 0.2847 0.2993 0.5575 0.062*
H7C 0.2701 0.4722 0.5492 0.062*
C8 0.28894 (15) 0.6353 (3) 0.44579 (13) 0.0481 (6)
H8A 0.3204 0.7195 0.4620 0.072*
H8B 0.2469 0.6208 0.4695 0.072*
H8C 0.2672 0.6539 0.4034 0.072*
C9 0.42049 (18) 0.5852 (3) 0.36886 (12) 0.0565 (7)
H9A 0.4466 0.6702 0.3898 0.085*
H9B 0.3735 0.6179 0.3427 0.085*
H9C 0.4550 0.5375 0.3442 0.085*
C10 0.51677 (13) 0.2956 (4) 0.42237 (13) 0.0552 (7)
H10A 0.5587 0.3198 0.4552 0.083*
H10B 0.5270 0.3410 0.3846 0.083*
H10C 0.5135 0.1887 0.4173 0.083*
C11 0.12841 (11) 0.1238 (2) 0.36245 (8) 0.0307 (4)
C12 0.15773 (12) −0.0043 (2) 0.34017 (9) 0.0346 (4)
H12 0.2105 −0.0293 0.3520 0.041*
C13 0.10999 (14) −0.0957 (3) 0.30068 (10) 0.0430 (5)
H13 0.1305 −0.1823 0.2855 0.052*
C14 0.03307 (15) −0.0612 (3) 0.28344 (11) 0.0491 (6)
H14 0.0009 −0.1233 0.2562 0.059*
C15 0.00306 (14) 0.0643 (3) 0.30598 (11) 0.0486 (6)
H15 −0.0500 0.0878 0.2945 0.058*
C16 0.05041 (12) 0.1562 (3) 0.34542 (10) 0.0400 (5)
H16 0.0293 0.2418 0.3609 0.048*
C17 0.13699 (10) 0.3886 (2) 0.43291 (9) 0.0309 (4)
C18 0.12363 (11) 0.4305 (2) 0.49036 (11) 0.0365 (4)
H18 0.1408 0.3696 0.5243 0.044*
C19 0.08509 (13) 0.5620 (3) 0.49828 (13) 0.0479 (6)
H19 0.0764 0.5900 0.5376 0.057*
C20 0.05979 (14) 0.6505 (3) 0.44984 (16) 0.0576 (7)
H20 0.0343 0.7403 0.4556 0.069*
C21 0.07135 (14) 0.6091 (3) 0.39243 (15) 0.0560 (7)
H21 0.0530 0.6697 0.3587 0.067*
C22 0.10972 (13) 0.4791 (3) 0.38403 (12) 0.0437 (5)
H22 0.1175 0.4516 0.3444 0.052*
C23 0.24435 (13) 0.0107 (2) 0.50082 (9) 0.0353 (4)
H23A 0.2957 0.0434 0.4929 0.042*
H23B 0.2295 −0.0776 0.4759 0.042*
C24 0.24849 (14) −0.0274 (3) 0.56766 (10) 0.0423 (5)
H24A 0.2678 0.0588 0.5925 0.051*
H24B 0.2854 −0.1090 0.5780 0.051*
C25 0.16975 (15) −0.0720 (3) 0.58253 (10) 0.0454 (5)
H25A 0.1540 −0.1671 0.5629 0.055*
H25B 0.1729 −0.0845 0.6269 0.055*
C26 0.11003 (13) 0.0447 (3) 0.56040 (10) 0.0424 (5)
H26A 0.1214 0.1352 0.5847 0.051*
H26B 0.0582 0.0095 0.5661 0.051*
C27 0.11023 (11) 0.0792 (2) 0.49367 (9) 0.0342 (4)
H27A 0.0952 −0.0095 0.4690 0.041*
H27B 0.0721 0.1574 0.4805 0.041*
C28 0.24045 (12) 0.1834 (3) 0.24860 (9) 0.0390 (5)
C29 0.28044 (15) 0.0544 (3) 0.24101 (11) 0.0486 (6)
H29 0.3299 0.0391 0.2642 0.058*
C30 0.24893 (19) −0.0529 (4) 0.19986 (13) 0.0633 (8)
H30 0.2767 −0.1410 0.1956 0.076*
C31 0.1786 (2) −0.0315 (4) 0.16586 (13) 0.0688 (9)
H31 0.1574 −0.1042 0.1376 0.083*
C32 0.13863 (18) 0.0936 (4) 0.17229 (12) 0.0656 (9)
H32 0.0895 0.1075 0.1484 0.079*
C33 0.16873 (15) 0.2039 (3) 0.21393 (11) 0.0517 (6)
H33 0.1401 0.2909 0.2181 0.062*
C34 0.37129 (12) 0.3511 (2) 0.26195 (9) 0.0340 (4)
C35 0.43729 (13) 0.2691 (3) 0.27841 (10) 0.0406 (5)
H35 0.4403 0.2018 0.3112 0.049*
C36 0.49969 (15) 0.2849 (3) 0.24692 (12) 0.0476 (5)
H36 0.5451 0.2283 0.2584 0.057*
C37 0.49574 (15) 0.3824 (3) 0.19928 (11) 0.0476 (6)
H37 0.5386 0.3946 0.1785 0.057*
C38 0.42924 (15) 0.4617 (3) 0.18205 (10) 0.0473 (6)
H38 0.4262 0.5274 0.1487 0.057*
C39 0.36657 (14) 0.4471 (3) 0.21260 (9) 0.0414 (5)
H39 0.3208 0.5020 0.2001 0.050*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ru 0.02481 (7) 0.02548 (8) 0.02439 (7) −0.00146 (5) 0.00396 (5) −0.00187 (5)
Cl1 0.0356 (2) 0.0312 (2) 0.0362 (2) 0.00403 (18) 0.00831 (18) −0.00388 (18)
Cl2 0.0585 (3) 0.0544 (4) 0.0469 (3) 0.0194 (3) 0.0158 (3) 0.0190 (3)
P1 0.0252 (2) 0.0242 (2) 0.0253 (2) −0.00082 (16) 0.00303 (16) 0.00145 (17)
P2 0.0303 (2) 0.0367 (3) 0.0258 (2) −0.00082 (19) 0.00501 (17) 0.00290 (19)
N1 0.0287 (7) 0.0258 (8) 0.0260 (7) −0.0005 (6) 0.0047 (6) 0.0015 (6)
C1 0.0316 (9) 0.0404 (11) 0.0295 (9) −0.0002 (8) −0.0017 (7) −0.0072 (8)
C2 0.0314 (9) 0.0342 (10) 0.0304 (9) −0.0053 (7) 0.0022 (7) −0.0088 (8)
C3 0.0364 (10) 0.0293 (10) 0.0402 (10) −0.0059 (8) 0.0045 (8) −0.0070 (8)
C4 0.0398 (11) 0.0393 (12) 0.0377 (10) −0.0159 (9) 0.0072 (8) −0.0078 (9)
C5 0.0280 (9) 0.0460 (12) 0.0374 (10) −0.0074 (8) 0.0039 (7) −0.0114 (9)
C6 0.0464 (13) 0.0562 (15) 0.0382 (11) 0.0100 (11) −0.0093 (9) −0.0013 (11)
C7 0.0425 (11) 0.0486 (13) 0.0334 (10) −0.0063 (10) 0.0088 (8) −0.0122 (9)
C8 0.0512 (13) 0.0282 (11) 0.0642 (15) −0.0027 (9) 0.0063 (11) −0.0068 (10)
C9 0.0725 (18) 0.0477 (15) 0.0513 (14) −0.0288 (13) 0.0160 (13) −0.0018 (12)
C10 0.0295 (10) 0.082 (2) 0.0551 (14) −0.0038 (11) 0.0088 (10) −0.0193 (14)
C11 0.0322 (9) 0.0349 (10) 0.0242 (8) −0.0063 (7) 0.0022 (7) 0.0045 (7)
C12 0.0393 (10) 0.0334 (10) 0.0304 (9) −0.0065 (8) 0.0035 (7) 0.0017 (8)
C13 0.0545 (13) 0.0390 (12) 0.0350 (10) −0.0149 (10) 0.0053 (9) −0.0035 (9)
C14 0.0535 (14) 0.0559 (16) 0.0351 (11) −0.0231 (12) −0.0019 (10) −0.0003 (10)
C15 0.0356 (11) 0.0644 (17) 0.0415 (12) −0.0130 (11) −0.0074 (9) 0.0077 (11)
C16 0.0335 (10) 0.0469 (13) 0.0380 (10) −0.0047 (9) 0.0001 (8) 0.0036 (9)
C17 0.0249 (8) 0.0253 (9) 0.0429 (10) 0.0012 (7) 0.0065 (7) 0.0039 (8)
C18 0.0305 (9) 0.0307 (10) 0.0481 (11) 0.0006 (8) 0.0052 (8) −0.0040 (9)
C19 0.0386 (11) 0.0355 (12) 0.0700 (16) 0.0014 (9) 0.0102 (11) −0.0131 (11)
C20 0.0391 (12) 0.0288 (12) 0.106 (2) 0.0066 (9) 0.0150 (13) 0.0010 (13)
C21 0.0372 (12) 0.0409 (13) 0.091 (2) 0.0074 (10) 0.0150 (12) 0.0307 (14)
C22 0.0352 (10) 0.0412 (12) 0.0561 (13) 0.0039 (9) 0.0113 (9) 0.0173 (10)
C23 0.0408 (10) 0.0319 (10) 0.0337 (9) 0.0073 (8) 0.0079 (8) 0.0052 (8)
C24 0.0481 (12) 0.0440 (13) 0.0336 (10) 0.0051 (10) 0.0023 (9) 0.0113 (9)
C25 0.0590 (14) 0.0430 (13) 0.0344 (10) −0.0071 (11) 0.0076 (10) 0.0104 (9)
C26 0.0444 (12) 0.0479 (13) 0.0372 (11) −0.0064 (10) 0.0134 (9) 0.0075 (10)
C27 0.0329 (9) 0.0354 (11) 0.0346 (9) −0.0050 (8) 0.0067 (7) 0.0047 (8)
C28 0.0355 (10) 0.0565 (14) 0.0246 (9) −0.0111 (9) 0.0031 (7) 0.0030 (9)
C29 0.0499 (13) 0.0570 (16) 0.0392 (11) −0.0112 (11) 0.0078 (10) −0.0129 (11)
C30 0.0765 (19) 0.068 (2) 0.0471 (14) −0.0179 (16) 0.0154 (13) −0.0225 (14)
C31 0.083 (2) 0.080 (2) 0.0416 (14) −0.0289 (19) 0.0032 (14) −0.0154 (15)
C32 0.0586 (16) 0.094 (3) 0.0387 (13) −0.0312 (17) −0.0110 (11) 0.0103 (14)
C33 0.0443 (13) 0.0681 (18) 0.0399 (12) −0.0131 (12) −0.0024 (10) 0.0119 (12)
C34 0.0383 (10) 0.0373 (11) 0.0275 (9) −0.0066 (8) 0.0083 (7) −0.0019 (8)
C35 0.0414 (11) 0.0438 (12) 0.0393 (11) −0.0010 (9) 0.0148 (9) 0.0013 (9)
C36 0.0448 (12) 0.0498 (14) 0.0529 (13) −0.0012 (10) 0.0223 (10) 0.0002 (11)
C37 0.0573 (14) 0.0478 (14) 0.0438 (12) −0.0160 (11) 0.0269 (11) −0.0087 (10)
C38 0.0600 (15) 0.0535 (15) 0.0311 (10) −0.0140 (12) 0.0157 (10) −0.0004 (10)
C39 0.0492 (12) 0.0479 (13) 0.0270 (9) −0.0081 (10) 0.0054 (8) 0.0027 (9)

Geometric parameters (Å, °)

Ru—C1 2.251 (2) C15—H15 0.9500
Ru—C2 2.274 (2) C16—H16 0.9500
Ru—C3 2.209 (2) C17—C22 1.393 (3)
Ru—C4 2.240 (2) C17—C18 1.393 (3)
Ru—C5 2.250 (2) C18—C19 1.399 (3)
Ru—P1 2.3303 (5) C18—H18 0.9500
Ru—P2 2.2598 (5) C19—C20 1.367 (4)
Ru—Cl1 2.4587 (5) C19—H19 0.9500
P1—N1 1.7067 (16) C20—C21 1.382 (4)
P1—C11 1.844 (2) C20—H20 0.9500
P1—C17 1.837 (2) C21—C22 1.388 (4)
P2—Cl2 2.1066 (8) C21—H21 0.9500
P2—C28 1.846 (2) C22—H22 0.9500
P2—C34 1.837 (2) C23—C24 1.524 (3)
N1—C23 1.470 (2) C23—H23A 0.9900
N1—C27 1.474 (2) C23—H23B 0.9900
C1—C2 1.408 (3) C24—C25 1.525 (3)
C1—C5 1.449 (3) C24—H24A 0.9900
C1—C6 1.494 (3) C24—H24B 0.9900
C2—C3 1.438 (3) C25—C26 1.520 (4)
C2—C7 1.501 (3) C25—H25A 0.9900
C3—C4 1.438 (3) C25—H25B 0.9900
C3—C8 1.494 (3) C26—C27 1.524 (3)
C4—C5 1.409 (3) C26—H26A 0.9900
C4—C9 1.506 (3) C26—H26B 0.9900
C5—C10 1.502 (3) C27—H27A 0.9900
C6—H6A 0.9800 C27—H27B 0.9900
C6—H6B 0.9800 C28—C33 1.385 (3)
C6—H6C 0.9800 C28—C29 1.392 (4)
C7—H7A 0.9800 C29—C30 1.396 (4)
C7—H7B 0.9800 C29—H29 0.9500
C7—H7C 0.9800 C30—C31 1.359 (5)
C8—H8A 0.9800 C30—H30 0.9500
C8—H8B 0.9800 C31—C32 1.357 (5)
C8—H8C 0.9800 C31—H31 0.9500
C9—H9A 0.9800 C32—C33 1.414 (4)
C9—H9B 0.9800 C32—H32 0.9500
C9—H9C 0.9800 C33—H33 0.9500
C10—H10A 0.9800 C34—C35 1.379 (3)
C10—H10B 0.9800 C34—C39 1.400 (3)
C10—H10C 0.9800 C35—C36 1.397 (3)
C11—C16 1.394 (3) C35—H35 0.9500
C11—C12 1.397 (3) C36—C37 1.379 (4)
C12—C13 1.394 (3) C36—H36 0.9500
C12—H12 0.9500 C37—C38 1.375 (4)
C13—C14 1.381 (4) C37—H37 0.9500
C13—H13 0.9500 C38—C39 1.387 (3)
C14—C15 1.385 (4) C38—H38 0.9500
C14—H14 0.9500 C39—H39 0.9500
C15—C16 1.393 (3)
P1—Ru—P2 96.11 (2) C16—C11—P1 124.58 (17)
P1—Ru—Cl1 95.71 (2) C12—C11—P1 116.36 (15)
P2—Ru—Cl1 90.94 (2) C13—C12—C11 120.3 (2)
N1—P1—C11 101.58 (8) C13—C12—H12 119.8
N1—P1—C17 100.22 (8) C11—C12—H12 119.8
C11—P1—C17 102.46 (9) C14—C13—C12 120.4 (2)
Cl2—P2—C28 99.68 (8) C14—C13—H13 119.8
Cl2—P2—C34 98.23 (8) C12—C13—H13 119.8
C28—P2—C34 95.83 (9) C13—C14—C15 119.7 (2)
C3—Ru—C4 37.71 (8) C13—C14—H14 120.1
C3—Ru—C5 62.42 (8) C15—C14—H14 120.1
C4—Ru—C5 36.58 (9) C14—C15—C16 120.1 (2)
C3—Ru—C1 62.41 (8) C14—C15—H15 119.9
C4—Ru—C1 61.93 (8) C16—C15—H15 119.9
C5—Ru—C1 37.56 (8) C15—C16—C11 120.7 (2)
C3—Ru—P2 109.66 (6) C15—C16—H16 119.7
C4—Ru—P2 92.38 (6) C11—C16—H16 119.7
C5—Ru—P2 110.44 (6) C22—C17—C18 118.3 (2)
C1—Ru—P2 147.97 (6) C22—C17—P1 118.87 (17)
C3—Ru—C2 37.39 (8) C18—C17—P1 122.69 (16)
C4—Ru—C2 61.63 (8) C17—C18—C19 120.3 (2)
C5—Ru—C2 61.35 (7) C17—C18—H18 119.9
C1—Ru—C2 36.24 (7) C19—C18—H18 119.9
P2—Ru—C2 147.03 (6) C20—C19—C18 120.5 (3)
C3—Ru—P1 102.36 (6) C20—C19—H19 119.7
C4—Ru—P1 138.97 (6) C18—C19—H19 119.7
C5—Ru—P1 152.42 (5) C19—C20—C21 119.9 (2)
C1—Ru—P1 115.77 (6) C19—C20—H20 120.1
C2—Ru—P1 92.32 (5) C21—C20—H20 120.1
C3—Ru—Cl1 150.65 (6) C20—C21—C22 120.1 (2)
C4—Ru—Cl1 124.27 (6) C20—C21—H21 119.9
C5—Ru—Cl1 91.30 (6) C22—C21—H21 119.9
C1—Ru—Cl1 88.98 (6) C21—C22—C17 120.9 (2)
C2—Ru—Cl1 119.91 (6) C21—C22—H22 119.6
N1—P1—Ru 115.71 (6) C17—C22—H22 119.6
C17—P1—Ru 112.94 (6) N1—C23—C24 110.12 (17)
C11—P1—Ru 121.08 (6) N1—C23—H23A 109.6
C34—P2—Ru 116.99 (7) C24—C23—H23A 109.6
C28—P2—Ru 125.98 (7) N1—C23—H23B 109.6
Cl2—P2—Ru 115.10 (3) C24—C23—H23B 109.6
C2—C1—C5 107.78 (19) H23A—C23—H23B 108.1
C2—C1—C6 127.5 (2) C23—C24—C25 111.50 (19)
C5—C1—C6 124.4 (2) C23—C24—H24A 109.3
C2—C1—Ru 72.77 (11) C25—C24—H24A 109.3
C5—C1—Ru 71.18 (11) C23—C24—H24B 109.3
C6—C1—Ru 126.36 (16) C25—C24—H24B 109.3
C1—C2—C3 108.58 (18) H24A—C24—H24B 108.0
C1—C2—C7 124.4 (2) C26—C25—C24 110.18 (19)
C3—C2—C7 126.2 (2) C26—C25—H25A 109.6
C1—C2—Ru 70.99 (11) C24—C25—H25A 109.6
C3—C2—Ru 68.85 (11) C26—C25—H25B 109.6
C7—C2—Ru 134.38 (14) C24—C25—H25B 109.6
C4—C3—C2 107.00 (19) H25A—C25—H25B 108.1
C4—C3—C8 124.1 (2) C25—C26—C27 110.92 (19)
C2—C3—C8 127.1 (2) C25—C26—H26A 109.5
C4—C3—Ru 72.30 (12) C27—C26—H26A 109.5
C2—C3—Ru 73.76 (11) C25—C26—H26B 109.5
C8—C3—Ru 131.17 (16) C27—C26—H26B 109.5
C5—C4—C3 108.50 (19) H26A—C26—H26B 108.0
C5—C4—C9 126.9 (2) N1—C27—C26 110.32 (17)
C3—C4—C9 123.9 (2) N1—C27—H27A 109.6
C5—C4—Ru 72.12 (12) C26—C27—H27A 109.6
C3—C4—Ru 69.99 (11) N1—C27—H27B 109.6
C9—C4—Ru 130.94 (16) C26—C27—H27B 109.6
C4—C5—C1 107.90 (18) H27A—C27—H27B 108.1
C4—C5—C10 128.9 (2) C33—C28—C29 118.5 (2)
C1—C5—C10 122.4 (2) C33—C28—P2 125.3 (2)
C4—C5—Ru 71.31 (11) C29—C28—P2 116.14 (17)
C1—C5—Ru 71.26 (11) C28—C29—C30 121.0 (3)
C10—C5—Ru 130.95 (16) C28—C29—H29 119.5
C1—C6—H6A 109.5 C30—C29—H29 119.5
C1—C6—H6B 109.5 C31—C30—C29 120.1 (3)
H6A—C6—H6B 109.5 C31—C30—H30 120.0
C1—C6—H6C 109.5 C29—C30—H30 120.0
H6A—C6—H6C 109.5 C32—C31—C30 120.0 (3)
H6B—C6—H6C 109.5 C32—C31—H31 120.0
C2—C7—H7A 109.5 C30—C31—H31 120.0
C2—C7—H7B 109.5 C31—C32—C33 121.2 (3)
H7A—C7—H7B 109.5 C31—C32—H32 119.4
C2—C7—H7C 109.5 C33—C32—H32 119.4
H7A—C7—H7C 109.5 C28—C33—C32 119.2 (3)
H7B—C7—H7C 109.5 C28—C33—H33 120.4
C3—C8—H8A 109.5 C32—C33—H33 120.4
C3—C8—H8B 109.5 C35—C34—C39 119.6 (2)
H8A—C8—H8B 109.5 C35—C34—P2 117.25 (16)
C3—C8—H8C 109.5 C39—C34—P2 123.04 (17)
H8A—C8—H8C 109.5 C34—C35—C36 120.1 (2)
H8B—C8—H8C 109.5 C34—C35—H35 120.0
C4—C9—H9A 109.5 C36—C35—H35 120.0
C4—C9—H9B 109.5 C37—C36—C35 120.3 (2)
H9A—C9—H9B 109.5 C37—C36—H36 119.8
C4—C9—H9C 109.5 C35—C36—H36 119.8
H9A—C9—H9C 109.5 C38—C37—C36 119.5 (2)
H9B—C9—H9C 109.5 C38—C37—H37 120.2
C5—C10—H10A 109.5 C36—C37—H37 120.2
C5—C10—H10B 109.5 C37—C38—C39 121.0 (2)
H10A—C10—H10B 109.5 C37—C38—H38 119.5
C5—C10—H10C 109.5 C39—C38—H38 119.5
H10A—C10—H10C 109.5 C38—C39—C34 119.5 (2)
H10B—C10—H10C 109.5 C38—C39—H39 120.3
C16—C11—C12 118.64 (19) C34—C39—H39 120.3
C3—Ru—P1—N1 −90.96 (9) C2—C3—C4—C9 −167.3 (2)
C4—Ru—P1—N1 −101.90 (11) C8—C3—C4—C9 −1.7 (3)
C5—Ru—P1—N1 −38.14 (16) Ru—C3—C4—C9 126.6 (2)
C1—Ru—P1—N1 −25.85 (9) C2—C3—C4—Ru 66.14 (13)
P2—Ru—P1—N1 157.33 (6) C8—C3—C4—Ru −128.2 (2)
C2—Ru—P1—N1 −54.59 (8) C3—Ru—C4—C5 118.19 (18)
Cl1—Ru—P1—N1 65.77 (6) C1—Ru—C4—C5 37.90 (12)
C3—Ru—P1—C17 23.72 (9) P2—Ru—C4—C5 −122.04 (12)
C4—Ru—P1—C17 12.79 (12) C2—Ru—C4—C5 79.24 (13)
C5—Ru—P1—C17 76.55 (16) P1—Ru—C4—C5 135.82 (11)
C1—Ru—P1—C17 88.84 (10) Cl1—Ru—C4—C5 −29.28 (14)
P2—Ru—P1—C17 −87.98 (7) C5—Ru—C4—C3 −118.19 (18)
C2—Ru—P1—C17 60.10 (9) C1—Ru—C4—C3 −80.29 (14)
Cl1—Ru—P1—C17 −179.54 (7) P2—Ru—C4—C3 119.77 (12)
C3—Ru—P1—C11 145.64 (10) C2—Ru—C4—C3 −38.95 (12)
C4—Ru—P1—C11 134.71 (12) P1—Ru—C4—C3 17.63 (17)
C5—Ru—P1—C11 −161.54 (16) Cl1—Ru—C4—C3 −147.47 (11)
C1—Ru—P1—C11 −149.24 (10) C3—Ru—C4—C9 −118.1 (3)
P2—Ru—P1—C11 33.93 (8) C5—Ru—C4—C9 123.8 (3)
C2—Ru—P1—C11 −177.99 (10) C1—Ru—C4—C9 161.7 (3)
Cl1—Ru—P1—C11 −57.62 (8) P2—Ru—C4—C9 1.7 (2)
C3—Ru—P2—C34 80.02 (10) C2—Ru—C4—C9 −157.0 (3)
C4—Ru—P2—C34 45.70 (10) P1—Ru—C4—C9 −100.4 (2)
C5—Ru—P2—C34 13.08 (11) Cl1—Ru—C4—C9 94.5 (3)
C1—Ru—P2—C34 10.91 (14) C3—C4—C5—C1 −1.4 (2)
C2—Ru—P2—C34 81.63 (13) C9—C4—C5—C1 169.5 (2)
P1—Ru—P2—C34 −174.49 (8) Ru—C4—C5—C1 −62.25 (14)
Cl1—Ru—P2—C34 −78.66 (8) C3—C4—C5—C10 −171.1 (2)
C3—Ru—P2—C28 −159.27 (11) C9—C4—C5—C10 −0.2 (4)
C4—Ru—P2—C28 166.41 (11) Ru—C4—C5—C10 128.0 (2)
C5—Ru—P2—C28 133.79 (11) C3—C4—C5—Ru 60.84 (14)
C1—Ru—P2—C28 131.61 (14) C9—C4—C5—Ru −128.2 (2)
C2—Ru—P2—C28 −157.67 (13) C2—C1—C5—C4 −1.7 (2)
P1—Ru—P2—C28 −53.79 (10) C6—C1—C5—C4 −176.0 (2)
Cl1—Ru—P2—C28 42.05 (10) Ru—C1—C5—C4 62.28 (14)
C3—Ru—P2—Cl2 −34.56 (7) C2—C1—C5—C10 168.8 (2)
C4—Ru—P2—Cl2 −68.88 (7) C6—C1—C5—C10 −5.5 (3)
C5—Ru—P2—Cl2 −101.50 (7) Ru—C1—C5—C10 −127.2 (2)
C1—Ru—P2—Cl2 −103.67 (11) C2—C1—C5—Ru −64.02 (14)
C2—Ru—P2—Cl2 −32.95 (10) C6—C1—C5—Ru 121.7 (2)
P1—Ru—P2—Cl2 70.92 (3) C3—Ru—C5—C4 −37.47 (12)
Cl1—Ru—P2—Cl2 166.76 (3) C1—Ru—C5—C4 −117.22 (18)
C17—P1—N1—C23 −161.77 (15) P2—Ru—C5—C4 64.67 (12)
C11—P1—N1—C23 93.12 (16) C2—Ru—C5—C4 −80.07 (13)
Ru—P1—N1—C23 −40.00 (16) P1—Ru—C5—C4 −98.89 (17)
C17—P1—N1—C27 62.39 (16) Cl1—Ru—C5—C4 156.15 (12)
C11—P1—N1—C27 −42.73 (16) C3—Ru—C5—C1 79.75 (13)
Ru—P1—N1—C27 −175.85 (12) C4—Ru—C5—C1 117.22 (18)
C3—Ru—C1—C2 36.55 (12) P2—Ru—C5—C1 −178.11 (11)
C4—Ru—C1—C2 79.42 (14) C2—Ru—C5—C1 37.14 (12)
C5—Ru—C1—C2 116.33 (19) P1—Ru—C5—C1 18.3 (2)
P2—Ru—C1—C2 119.67 (12) Cl1—Ru—C5—C1 −86.63 (12)
P1—Ru—C1—C2 −54.36 (13) C3—Ru—C5—C10 −163.2 (3)
Cl1—Ru—C1—C2 −150.20 (12) C4—Ru—C5—C10 −125.7 (3)
C3—Ru—C1—C5 −79.78 (14) C1—Ru—C5—C10 117.1 (3)
C4—Ru—C1—C5 −36.91 (13) P2—Ru—C5—C10 −61.1 (3)
P2—Ru—C1—C5 3.34 (19) C2—Ru—C5—C10 154.2 (3)
C2—Ru—C1—C5 −116.33 (19) P1—Ru—C5—C10 135.4 (2)
P1—Ru—C1—C5 −170.69 (11) Cl1—Ru—C5—C10 30.4 (2)
Cl1—Ru—C1—C5 93.46 (12) N1—P1—C11—C16 92.25 (18)
C3—Ru—C1—C6 160.9 (2) C17—P1—C11—C16 −11.1 (2)
C4—Ru—C1—C6 −156.3 (2) Ru—P1—C11—C16 −137.91 (16)
C5—Ru—C1—C6 −119.4 (2) N1—P1—C11—C12 −80.18 (16)
P2—Ru—C1—C6 −116.03 (19) C17—P1—C11—C12 176.48 (15)
C2—Ru—C1—C6 124.3 (3) Ru—P1—C11—C12 49.67 (17)
P1—Ru—C1—C6 69.9 (2) C16—C11—C12—C13 1.4 (3)
Cl1—Ru—C1—C6 −25.90 (19) P1—C11—C12—C13 174.28 (16)
C5—C1—C2—C3 4.2 (2) C11—C12—C13—C14 −0.4 (3)
C6—C1—C2—C3 178.2 (2) C12—C13—C14—C15 −0.6 (3)
Ru—C1—C2—C3 −58.77 (14) C13—C14—C15—C16 0.6 (4)
C5—C1—C2—C7 −165.66 (19) C14—C15—C16—C11 0.3 (4)
C6—C1—C2—C7 8.4 (3) C12—C11—C16—C15 −1.3 (3)
Ru—C1—C2—C7 131.4 (2) P1—C11—C16—C15 −173.59 (17)
C5—C1—C2—Ru 62.99 (13) N1—P1—C17—C22 −162.32 (17)
C6—C1—C2—Ru −123.0 (2) C11—P1—C17—C22 −57.91 (18)
C3—Ru—C2—C1 −119.64 (18) Ru—P1—C17—C22 73.97 (17)
C4—Ru—C2—C1 −80.35 (14) N1—P1—C17—C18 21.93 (18)
C5—Ru—C2—C1 −38.50 (13) C11—P1—C17—C18 126.33 (17)
P2—Ru—C2—C1 −122.13 (13) Ru—P1—C17—C18 −101.79 (16)
P1—Ru—C2—C1 132.90 (12) C22—C17—C18—C19 −1.3 (3)
Cl1—Ru—C2—C1 34.97 (14) P1—C17—C18—C19 174.52 (17)
C4—Ru—C2—C3 39.29 (12) C17—C18—C19—C20 0.3 (3)
C5—Ru—C2—C3 81.14 (13) C18—C19—C20—C21 0.9 (4)
C1—Ru—C2—C3 119.64 (18) C19—C20—C21—C22 −1.1 (4)
P2—Ru—C2—C3 −2.49 (17) C20—C21—C22—C17 0.1 (4)
P1—Ru—C2—C3 −107.45 (11) C18—C17—C22—C21 1.1 (3)
Cl1—Ru—C2—C3 154.61 (10) P1—C17—C22—C21 −174.87 (18)
C3—Ru—C2—C7 120.4 (3) C27—N1—C23—C24 −61.0 (2)
C4—Ru—C2—C7 159.7 (3) P1—N1—C23—C24 160.01 (15)
C5—Ru—C2—C7 −158.4 (3) N1—C23—C24—C25 56.8 (3)
C1—Ru—C2—C7 −119.9 (3) C23—C24—C25—C26 −52.6 (3)
P2—Ru—C2—C7 117.9 (2) C24—C25—C26—C27 52.8 (3)
P1—Ru—C2—C7 13.0 (2) C23—N1—C27—C26 61.7 (2)
Cl1—Ru—C2—C7 −85.0 (2) P1—N1—C27—C26 −159.53 (15)
C1—C2—C3—C4 −5.0 (2) C25—C26—C27—N1 −57.6 (3)
C7—C2—C3—C4 164.60 (19) C34—P2—C28—C33 −115.1 (2)
Ru—C2—C3—C4 −65.15 (14) Cl2—P2—C28—C33 −15.7 (2)
C1—C2—C3—C8 −170.2 (2) Ru—P2—C28—C33 115.29 (19)
C7—C2—C3—C8 −0.5 (3) C34—P2—C28—C29 62.84 (19)
Ru—C2—C3—C8 129.7 (2) Cl2—P2—C28—C29 162.24 (16)
C1—C2—C3—Ru 60.10 (14) Ru—P2—C28—C29 −66.80 (19)
C7—C2—C3—Ru −130.3 (2) C33—C28—C29—C30 −0.6 (4)
C5—Ru—C3—C4 36.34 (13) P2—C28—C29—C30 −178.6 (2)
C1—Ru—C3—C4 78.93 (14) C28—C29—C30—C31 0.9 (4)
P2—Ru—C3—C4 −67.07 (13) C29—C30—C31—C32 −0.6 (5)
C2—Ru—C3—C4 114.37 (18) C30—C31—C32—C33 0.1 (5)
P1—Ru—C3—C4 −168.26 (12) C29—C28—C33—C32 0.1 (3)
Cl1—Ru—C3—C4 65.05 (18) P2—C28—C33—C32 177.94 (19)
C4—Ru—C3—C2 −114.37 (18) C31—C32—C33—C28 0.2 (4)
C5—Ru—C3—C2 −78.03 (13) C28—P2—C34—C35 −94.28 (19)
C1—Ru—C3—C2 −35.44 (11) Cl2—P2—C34—C35 165.03 (17)
P2—Ru—C3—C2 178.56 (10) Ru—P2—C34—C35 41.3 (2)
P1—Ru—C3—C2 77.37 (11) C28—P2—C34—C39 81.0 (2)
Cl1—Ru—C3—C2 −49.32 (18) Cl2—P2—C34—C39 −19.66 (19)
C4—Ru—C3—C8 120.2 (3) Ru—P2—C34—C39 −143.34 (16)
C5—Ru—C3—C8 156.5 (2) C39—C34—C35—C36 1.6 (4)
C1—Ru—C3—C8 −160.9 (2) P2—C34—C35—C36 177.13 (19)
P2—Ru—C3—C8 53.1 (2) C34—C35—C36—C37 0.0 (4)
C2—Ru—C3—C8 −125.4 (3) C35—C36—C37—C38 −1.4 (4)
P1—Ru—C3—C8 −48.1 (2) C36—C37—C38—C39 1.2 (4)
Cl1—Ru—C3—C8 −174.74 (16) C37—C38—C39—C34 0.5 (4)
C2—C3—C4—C5 3.9 (2) C35—C34—C39—C38 −1.9 (3)
C8—C3—C4—C5 169.6 (2) P2—C34—C39—C38 −177.08 (18)
Ru—C3—C4—C5 −62.19 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C6—H6B···Cl1 0.98 2.71 3.426 (2) 131
C12—H12···Cl1 0.95 2.68 3.559 (2) 154
C18—H18···N1 0.95 2.56 2.984 (3) 107
C22—H22···Cl2 0.95 2.66 3.391 (2) 135
C23—H23A···Cl1 0.99 2.71 3.432 (2) 130
C29—H29···Cl1 0.95 2.78 3.414 (3) 125
C33—H33···Cl2 0.95 2.68 3.175 (3) 113
C37—H37···Cl1i 0.95 2.81 3.716 (2) 159
C39—H39···Cl2 0.95 2.56 3.088 (2) 115

Symmetry codes: (i) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2223).

References

  1. Bruker (2003). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Liu, S.-T., Huo, D.-R., Lin, T.-C., Cheng, M.-C. & Peng, S.-M. (1995). Organometallics, 14, 1529–1532.
  3. Oshima, N., Suzuki, H. & Moro-oka, Y. (1984). Chem. Lett.13, 1161–1164.
  4. Pavlik, S., Jantscher, F., Dazinger, G., Mereiter, K. & Kirchner, K. (2006). Eur. J. Inorg. Chem. pp. 1006–1021.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Torres-Lubia, R., Rosales-Hoz, M. J., Arif, A. M., Ernst, R. D. & Paz-Sandoval, M. A. (1999). J. Organomet. Chem.585, 68–82.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809027676/gk2223sup1.cif

e-65-0m941-sup1.cif (36.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027676/gk2223Isup2.hkl

e-65-0m941-Isup2.hkl (497KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES