Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 31;65(Pt 8):o2045–o2046. doi: 10.1107/S1600536809029547

2-[(E)-2-(1H-Indol-3-yl)ethen­yl]-1-methyl­pyridinium 4-chloro­benzene­sulfonate1

Thawanrat Kobkeatthawin a, Suchada Chantrapromma a,*, Hoong-Kun Fun b,
PMCID: PMC2977504  PMID: 21583709

Abstract

In the title compound, C16H15N2 +·C6H4ClO3S, the cation exists in an E configuration with respect to the central C=C bond and is approximately planar, with a dihedral angle of 2.95 (5)° between the pyridinium and indole rings. The mean plane of the π-conjugated system of the cation and the benzene ring of the anion are inclined to each other at a dihedral angle of 69.65 (4)°. In the crystal packing, the cations are stacked in an anti­parallel manner along the a axis, resulting in a π–π inter­action with a centroid–centroid distance of 3.5889 (7) Å. The anions are linked into a chain along the a axis by weak C—H⋯O inter­actions. The cations are linked with the anions into a three-dimensional network by N—H⋯O hydrogen bonds and weak C—H⋯O inter­actions. There are also short O⋯Cl [3.1272 (10) Å] and C⋯O [3.1432 (14)–3.3753 (14) Å] contacts. The crystal structure is further stabilized by C—H⋯π inter­actions.

Related literature

For bond-length data, see: Allen et al. (1987). For background to non-linear optical materials research, see: Ogawa et al. (2008); Weir et al. (2003); Yang et al. (2007). For related structures, see: Chanawanno et al. (2008); Chantrapromma et al. (2006, 2007, 2008, 2009). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-65-o2045-scheme1.jpg

Experimental

Crystal data

  • C16H15N2 +·C6H4ClO3S

  • M r = 426.91

  • Monoclinic, Inline graphic

  • a = 7.4891 (1) Å

  • b = 13.1650 (1) Å

  • c = 20.3428 (2) Å

  • β = 98.801 (1)°

  • V = 1982.06 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.33 mm−1

  • T = 100 K

  • 0.34 × 0.28 × 0.19 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.899, T max = 0.942

  • 39049 measured reflections

  • 8706 independent reflections

  • 7032 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.110

  • S = 1.05

  • 8706 reflections

  • 267 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.88 e Å−3

  • Δρmin = −0.41 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029547/is2441sup1.cif

e-65-o2045-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029547/is2441Isup2.hkl

e-65-o2045-Isup2.hkl (425.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1N2⋯O1i 0.891 (18) 1.864 (19) 2.7541 (14) 176.2 (18)
C1—H1A⋯O3 0.93 2.53 3.2380 (14) 133
C7—H7A⋯O2ii 0.93 2.59 3.3067 (14) 134
C14—H14A⋯O2iii 0.93 2.52 3.2605 (14) 137
C16—H16C⋯O2iii 0.96 2.37 3.2645 (15) 156
C19—H19A⋯O1iv 0.93 2.30 3.1432 (14) 151
C21—H21A⋯O3iii 0.93 2.55 3.1885 (14) 127
C4—H4ACg3v 0.93 2.85 3.5956 (11) 138
C16—H16ACg1vi 0.96 2.72 3.4622 (12) 134
C16—H16BCg3 0.96 2.67 3.5533 (11) 153

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic. Cg1 and Cg3 are the centroids of the N2/C8–C9/C10/C15 and C10–C15 rings, respectively.

Acknowledgments

The authors thank the Prince of Songkla University for financial support through the Crystal Materials Research Unit. The authors also thank Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012.

supplementary crystallographic information

Comment

Molecules with extensive conjugated π systems are attractive candidates for non-linear optical (NLO) studies (Ogawa et al., 2008; Weir et al., 2003; Yang et al., 2007). However a molecule with extensive conjugated π systems does not always exhibit second order NLO properties unless the alignment of these molecules is in a noncentrosymmetric space group in the crystal. In our NLO research we have solved a number of crystal structures of pyridinium salt derivatives (Chanawanno et al., 2008; Chantrapromma et al., 2006, 2007, 2008, 2009) which we attempt to examine in details of the relationship between their crystal packings and the NLO properties. We herein report the crystal structure of the title compound (I) which is iso-structure and iso-packing with 2-[(E)-2(1H-Indol-3-yl)ethenyl]-1-methylpyridinium 4-bromobenzenesulfonate (Chantrapromma et al., 2009).

Figure 1 shows the asymmetric unit of (I) which consists of a C16H15N2+ cation and a C6H4ClO3S- anion. The cation exists in the E configuration with respect to the C6═C7 double bond [1.3567 (14) Å] and is essentially planar with the dihedral angle between the pyridinium and indole rings being 2.96 (5)° and the torsion angles C4–C5–C6–C7 = -1.21 (17)° and C6–C7–C8–C15 = -176.40 (11)°. The indole ring system is planar with the maximum deviation of 0.014 (1) Å for atom C8. The mean planes through π-conjugated systems of the cation and the anion are inclined to each other with an interplanar angle of 69.65 (4)°. The methyl group is co-planar with the attached N1/C1–C5 ring. The bond lengths in (I) are in normal ranges (Allen et al., 1987) and are comparable with those in related structures (Chanawanno et al., 2008; Chantrapromma et al., 2006, 2007, 2008, 2009).

In the crystal packing (Fig. 2), all O atoms of the sulfonate group are involved in weak C—H···O interactions (Table 1). The arrangement of the cations and anions is interesting (Fig. 2). The cations are stacked in an antiparallel manner along the a axis resulting in a π–π interaction with the distance Cg1···Cg2 = 3.5889 (7) Å (symmetry code: -x, -y, -z). The anions are linked together into chains by weak C—H···O interactions along the same direction. The cations are linked to the anions into a three dimensional network by N—H···O hydrogen bonds and weak C—H···O interactions (Table 1). There are O···Cl [3.1272 (10) Å] and C···O [3.1432 (14)–3.3753 (14) Å] short contacts. The crystal structure is further stabilized by C—H···π interactions (Table 1); Cg1, Cg2 and Cg3 are the centroids of the N2/C8–C9/C10/C15, N1/C1–C5 and C10–C15 rings, respectively.

Experimental

The title compound was synthesized by disolving silver(I) p-chlorobenzenesulfonate (Chantrapromma et al., 2006) (0.20 g, 0.67 mmol) in methanol (20 ml) which upon heating was added a solution of 2-[(E)-2-(1H-Indol-3-yl)ethenyl]-1-methylpyridinium iodide (Chantrapromma et al., 2009) (0.24 g, 0.67 mmol) in hot methanol (30 ml). The mixture turned yellow and cloudy immediately. After stirring for 0.5 hr, the precipitate of silver iodide which formed was filtered and the filtrate was evaporated to give an orange gum. Yellow block-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from methanol by slow evaporation of the solvent at room temperature after a few weeks (m.p. 457-459 K).

Refinement

H atom attached to N was located from the difference map and refined isotropically. The remaining H atoms were placed in calculated positions with d(C-H) = 0.93 Å, Uiso(H) = 1.2Ueq(C) for aromatic and CH and 0.96 Å, Uiso(H) = 1.5Ueq(C) for CH3 atoms. A rotating group model was used for the methyl groups. The highest residual electron density peak is located at 0.59 Å from S1 and the deepest hole is located at 0.65 Å from S1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with 50% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed down the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C16H15N2+·C6H4ClO3S F(000) = 888
Mr = 426.91 Dx = 1.431 Mg m3
Monoclinic, P21/c Melting point = 457–459 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 7.4891 (1) Å Cell parameters from 8706 reflections
b = 13.1650 (1) Å θ = 1.8–35.0°
c = 20.3428 (2) Å µ = 0.33 mm1
β = 98.801 (1)° T = 100 K
V = 1982.06 (4) Å3 Block, yellow
Z = 4 0.34 × 0.28 × 0.19 mm

Data collection

Bruker APEXII CCD area-detector diffractometer 8706 independent reflections
Radiation source: sealed tube 7032 reflections with I > 2σ(I)
graphite Rint = 0.034
φ and ω scans θmax = 35.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −12→12
Tmin = 0.899, Tmax = 0.942 k = −21→16
39049 measured reflections l = −32→32

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0515P)2 + 0.614P] where P = (Fo2 + 2Fc2)/3
8706 reflections (Δ/σ)max = 0.001
267 parameters Δρmax = 0.88 e Å3
0 restraints Δρmin = −0.41 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.55212 (4) 0.54773 (2) 0.181673 (15) 0.02519 (7)
S1 −0.02841 (3) 0.876545 (19) 0.222068 (12) 0.01458 (6)
O1 −0.17202 (11) 0.82466 (7) 0.24875 (5) 0.02482 (17)
O2 −0.08774 (12) 0.92193 (7) 0.15750 (4) 0.02477 (17)
O3 0.07291 (12) 0.94718 (7) 0.26916 (5) 0.02529 (18)
N1 0.23969 (12) 0.71072 (7) 0.41746 (4) 0.01633 (15)
N2 0.22567 (13) 0.29591 (8) 0.64537 (5) 0.02030 (17)
H1N2 0.208 (2) 0.2594 (15) 0.6807 (9) 0.037 (5)*
C1 0.21569 (15) 0.80936 (9) 0.39837 (5) 0.02025 (19)
H1A 0.2359 0.8283 0.3561 0.024*
C2 0.16256 (16) 0.88143 (9) 0.43974 (6) 0.0221 (2)
H2A 0.1455 0.9485 0.4259 0.026*
C3 0.13459 (16) 0.85187 (9) 0.50329 (6) 0.0224 (2)
H3A 0.1008 0.8997 0.5327 0.027*
C4 0.15718 (15) 0.75206 (9) 0.52220 (5) 0.02003 (19)
H4A 0.1374 0.7328 0.5645 0.024*
C5 0.20982 (14) 0.67805 (8) 0.47878 (5) 0.01632 (17)
C6 0.23338 (15) 0.57173 (8) 0.49536 (5) 0.01806 (18)
H6A 0.2706 0.5282 0.4641 0.022*
C7 0.20377 (14) 0.53228 (8) 0.55435 (5) 0.01702 (17)
H7A 0.1680 0.5777 0.5848 0.020*
C8 0.22168 (14) 0.42820 (8) 0.57473 (5) 0.01636 (17)
C9 0.19715 (15) 0.39707 (9) 0.63827 (5) 0.01877 (18)
H9A 0.1657 0.4398 0.6711 0.023*
C10 0.26815 (14) 0.25655 (8) 0.58670 (5) 0.01868 (18)
C11 0.30803 (16) 0.15650 (9) 0.57189 (6) 0.0239 (2)
H11A 0.3097 0.1050 0.6033 0.029*
C12 0.34503 (17) 0.13712 (10) 0.50843 (7) 0.0270 (2)
H12A 0.3731 0.0713 0.4969 0.032*
C13 0.34089 (17) 0.21514 (10) 0.46122 (6) 0.0267 (2)
H13A 0.3646 0.1996 0.4188 0.032*
C14 0.30232 (16) 0.31472 (9) 0.47616 (5) 0.0216 (2)
H14A 0.3001 0.3656 0.4443 0.026*
C15 0.26664 (14) 0.33719 (8) 0.54046 (5) 0.01706 (17)
C16 0.29792 (15) 0.63874 (9) 0.36910 (5) 0.01985 (19)
H16A 0.4080 0.6061 0.3886 0.030*
H16B 0.3178 0.6749 0.3299 0.030*
H16C 0.2058 0.5884 0.3574 0.030*
C17 0.13112 (13) 0.78168 (8) 0.20886 (5) 0.01531 (17)
C18 0.31082 (14) 0.81082 (8) 0.20881 (5) 0.01712 (17)
H18A 0.3442 0.8785 0.2155 0.021*
C19 0.43933 (14) 0.73877 (8) 0.19873 (5) 0.01824 (18)
H19A 0.5587 0.7577 0.1981 0.022*
C20 0.38669 (15) 0.63786 (8) 0.18961 (5) 0.01780 (18)
C21 0.20887 (15) 0.60731 (8) 0.18910 (5) 0.01905 (19)
H21A 0.1764 0.5395 0.1826 0.023*
C22 0.07961 (14) 0.68040 (8) 0.19856 (5) 0.01777 (18)
H22A −0.0403 0.6615 0.1980 0.021*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.02721 (14) 0.01858 (13) 0.03119 (14) 0.00623 (10) 0.00897 (10) 0.00183 (10)
S1 0.01485 (10) 0.01459 (11) 0.01460 (10) 0.00137 (8) 0.00322 (7) 0.00272 (8)
O1 0.0196 (4) 0.0241 (4) 0.0330 (4) −0.0001 (3) 0.0107 (3) 0.0088 (3)
O2 0.0280 (4) 0.0255 (4) 0.0211 (4) 0.0071 (3) 0.0046 (3) 0.0085 (3)
O3 0.0208 (4) 0.0233 (4) 0.0310 (4) 0.0017 (3) 0.0015 (3) −0.0100 (3)
N1 0.0178 (4) 0.0155 (4) 0.0150 (3) −0.0022 (3) 0.0004 (3) 0.0002 (3)
N2 0.0231 (4) 0.0187 (4) 0.0190 (4) −0.0001 (3) 0.0028 (3) 0.0044 (3)
C1 0.0227 (5) 0.0176 (5) 0.0196 (4) −0.0029 (4) 0.0003 (4) 0.0032 (4)
C2 0.0240 (5) 0.0156 (5) 0.0254 (5) 0.0000 (4) 0.0000 (4) 0.0021 (4)
C3 0.0244 (5) 0.0175 (5) 0.0247 (5) 0.0024 (4) 0.0019 (4) −0.0031 (4)
C4 0.0238 (5) 0.0181 (5) 0.0182 (4) 0.0022 (4) 0.0034 (4) −0.0008 (4)
C5 0.0177 (4) 0.0162 (4) 0.0147 (4) −0.0002 (3) 0.0015 (3) 0.0006 (3)
C6 0.0227 (5) 0.0150 (4) 0.0169 (4) 0.0016 (4) 0.0045 (3) 0.0001 (3)
C7 0.0190 (4) 0.0159 (4) 0.0159 (4) 0.0005 (3) 0.0022 (3) 0.0000 (3)
C8 0.0179 (4) 0.0157 (4) 0.0153 (4) 0.0004 (3) 0.0019 (3) 0.0012 (3)
C9 0.0201 (4) 0.0190 (5) 0.0172 (4) 0.0010 (4) 0.0029 (3) 0.0014 (3)
C10 0.0171 (4) 0.0167 (5) 0.0217 (4) 0.0002 (3) 0.0010 (3) 0.0016 (4)
C11 0.0210 (5) 0.0156 (5) 0.0338 (6) 0.0004 (4) 0.0006 (4) 0.0016 (4)
C12 0.0237 (5) 0.0184 (5) 0.0384 (6) 0.0017 (4) 0.0032 (5) −0.0064 (5)
C13 0.0275 (6) 0.0241 (6) 0.0290 (5) −0.0001 (4) 0.0063 (4) −0.0089 (4)
C14 0.0248 (5) 0.0203 (5) 0.0200 (4) −0.0011 (4) 0.0043 (4) −0.0030 (4)
C15 0.0168 (4) 0.0162 (5) 0.0178 (4) 0.0005 (3) 0.0015 (3) −0.0002 (3)
C16 0.0238 (5) 0.0205 (5) 0.0155 (4) −0.0021 (4) 0.0036 (3) −0.0015 (3)
C17 0.0163 (4) 0.0144 (4) 0.0151 (4) −0.0010 (3) 0.0019 (3) 0.0016 (3)
C18 0.0177 (4) 0.0146 (4) 0.0190 (4) −0.0014 (3) 0.0027 (3) −0.0003 (3)
C19 0.0167 (4) 0.0172 (5) 0.0208 (4) −0.0007 (3) 0.0028 (3) −0.0002 (3)
C20 0.0209 (4) 0.0155 (4) 0.0174 (4) 0.0029 (4) 0.0041 (3) 0.0007 (3)
C21 0.0240 (5) 0.0133 (4) 0.0205 (4) −0.0016 (4) 0.0053 (4) −0.0005 (3)
C22 0.0191 (4) 0.0154 (4) 0.0189 (4) −0.0038 (3) 0.0032 (3) 0.0002 (3)

Geometric parameters (Å, °)

Cl1—C20 1.7407 (11) C8—C15 1.4515 (15)
S1—O1 1.4480 (8) C9—H9A 0.9300
S1—O2 1.4495 (8) C10—C11 1.3937 (16)
S1—O3 1.4615 (9) C10—C15 1.4172 (15)
S1—C17 1.7769 (11) C11—C12 1.3848 (19)
N1—C1 1.3595 (14) C11—H11A 0.9300
N1—C5 1.3699 (13) C12—C13 1.4033 (19)
N1—C16 1.4790 (14) C12—H12A 0.9300
N2—C9 1.3531 (15) C13—C14 1.3862 (17)
N2—C10 1.3823 (15) C13—H13A 0.9300
N2—H1N2 0.891 (18) C14—C15 1.4060 (15)
C1—C2 1.3673 (17) C14—H14A 0.9300
C1—H1A 0.9300 C16—H16A 0.9600
C2—C3 1.3961 (17) C16—H16B 0.9600
C2—H2A 0.9300 C16—H16C 0.9600
C3—C4 1.3723 (16) C17—C22 1.3949 (15)
C3—H3A 0.9300 C17—C18 1.3996 (14)
C4—C5 1.4111 (15) C18—C19 1.3887 (15)
C4—H4A 0.9300 C18—H18A 0.9300
C5—C6 1.4442 (15) C19—C20 1.3901 (15)
C6—C7 1.3567 (14) C19—H19A 0.9300
C6—H6A 0.9300 C20—C21 1.3896 (16)
C7—C8 1.4318 (15) C21—C22 1.3990 (15)
C7—H7A 0.9300 C21—H21A 0.9300
C8—C9 1.3947 (14) C22—H22A 0.9300
O1—S1—O2 113.07 (5) C11—C10—C15 123.00 (10)
O1—S1—O3 113.29 (6) C12—C11—C10 117.11 (11)
O2—S1—O3 112.84 (6) C12—C11—H11A 121.4
O1—S1—C17 106.28 (5) C10—C11—H11A 121.4
O2—S1—C17 105.82 (5) C11—C12—C13 121.10 (11)
O3—S1—C17 104.64 (5) C11—C12—H12A 119.5
C1—N1—C5 121.81 (9) C13—C12—H12A 119.5
C1—N1—C16 117.49 (9) C14—C13—C12 121.72 (11)
C5—N1—C16 120.70 (9) C14—C13—H13A 119.1
C9—N2—C10 109.27 (9) C12—C13—H13A 119.1
C9—N2—H1N2 125.2 (12) C13—C14—C15 118.59 (11)
C10—N2—H1N2 125.2 (12) C13—C14—H14A 120.7
N1—C1—C2 121.68 (10) C15—C14—H14A 120.7
N1—C1—H1A 119.2 C14—C15—C10 118.46 (10)
C2—C1—H1A 119.2 C14—C15—C8 135.36 (10)
C1—C2—C3 118.40 (11) C10—C15—C8 106.17 (9)
C1—C2—H2A 120.8 N1—C16—H16A 109.5
C3—C2—H2A 120.8 N1—C16—H16B 109.5
C4—C3—C2 119.79 (11) H16A—C16—H16B 109.5
C4—C3—H3A 120.1 N1—C16—H16C 109.5
C2—C3—H3A 120.1 H16A—C16—H16C 109.5
C3—C4—C5 121.33 (10) H16B—C16—H16C 109.5
C3—C4—H4A 119.3 C22—C17—C18 120.38 (10)
C5—C4—H4A 119.3 C22—C17—S1 121.17 (8)
N1—C5—C4 116.96 (10) C18—C17—S1 118.44 (8)
N1—C5—C6 119.06 (9) C19—C18—C17 120.07 (10)
C4—C5—C6 123.98 (9) C19—C18—H18A 120.0
C7—C6—C5 123.15 (10) C17—C18—H18A 120.0
C7—C6—H6A 118.4 C18—C19—C20 118.93 (10)
C5—C6—H6A 118.4 C18—C19—H19A 120.5
C6—C7—C8 126.99 (10) C20—C19—H19A 120.5
C6—C7—H7A 116.5 C21—C20—C19 121.96 (10)
C8—C7—H7A 116.5 C21—C20—Cl1 119.80 (8)
C9—C8—C7 121.99 (10) C19—C20—Cl1 118.19 (8)
C9—C8—C15 106.00 (9) C20—C21—C22 118.85 (10)
C7—C8—C15 132.01 (9) C20—C21—H21A 120.6
N2—C9—C8 110.32 (10) C22—C21—H21A 120.6
N2—C9—H9A 124.8 C17—C22—C21 119.79 (10)
C8—C9—H9A 124.8 C17—C22—H22A 120.1
N2—C10—C11 128.76 (11) C21—C22—H22A 120.1
N2—C10—C15 108.23 (10)
C5—N1—C1—C2 0.81 (16) C13—C14—C15—C10 −1.26 (16)
C16—N1—C1—C2 −179.81 (10) C13—C14—C15—C8 −179.77 (12)
N1—C1—C2—C3 0.65 (17) N2—C10—C15—C14 −178.58 (10)
C1—C2—C3—C4 −1.28 (17) C11—C10—C15—C14 1.74 (16)
C2—C3—C4—C5 0.51 (18) N2—C10—C15—C8 0.33 (12)
C1—N1—C5—C4 −1.56 (15) C11—C10—C15—C8 −179.35 (10)
C16—N1—C5—C4 179.08 (9) C9—C8—C15—C14 177.96 (12)
C1—N1—C5—C6 178.44 (10) C7—C8—C15—C14 −2.8 (2)
C16—N1—C5—C6 −0.92 (14) C9—C8—C15—C10 −0.68 (12)
C3—C4—C5—N1 0.90 (16) C7—C8—C15—C10 178.61 (11)
C3—C4—C5—C6 −179.10 (11) O1—S1—C17—C22 25.07 (10)
N1—C5—C6—C7 −178.80 (10) O2—S1—C17—C22 −95.40 (9)
C4—C5—C6—C7 1.21 (17) O3—S1—C17—C22 145.20 (9)
C5—C6—C7—C8 179.27 (10) O1—S1—C17—C18 −155.09 (8)
C6—C7—C8—C9 176.40 (11) O2—S1—C17—C18 84.44 (9)
C6—C7—C8—C15 −2.78 (19) O3—S1—C17—C18 −34.96 (9)
C10—N2—C9—C8 −0.61 (13) C22—C17—C18—C19 −0.23 (15)
C7—C8—C9—N2 −178.58 (10) S1—C17—C18—C19 179.92 (8)
C15—C8—C9—N2 0.79 (12) C17—C18—C19—C20 −0.80 (15)
C9—N2—C10—C11 179.81 (11) C18—C19—C20—C21 1.17 (16)
C9—N2—C10—C15 0.15 (12) C18—C19—C20—Cl1 −176.49 (8)
N2—C10—C11—C12 179.53 (11) C19—C20—C21—C22 −0.48 (16)
C15—C10—C11—C12 −0.86 (17) Cl1—C20—C21—C22 177.14 (8)
C10—C11—C12—C13 −0.48 (18) C18—C17—C22—C21 0.93 (15)
C11—C12—C13—C14 0.92 (19) S1—C17—C22—C21 −179.23 (8)
C12—C13—C14—C15 −0.01 (18) C20—C21—C22—C17 −0.57 (15)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H1N2···O1i 0.891 (18) 1.864 (19) 2.7541 (14) 176.2 (18)
C1—H1A···O3 0.93 2.53 3.2380 (14) 133
C7—H7A···O2ii 0.93 2.59 3.3067 (14) 134
C14—H14A···O2iii 0.93 2.52 3.2605 (14) 137
C16—H16C···O2iii 0.96 2.37 3.2645 (15) 156
C19—H19A···O1iv 0.93 2.30 3.1432 (14) 151
C21—H21A···O3iii 0.93 2.55 3.1885 (14) 127
C4—H4A···Cg3v 0.93 2.85 3.5956 (11) 138
C16—H16A···Cg1vi 0.96 2.72 3.4622 (12) 134
C16—H16B···Cg3 0.96 2.67 3.5533 (11) 153

Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+3/2, z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) x+1, y, z; (v) x, −y+1/2, z−1/2; (vi) −x+1, −y+1, −z+1.

Footnotes

1

This paper is dedicated to the late Her Royal Highness Princess Galyani Vadhana Krom Luang Naradhiwas Rajanagarindra for her patronage of Science in Thailand.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2441).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1882–o1883. [DOI] [PMC free article] [PubMed]
  4. Chantrapromma, S., Laksana, C., Ruanwas, P. & Fun, H.-K. (2008). Acta Cryst E64, o574–o575. [DOI] [PMC free article] [PubMed]
  5. Chantrapromma, S., Jindawong, B., Fun, H.-K., Patil, P. S. & Karalai, C. (2006). Acta Cryst E62, o1802–o1804.
  6. Chantrapromma, S., Jansrisewangwong, P., Musor, R. & Fun, H.-K. (2009). Acta Cryst E65, o217–o218. [DOI] [PMC free article] [PubMed]
  7. Chantrapromma, S., Suwanwong, T. & Fun, H.-K. (2007). Acta Cryst. E63, o821–o823.
  8. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  9. Ogawa, J., Okada, S., Glavcheva, Z. & Nakanishi, H. (2008). J. Cryst. Growth, 310, 836–842.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Weir, C. A. M., Hadizad, T., Beaudin, A. M. R. & Wang, Z.-Y. (2003). Tetrahedron Lett 44, 4697–4700.
  13. Yang, Z., Wörle, M., Mutter, L., Jazbinsek, M. & Günter, P. (2007). Cryst. Growth Des 7, 83–86.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809029547/is2441sup1.cif

e-65-o2045-sup1.cif (22.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809029547/is2441Isup2.hkl

e-65-o2045-Isup2.hkl (425.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES