Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Jul 22;65(Pt 8):o1948. doi: 10.1107/S1600536809027974

3,4,5-Trimeth­oxy-N-(2-methoxy­phen­yl)benzamide

Aamer Saeed a,*, Ulrich Flörke b
PMCID: PMC2977507  PMID: 21583628

Abstract

In the title mol­ecule, C17H19NO5, the amide plane is oriented at an angle of 41.5 (3)° with respect to the 2-methoxy­benzene ring. The three meth­oxy groups lie almost in the plane of the aromatic rings to which they are attached [C—O—C—C torsion angles of of 0.7 (4), −13.4 (4) and 3.1 (4)°], whereas the meth­oxy group at the 4-position of the 3,4,5-trimethoxy­benzene ring is nearly perpendicularly oriented [C—O—C—C torsion angle of 103.9 (3)°]. In the crystal structure, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into chains along [001].

Related literature

The background of this work has been described in our earlier paper (Saeed et al. 2008). For a related structure, see: Parra et al. (2001).graphic file with name e-65-o1948-scheme1.jpg

Experimental

Crystal data

  • C17H19NO5

  • M r = 317.33

  • Orthorhombic, Inline graphic

  • a = 7.409 (2) Å

  • b = 22.522 (6) Å

  • c = 9.681 (3) Å

  • V = 1615.4 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 120 K

  • 0.50 × 0.44 × 0.20 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.953, T max = 0.981

  • 13253 measured reflections

  • 2050 independent reflections

  • 1902 reflections with I > 2σ(I)

  • R int = 0.047

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.126

  • S = 1.13

  • 2050 reflections

  • 216 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.37 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027974/wm2245sup1.cif

e-65-o1948-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027974/wm2245Isup2.hkl

e-65-o1948-Isup2.hkl (100.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.895 (10) 2.182 (14) 3.066 (4) 169 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

AS gratefully acknowledges a reasearch grant from Quaid-i-Azam University, Islamabad, under the URF project.

supplementary crystallographic information

Comment

The background of this work has been described in our earlier paper (Saeed et al. 2008).

The molecular structure of the title compound (Fig. 1) is similar to that of ICULOH (Parra et al., 2001), but with 3,4,5-methoxy substitution of the benzamide ring. Methoxy groups O2, O3 and O5 lie almost in plane of the corresponding aromatic rings with torsion angles C8–O2–C7–C6 of 0.7 (4)°, C15–O3–C11–C10 of -13.4 (4)° and C17–O5–C13–C14 of 3.1 (4)°, respectively, whereas the O4-group is nearly perpendicular oriented with C16–O4–C12–C13 of 103.9 (3)°. The two aromatic planes make a dihedral angle of 67.66 (9)° and the angle between the amide group and the 2-methoxy benzene ring is 41.5 (3)°. In the cystal structure, intermolecular N–H···O hydrogen bonds (Table 1) link the molecules into infinite chains along the [001] direction (Fig. 2).

Experimental

3,4,5-Trimethoxybenzoyl chloride (1 mmol) in CHCl3 was treated with 2-methoxyaniline (3.5 mmol) under a nitrogen atmosphere at reflux conditions for 5 h. Upon cooling, the reaction mixture was diluted with CHCl3 and washed consecutively with 1 M aq HCl and saturated aq NaHCO3. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure. Crystallization of the residue in methanol afforded the title compound (84%) as white needles: Anal. calc. for C17H19NO5: C 64.34, H 6.03, N 4.41%; found: C 64.31, H 6.09, N 4.34%

Refinement

All H atoms were clearly identified in difference syntheses, then refined at calculated positions riding on the carbon atoms (C–H = 0.95–0.99 Å) with isotropic displacement parameters Uiso(H) = 1.2U(Ceq) or 1.5U(–CH3). All CH3 hydrogen atoms were allowed to rotate but not to tip. H(N) was refined freely with a restained (DFIX) N–H distance. The title compound crystallizes in the non-centrosymmetric space group P ca21; however, in the absence of significant anomalous scattering effects, the Flack parameter is essentially meaningless. Accordingly, Friedel pairs were merged.

Figures

Fig. 1.

Fig. 1.

Molecular structure of title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing viewed along [100] with intermolecular hydrogen bonding pattern indicated as dashed lines. H-atoms not involved in hydrogen bonding are omitted.

Crystal data

C17H19NO5 F(000) = 672
Mr = 317.33 Dx = 1.305 Mg m3
Orthorhombic, Pca21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2ac Cell parameters from 887 reflections
a = 7.409 (2) Å θ = 2.9–27.6°
b = 22.522 (6) Å µ = 0.10 mm1
c = 9.681 (3) Å T = 120 K
V = 1615.4 (7) Å3 Prism, colourless
Z = 4 0.50 × 0.44 × 0.20 mm

Data collection

Bruker SMART APEX diffractometer 2050 independent reflections
Radiation source: sealed tube 1902 reflections with I > 2σ(I)
graphite Rint = 0.047
φ and ω scans θmax = 27.9°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −9→9
Tmin = 0.953, Tmax = 0.981 k = −29→25
13253 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: difference Fourier map
wR(F2) = 0.126 H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0648P)2 + 0.6933P] where P = (Fo2 + 2Fc2)/3
2050 reflections (Δ/σ)max < 0.001
216 parameters Δρmax = 0.37 e Å3
2 restraints Δρmin = −0.20 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.1314 (3) 0.22502 (9) 1.0268 (2) 0.0232 (5)
O2 −0.0063 (3) 0.16331 (10) 0.5858 (2) 0.0246 (5)
O3 0.7319 (3) 0.33720 (9) 0.7087 (2) 0.0258 (5)
O4 0.6652 (3) 0.43489 (9) 0.8620 (3) 0.0246 (5)
O5 0.4036 (3) 0.43643 (9) 1.0503 (3) 0.0263 (5)
N1 0.1909 (3) 0.19743 (11) 0.8055 (3) 0.0199 (5)
H1 0.232 (7) 0.2095 (18) 0.723 (3) 0.053 (13)*
C1 0.2067 (3) 0.23480 (13) 0.9166 (3) 0.0186 (6)
C2 0.0968 (3) 0.14253 (13) 0.8110 (3) 0.0189 (6)
C3 0.1076 (4) 0.10537 (14) 0.9251 (4) 0.0242 (6)
H3A 0.1804 0.1163 1.0018 0.029*
C4 0.0117 (4) 0.05177 (14) 0.9278 (4) 0.0285 (7)
H4A 0.0179 0.0268 1.0068 0.034*
C5 −0.0923 (4) 0.03511 (14) 0.8150 (4) 0.0294 (7)
H5A −0.1575 −0.0012 0.8169 0.035*
C6 −0.1012 (4) 0.07152 (14) 0.6989 (4) 0.0270 (7)
H6A −0.1718 0.0598 0.6217 0.032*
C7 −0.0069 (4) 0.12518 (13) 0.6956 (3) 0.0211 (6)
C8 −0.1114 (5) 0.14694 (18) 0.4675 (4) 0.0382 (9)
H8A −0.0681 0.1089 0.4312 0.057*
H8B −0.0996 0.1776 0.3961 0.057*
H8C −0.2385 0.1432 0.4942 0.057*
C9 0.3260 (4) 0.28794 (12) 0.8974 (3) 0.0167 (5)
C10 0.4689 (4) 0.28683 (13) 0.8036 (3) 0.0183 (5)
H10A 0.4859 0.2532 0.7457 0.022*
C11 0.5872 (4) 0.33511 (13) 0.7945 (3) 0.0181 (5)
C12 0.5583 (4) 0.38548 (13) 0.8771 (3) 0.0204 (6)
C13 0.4143 (4) 0.38603 (12) 0.9724 (3) 0.0194 (6)
C14 0.2986 (4) 0.33723 (12) 0.9835 (3) 0.0190 (6)
H14A 0.2026 0.3374 1.0486 0.023*
C15 0.7858 (5) 0.28235 (14) 0.6464 (4) 0.0328 (8)
H15A 0.7979 0.2518 0.7179 0.049*
H15B 0.9019 0.2877 0.5995 0.049*
H15C 0.6945 0.2700 0.5790 0.049*
C16 0.8392 (5) 0.42964 (16) 0.9272 (5) 0.0367 (9)
H16A 0.8234 0.4255 1.0273 0.055*
H16B 0.9109 0.4652 0.9077 0.055*
H16C 0.9018 0.3946 0.8911 0.055*
C17 0.2685 (5) 0.43817 (14) 1.1558 (4) 0.0323 (7)
H17A 0.1487 0.4352 1.1135 0.048*
H17B 0.2779 0.4757 1.2067 0.048*
H17C 0.2865 0.4049 1.2195 0.048*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0229 (10) 0.0307 (11) 0.0159 (10) −0.0039 (8) 0.0057 (9) −0.0036 (9)
O2 0.0247 (11) 0.0311 (11) 0.0179 (10) −0.0079 (9) −0.0033 (8) −0.0018 (9)
O3 0.0239 (10) 0.0295 (10) 0.0242 (12) −0.0046 (9) 0.0100 (10) −0.0015 (9)
O4 0.0241 (10) 0.0229 (11) 0.0268 (11) −0.0044 (8) 0.0023 (9) 0.0033 (9)
O5 0.0285 (11) 0.0234 (10) 0.0270 (13) −0.0027 (8) 0.0081 (10) −0.0053 (9)
N1 0.0205 (11) 0.0271 (12) 0.0121 (11) −0.0043 (9) 0.0007 (10) −0.0019 (10)
C1 0.0142 (12) 0.0266 (14) 0.0150 (13) 0.0016 (10) −0.0024 (10) −0.0014 (11)
C2 0.0150 (12) 0.0240 (14) 0.0176 (14) 0.0001 (10) 0.0058 (11) −0.0033 (12)
C3 0.0207 (14) 0.0289 (15) 0.0231 (16) 0.0044 (11) 0.0028 (12) −0.0002 (12)
C4 0.0266 (15) 0.0269 (15) 0.0320 (18) 0.0057 (12) 0.0090 (14) 0.0062 (14)
C5 0.0242 (14) 0.0203 (14) 0.044 (2) −0.0035 (11) 0.0069 (15) −0.0030 (14)
C6 0.0223 (14) 0.0281 (15) 0.0307 (18) −0.0025 (12) 0.0014 (13) −0.0079 (13)
C7 0.0180 (13) 0.0242 (14) 0.0211 (15) 0.0006 (11) 0.0042 (11) −0.0033 (12)
C8 0.0381 (19) 0.049 (2) 0.0276 (18) −0.0158 (16) −0.0144 (16) 0.0038 (17)
C9 0.0160 (12) 0.0243 (13) 0.0098 (12) −0.0004 (10) −0.0027 (10) −0.0004 (10)
C10 0.0207 (12) 0.0245 (13) 0.0098 (12) 0.0018 (10) −0.0005 (11) −0.0018 (11)
C11 0.0163 (11) 0.0272 (14) 0.0107 (13) 0.0006 (10) 0.0026 (10) 0.0014 (11)
C12 0.0223 (13) 0.0218 (14) 0.0171 (14) 0.0000 (11) −0.0036 (11) 0.0038 (11)
C13 0.0197 (13) 0.0228 (14) 0.0156 (14) 0.0015 (10) −0.0031 (11) 0.0001 (12)
C14 0.0178 (12) 0.0275 (14) 0.0118 (12) 0.0025 (10) −0.0008 (11) −0.0007 (11)
C15 0.0301 (17) 0.0315 (15) 0.0368 (19) −0.0044 (12) 0.0173 (16) −0.0034 (16)
C16 0.0308 (17) 0.0338 (19) 0.045 (2) −0.0093 (14) −0.0069 (17) 0.0000 (16)
C17 0.0352 (17) 0.0316 (15) 0.0300 (18) −0.0030 (14) 0.0107 (16) −0.0127 (15)

Geometric parameters (Å, °)

O1—C1 1.224 (4) C6—H6A 0.9500
O2—C7 1.366 (4) C8—H8A 0.9800
O2—C8 1.434 (4) C8—H8B 0.9800
O3—C11 1.357 (3) C8—H8C 0.9800
O3—C15 1.432 (4) C9—C10 1.395 (4)
O4—C12 1.374 (4) C9—C14 1.403 (4)
O4—C16 1.441 (4) C10—C11 1.400 (4)
O5—C13 1.365 (4) C10—H10A 0.9500
O5—C17 1.431 (4) C11—C12 1.404 (4)
N1—C1 1.371 (4) C12—C13 1.410 (4)
N1—C2 1.420 (4) C13—C14 1.398 (4)
N1—H1 0.895 (10) C14—H14A 0.9500
C1—C9 1.500 (4) C15—H15A 0.9800
C2—C3 1.388 (4) C15—H15B 0.9800
C2—C7 1.412 (4) C15—H15C 0.9800
C3—C4 1.401 (5) C16—H16A 0.9800
C3—H3A 0.9500 C16—H16B 0.9800
C4—C5 1.389 (5) C16—H16C 0.9800
C4—H4A 0.9500 C17—H17A 0.9800
C5—C6 1.392 (5) C17—H17B 0.9800
C5—H5A 0.9500 C17—H17C 0.9800
C6—C7 1.396 (4)
C7—O2—C8 117.3 (2) C10—C9—C1 120.9 (2)
C11—O3—C15 116.7 (2) C14—C9—C1 118.2 (2)
C12—O4—C16 113.8 (3) C9—C10—C11 120.1 (3)
C13—O5—C17 117.3 (2) C9—C10—H10A 119.9
C1—N1—C2 123.1 (2) C11—C10—H10A 119.9
C1—N1—H1 119 (3) O3—C11—C10 124.1 (3)
C2—N1—H1 118 (3) O3—C11—C12 116.2 (2)
O1—C1—N1 122.3 (3) C10—C11—C12 119.8 (3)
O1—C1—C9 121.4 (3) O4—C12—C11 120.4 (3)
N1—C1—C9 116.3 (2) O4—C12—C13 119.9 (3)
C3—C2—C7 119.7 (3) C11—C12—C13 119.7 (3)
C3—C2—N1 121.8 (3) O5—C13—C14 125.1 (3)
C7—C2—N1 118.6 (3) O5—C13—C12 114.4 (2)
C2—C3—C4 120.3 (3) C14—C13—C12 120.5 (3)
C2—C3—H3A 119.8 C13—C14—C9 119.1 (3)
C4—C3—H3A 119.8 C13—C14—H14A 120.4
C5—C4—C3 120.0 (3) C9—C14—H14A 120.4
C5—C4—H4A 120.0 O3—C15—H15A 109.5
C3—C4—H4A 120.0 O3—C15—H15B 109.5
C4—C5—C6 120.1 (3) H15A—C15—H15B 109.5
C4—C5—H5A 119.9 O3—C15—H15C 109.5
C6—C5—H5A 119.9 H15A—C15—H15C 109.5
C5—C6—C7 120.3 (3) H15B—C15—H15C 109.5
C5—C6—H6A 119.8 O4—C16—H16A 109.5
C7—C6—H6A 119.8 O4—C16—H16B 109.5
O2—C7—C6 124.3 (3) H16A—C16—H16B 109.5
O2—C7—C2 116.1 (2) O4—C16—H16C 109.5
C6—C7—C2 119.6 (3) H16A—C16—H16C 109.5
O2—C8—H8A 109.5 H16B—C16—H16C 109.5
O2—C8—H8B 109.5 O5—C17—H17A 109.5
H8A—C8—H8B 109.5 O5—C17—H17B 109.5
O2—C8—H8C 109.5 H17A—C17—H17B 109.5
H8A—C8—H8C 109.5 O5—C17—H17C 109.5
H8B—C8—H8C 109.5 H17A—C17—H17C 109.5
C10—C9—C14 120.7 (3) H17B—C17—H17C 109.5
C2—N1—C1—O1 −4.4 (4) C1—C9—C10—C11 −175.1 (3)
C2—N1—C1—C9 174.0 (2) C15—O3—C11—C10 −13.4 (4)
C1—N1—C2—C3 −39.8 (4) C15—O3—C11—C12 167.1 (3)
C1—N1—C2—C7 141.6 (3) C9—C10—C11—O3 178.4 (3)
C7—C2—C3—C4 −2.0 (4) C9—C10—C11—C12 −2.0 (4)
N1—C2—C3—C4 179.4 (3) C16—O4—C12—C11 −78.5 (4)
C2—C3—C4—C5 1.1 (5) C16—O4—C12—C13 103.9 (3)
C3—C4—C5—C6 0.1 (5) O3—C11—C12—O4 4.5 (4)
C4—C5—C6—C7 −0.5 (5) C10—C11—C12—O4 −175.1 (3)
C8—O2—C7—C6 0.7 (4) O3—C11—C12—C13 −177.9 (3)
C8—O2—C7—C2 −179.6 (3) C10—C11—C12—C13 2.5 (4)
C5—C6—C7—O2 179.2 (3) C17—O5—C13—C14 3.1 (4)
C5—C6—C7—C2 −0.4 (4) C17—O5—C13—C12 −175.6 (3)
C3—C2—C7—O2 −178.0 (2) O4—C12—C13—O5 −4.6 (4)
N1—C2—C7—O2 0.6 (4) C11—C12—C13—O5 177.7 (3)
C3—C2—C7—C6 1.7 (4) O4—C12—C13—C14 176.6 (3)
N1—C2—C7—C6 −179.7 (3) C11—C12—C13—C14 −1.1 (4)
O1—C1—C9—C10 151.4 (3) O5—C13—C14—C9 −179.5 (3)
N1—C1—C9—C10 −27.1 (4) C12—C13—C14—C9 −0.8 (4)
O1—C1—C9—C14 −24.0 (4) C10—C9—C14—C13 1.3 (4)
N1—C1—C9—C14 157.6 (2) C1—C9—C14—C13 176.7 (2)
C14—C9—C10—C11 0.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O1i 0.90 (1) 2.18 (1) 3.066 (4) 169 (4)

Symmetry codes: (i) −x+1/2, y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2245).

References

  1. Bruker (2002). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Parra, R. D., Zeng, H., Zhu, J., Zheng, C., Zeng, X. C. & Gong, B. (2001). Chem. Eur. J.7, 4352–4357. [DOI] [PubMed]
  3. Saeed, A., Khera, R. A., Abbas, N., Simpson, J. & Stanley, R. G. (2008). Acta Cryst. E64, o1976. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809027974/wm2245sup1.cif

e-65-o1948-sup1.cif (18.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809027974/wm2245Isup2.hkl

e-65-o1948-Isup2.hkl (100.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES