Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 18;65(Pt 5):i34. doi: 10.1107/S1600536809012495

The Chevrel phase HgMo6S8

Diala Salloum a, Patrick Gougeon a,*, Michel Potel a
PMCID: PMC2977540  PMID: 21583726

Abstract

The crystal structure of HgMo6S8, mercury(II) hexa­molybdenum octa­sulfide, is based on (Mo6S8)S6 cluster units (Inline graphic symmetry) inter­connected through inter­unit Mo—S bonds. The Hg2+ cations occupy large voids between the different cluster units and are covalently bonded to two S atoms. The Hg atoms and one S atom lie on sites with crystallographic Inline graphic and 3 symmetry, respectively. Refinement of the occupancy factor of the Hg atom led to the composition Hg0.973 (3)Mo6S8.

Related literature

For isotypic structures, see: Chevrel & Sergent (1982). For a previous report on the title compound as a polycrystalline material, see: Tarascon et al. (1983). For crystallographic background, see: Becker & Coppens (1974); Johnson & Levy (1974).

Experimental

Crystal data

  • Hg0.973Mo6S8

  • M r = 1027.3

  • Trigonal, Inline graphic

  • a = 9.4319 (3) Å

  • c = 10.7028 (3) Å

  • V = 824.57 (4) Å3

  • Z = 3

  • Mo Kα radiation

  • μ = 21.62 mm−1

  • T = 293 K

  • 0.08 × 0.07 × 0.06 mm

Data collection

  • Nonius KappaCCD diffractometer

  • Absorption correction: analytical (de Meulenaer & Tompa, 1965) T min = 0.298, T max = 0.384

  • 5784 measured reflections

  • 1121 independent reflections

  • 1069 reflections with I > 2σ(I)

  • R int = 0.044

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025

  • wR(F 2) = 0.026

  • S = 1.74

  • 1121 reflections

  • 31 parameters

  • Δρmax = 2.64 e Å−3

  • Δρmin = −1.57 e Å−3

Data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: JANA2000 (Petříček & Dušek, 2000); molecular graphics: DIAMOND (Bergerhoff, 1996); software used to prepare material for publication: JANA2000.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809012495/wm2226sup1.cif

e-65-00i34-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012495/wm2226Isup2.hkl

e-65-00i34-Isup2.hkl (45.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Hg1—S1 2.3914 (8)
Mo1—Mo1i 2.7184 (3)
Mo1—Mo1ii 2.7515 (3)
Mo1—S1 2.4108 (7)
Mo1—S2 2.4236 (6)
Mo1—S2iii 2.4896 (8)
Mo1—S2ii 2.4933 (6)
Mo1—S2iv 2.4340 (8)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

Intensity data were collected on the Nonius KappaCCD X-ray diffactometer system of the Centre de diffractométrie de l’Université de Rennes I (www.cdifx.univ-rennes1.fr).

supplementary crystallographic information

Comment

The superconducting compound HgMo6S8 was first synthesized as a powder sample by Tarascon et al. (1983), but no details were given on its crystal structure. In the present study, we present the crystal structure refinement of HgMo6S8 that has been determined from single-crystal X-ray diffraction data. The title compound is isostructural with the hexagonal Chevrel phases MMo6X8 where M is a large cation (M = alkali metal, alkaline earth, lanthanide, actinide etc.; X = S, Se, Te) [see, for instance, Chevrel & Sergent (1982)]. As a consequence its crystal structure consists of octahedral Mo6 clusters surrounded by fourteen sulfur atoms with eight of them forming a distorted cube (i-type ligands) and the remaining six capping the faces of the S8 cube (a-type ligands). In the structure of HgMo6S8, a part of the chalcogen atoms of the Mo6Si8Sa6 unit are shared according to the formula Mo6Si2Si-a6/2Sa-i6/2 to form the three-dimensional Mo—S network. The Mo6S8 cluster unit is centered at Wyckoff position 6b (3 symmetry). The Mo—Mo distances within the Mo6 clusters are 2.7184 (3) Å for the intra-triangle distances (distances within the Mo3 triangles formed by the Mo atoms related through the threefold axis) and 2.7515 (3) Å for the inter-triangle distances. Each Mo atom is surrounded by five S atoms (4 S1 and 1 S2) forming a distorted square-based pyramid. The apex of the pyramid is shared with an adjacent unit and thus ensures the three-dimensional cohesion. Consequently, each Mo6S8 unit is interconnected to 6 Mo6S8 units to form the Mo—S framework. It results from this arrangement that the shortest intercluster Mo1—Mo1 distances between the Mo6 clusters is 3.2934 (3) Å, indicating only weak metal-metal interaction. The Hg2+ cations reside in the large eight-coordinate voids formed by the chalcogen atoms from eight different Mo6S8 units. They are covalently bonded to two S2 atoms at a distance of 2.3914 (8) Å.

HgMo6S8 was found to be superconducting at 8 K from DC-susceptibility measurements on a batch of single crystals.

Experimental

HgMo6S8 was obtained in three steps involving, first, the syntheses of single-crystal of InMo6S8 by solid state reaction, then the preparation of the binary compound Mo6S8 by 'chimie douce' methods and, finally, the synthesis of the title compound by inserting mercury into the Mo6S8 host structure at low temperatures. Single crystals of InMo6S8 were obtained from a stoichiometric mixture of In2S3, MoS2 and Mo. All handlings of materials were done in an argon-filled glove box. The initial mixture (ca 5 g) was cold pressed and loaded into a molybdenum crucible, which was sealed under a low argon pressure using an arc-welding system. The charge was heated at the rate of 300 K/h up to 1773 K, the temperature which was held for six hours, then cooled at 100 K/h down to 1273 K and finally furnace cooled. Mo6S8 was obtained by oxidation of single-crystals of InMo6S8 by iodine in a glass tube sealed under vacuum. The end of the tube containing the crystals of the In compound and an excess of iodine was placed in a furnace with about 3 cm of the other end sticking out of the furnace, at about room temperature. The furnace was then heated at 523 K for 96 h. At the end of the reaction, crystals of InI3 and I2 were obtained at the cooler end of the tube. Finally, HgMo6S8 was prepared by diffusion of mercury into crystals of Mo6S8 in a silica glass tube sealed under vacuum at 673 K during 96 h.

Refinement

The structure was refined using an anisotropic approximation and converged at an reliability factor R(F) = 0.034. Analyses of the difference Fourier maps revealed positive and negative residual peaks around the Hg atom. Fourth-order tensors in the Gram-Charlier expansion (Johnson & Levy, 1974) of the mercury displacement factor were used to describe the electron density around this site. The resulting R value dropped to 0.025 for only five additional parameters. Refinement of the occupancy factor of the Hg atom led to the final composition Hg0.973 (3)Mo6S8.

Figures

Fig. 1.

Fig. 1.

: View of HgMo6S8 along [110].

Fig. 2.

Fig. 2.

: Plot showing the atom-numbering scheme and the interunit linkage of the (Mo6S8)S6 cluster units. Displacement ellipsoids are drawn at the 97% probability level.

Crystal data

Hg0.973Mo6S8 Dx = 6.204 (1) Mg m3
Mr = 1027.3 Mo Kα radiation, λ = 0.71069 Å
Trigonal, R3 Cell parameters from 7043 reflections
Hall symbol: -R 3 θ = 2.0–42.1°
a = 9.4319 (3) Å µ = 21.62 mm1
c = 10.7028 (3) Å T = 293 K
V = 824.57 (4) Å3 Truncated cube, black
Z = 3 0.08 × 0.07 × 0.06 mm
F(000) = 1374

Data collection

Nonius KappaCCD diffractometer 1121 independent reflections
Radiation source: fine-focus sealed tube 1069 reflections with I > 2σ(I)
horizontally mounted graphite crystal Rint = 0.044
Detector resolution: 9 pixels mm-1 θmax = 39.8°, θmin = 3.1°
ω– and φ–scans h = −16→16
Absorption correction: analytical (de Meulenaer & Tompa, 1965) k = −16→16
Tmin = 0.298, Tmax = 0.384 l = −13→19
5784 measured reflections

Refinement

Refinement on F Weighting scheme based on measured s.u.'s w = 1/σ2(F)
R[F2 > 2σ(F2)] = 0.025 (Δ/σ)max = 0.001
wR(F2) = 0.026 Δρmax = 2.64 e Å3
S = 1.74 Δρmin = −1.57 e Å3
1121 reflections Extinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
31 parameters Extinction coefficient: 0.020681

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Hg1 0 0 0 0.0339 (4) 0.973 (3)
Mo1 −0.01555 (2) −0.17363 (2) −0.394419 (15) 0.00748 (7)
S1 0 0 −0.22344 (8) 0.0113 (2)
S2 −0.03460 (6) −0.31591 (7) −0.58775 (4) 0.00933 (17)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg1 0.0384 (4) 0.0384 (4) 0.0249 (6) 0.0192 (2) 0 0
Mo1 0.00780 (9) 0.00831 (9) 0.00617 (10) 0.00391 (6) 0.00003 (5) −0.00036 (5)
S1 0.0126 (2) 0.0126 (2) 0.0088 (3) 0.00628 (12) 0 0
S2 0.0097 (2) 0.0096 (2) 0.0087 (2) 0.00476 (17) 0.00067 (15) −0.00032 (15)

Geometric parameters (Å, °)

Hg1—S1 2.3914 (8) Mo1—Mo1ix 2.7184 (3)
Hg1—S1i 2.3914 (8) Mo1—Mo1x 2.7515 (3)
Hg1—S2ii 3.2056 (4) Mo1—Mo1xi 2.7184 (4)
Hg1—S2iii 3.2056 (4) Mo1—Mo1xii 2.7515 (2)
Hg1—S2iv 3.2056 (7) Mo1—S1 2.4108 (7)
Hg1—S2v 3.2056 (7) Mo1—S2 2.4236 (6)
Hg1—S2vi 3.2056 (8) Mo1—S2xiii 2.4896 (8)
Hg1—S2vii 3.2056 (8) Mo1—S2x 2.4933 (6)
Mo1—Mo1viii 3.8679 (3) Mo1—S2xii 2.4340 (8)
Mo1—Mo1iii 3.2131 (2)
S1—Hg1—S1i 180 Mo1x—Mo1—Mo1iii 97.693 (7)
S1—Hg1—S2ii 105.278 (8) Mo1x—Mo1—Mo1ix 90
S1—Hg1—S2iii 74.722 (8) Mo1x—Mo1—Mo1xi 60.398 (8)
S1—Hg1—S2iv 105.278 (9) Mo1x—Mo1—Mo1xii 59.205 (7)
S1—Hg1—S2v 74.722 (9) Mo1x—Mo1—S1 115.964 (15)
S1—Hg1—S2vi 105.278 (9) Mo1x—Mo1—S2 55.677 (18)
S1—Hg1—S2vii 74.722 (9) Mo1x—Mo1—S2xiii 138.626 (14)
S1i—Hg1—S1 180 Mo1x—Mo1—S2x 54.776 (13)
S1i—Hg1—S2ii 74.722 (8) Mo1x—Mo1—S2xii 114.515 (14)
S1i—Hg1—S2iii 105.278 (8) Mo1xi—Mo1—Mo1iii 96.739 (8)
S1i—Hg1—S2iv 74.722 (9) Mo1xi—Mo1—Mo1ix 60.000 (8)
S1i—Hg1—S2v 105.278 (9) Mo1xi—Mo1—Mo1x 60.398 (8)
S1i—Hg1—S2vi 74.722 (9) Mo1xi—Mo1—Mo1xii 90
S1i—Hg1—S2vii 105.278 (9) Mo1xi—Mo1—S1 55.682 (12)
S2ii—Hg1—S2iii 180 Mo1xi—Mo1—S2 116.065 (18)
S2ii—Hg1—S2iv 113.319 (18) Mo1xi—Mo1—S2xiii 135.971 (18)
S2ii—Hg1—S2v 66.681 (18) Mo1xi—Mo1—S2x 55.48 (2)
S2ii—Hg1—S2vi 113.319 (17) Mo1xi—Mo1—S2xii 117.362 (19)
S2ii—Hg1—S2vii 66.681 (17) Mo1xii—Mo1—Mo1iii 148.317 (7)
S2iii—Hg1—S2ii 180 Mo1xii—Mo1—Mo1ix 60.398 (6)
S2iii—Hg1—S2iv 66.681 (18) Mo1xii—Mo1—Mo1x 59.205 (7)
S2iii—Hg1—S2v 113.319 (18) Mo1xii—Mo1—Mo1xi 90
S2iii—Hg1—S2vi 66.681 (17) Mo1xii—Mo1—S1 115.964 (13)
S2iii—Hg1—S2vii 113.319 (17) Mo1xii—Mo1—S2 57.184 (12)
S2iv—Hg1—S2ii 113.319 (18) Mo1xii—Mo1—S2xiii 133.837 (19)
S2iv—Hg1—S2iii 66.681 (18) Mo1xii—Mo1—S2x 113.894 (15)
S2iv—Hg1—S2v 180 Mo1xii—Mo1—S2xii 55.318 (14)
S2iv—Hg1—S2vi 113.319 (19) S1—Mo1—S2 170.65 (2)
S2iv—Hg1—S2vii 66.681 (19) S1—Mo1—S2xiii 93.53 (2)
S2v—Hg1—S2ii 66.681 (18) S1—Mo1—S2x 90.323 (17)
S2v—Hg1—S2iii 113.319 (18) S1—Mo1—S2xii 91.758 (14)
S2v—Hg1—S2iv 180 S2—Mo1—S2xiii 95.79 (2)
S2v—Hg1—S2vi 66.681 (19) S2—Mo1—S2x 87.39 (2)
S2v—Hg1—S2vii 113.319 (19) S2—Mo1—S2xii 88.750 (19)
S2vi—Hg1—S2ii 113.319 (17) S2xiii—Mo1—S2 95.79 (2)
S2vi—Hg1—S2iii 66.681 (17) S2xiii—Mo1—S2x 99.70 (2)
S2vi—Hg1—S2iv 113.319 (19) S2xiii—Mo1—S2xii 91.39 (2)
S2vi—Hg1—S2v 66.681 (19) S2x—Mo1—S2 87.39 (2)
S2vi—Hg1—S2vii 180 S2x—Mo1—S2xiii 99.70 (2)
S2vii—Hg1—S2ii 66.681 (17) S2x—Mo1—S2xii 168.58 (2)
S2vii—Hg1—S2iii 113.319 (17) S2xii—Mo1—S2 88.750 (19)
S2vii—Hg1—S2iv 66.681 (19) S2xii—Mo1—S2xiii 91.39 (2)
S2vii—Hg1—S2v 113.319 (19) S2xii—Mo1—S2x 168.58 (2)
S2vii—Hg1—S2vi 180 Hg1—S1—Mo1 139.382 (14)
Mo1viii—Mo1—Mo1iii 133.459 (8) Hg1—S1—Mo1ix 139.382 (13)
Mo1viii—Mo1—S1 85.136 (14) Hg1—S1—Mo1xi 139.382 (14)
Mo1viii—Mo1—S2 85.600 (16) Mo1—S1—Mo1ix 68.64 (2)
Mo1viii—Mo1—S2xiii 176.394 (13) Mo1—S1—Mo1xi 68.64 (2)
Mo1viii—Mo1—S2x 83.677 (18) Mo1ix—S1—Mo1 68.64 (2)
Mo1viii—Mo1—S2xii 85.310 (16) Mo1ix—S1—Mo1xi 68.64 (2)
Mo1iii—Mo1—Mo1viii 133.459 (8) Mo1xi—S1—Mo1 68.64 (2)
Mo1iii—Mo1—Mo1ix 147.479 (10) Mo1xi—S1—Mo1ix 68.64 (2)
Mo1iii—Mo1—Mo1x 97.693 (7) Hg1xiv—S2—Mo1 125.450 (18)
Mo1iii—Mo1—Mo1xi 96.739 (8) Hg1xiv—S2—Mo1x 98.407 (18)
Mo1iii—Mo1—Mo1xii 148.317 (7) Hg1xiv—S2—Mo1xv 97.225 (18)
Mo1iii—Mo1—S1 92.988 (11) Hg1xiv—S2—Mo1xii 156.59 (2)
Mo1iii—Mo1—S2 92.457 (12) Mo1—S2—Mo1x 69.005 (19)
Mo1iii—Mo1—S2xiii 49.898 (13) Mo1—S2—Mo1xv 132.74 (2)
Mo1iii—Mo1—S2x 49.797 (18) Mo1—S2—Mo1xii 68.041 (15)
Mo1iii—Mo1—S2xii 141.203 (18) Mo1x—S2—Mo1 69.005 (19)
Mo1ix—Mo1—Mo1iii 147.479 (10) Mo1x—S2—Mo1xv 129.09 (2)
Mo1ix—Mo1—Mo1x 90 Mo1x—S2—Mo1xii 66.955 (19)
Mo1ix—Mo1—Mo1xi 60.000 (8) Mo1xv—S2—Mo1 132.74 (2)
Mo1ix—Mo1—Mo1xii 60.398 (6) Mo1xv—S2—Mo1x 129.09 (2)
Mo1ix—Mo1—S1 55.682 (11) Mo1xv—S2—Mo1xii 80.305 (15)
Mo1ix—Mo1—S2 117.489 (13) Mo1xii—S2—Mo1 68.041 (15)
Mo1ix—Mo1—S2xiii 131.337 (14) Mo1xii—S2—Mo1x 66.955 (19)
Mo1ix—Mo1—S2x 115.28 (2) Mo1xii—S2—Mo1xv 80.305 (15)
Mo1ix—Mo1—S2xii 57.566 (18)

Symmetry codes: (i) −x, −y, −z; (ii) x+1/3, y+2/3, z+2/3; (iii) −x−1/3, −y−2/3, −z−2/3; (iv) −y−2/3, xy−1/3, z+2/3; (v) y+2/3, −x+y+1/3, −z−2/3; (vi) −x+y+1/3, −x−1/3, z+2/3; (vii) xy−1/3, x+1/3, −z−2/3; (viii) −x, −y, −z−1; (ix) −y, xy, z; (x) y, −x+y, −z−1; (xi) −x+y, −x, z; (xii) xy, x, −z−1; (xiii) −y−1/3, xy−2/3, z+1/3; (xiv) x−1/3, y−2/3, z−2/3; (xv) −x+y+1/3, −x−1/3, z−1/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2226).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst.32, 115–119.
  2. Becker, P. J. & Coppens, P. (1974). Acta Cryst. A30, 129–147.
  3. Bergerhoff, G. (1996). DIAMOND University of Bonn, Germany.
  4. Chevrel, R. & Sergent, M. (1982). Superconductivity in Ternary Compounds, Vol. 1, edited by O. Fischer, pp. 25–86. New York: Springer.
  5. Duisenberg, A. J. M., Kroon-Batenburg, L. M. J. & Schreurs, A. M. M. (2003). J. Appl. Cryst.36, 220–229.
  6. Johnson, C. K. & Levy, H. A. (1974). International Tables for X-ray Crystallography, edited by J. A. Ibers & W. C. Hamilton, Vol. IV, pp. 311–336. Birmingham: Kynoch Press.
  7. Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. A19, 1014–1018.
  8. Nonius (1998). COLLECT Nonius BV, Delft, The Netherlands.
  9. Petříček, V. & Dušek, M. (2000). JANA2000 Institute of Physics, Praha, Czech Republic.
  10. Tarascon, J. M., Waszczak, J. V., Hull, G. W., DiSalvo, F. J. & Blitzer, L. D. (1983). Solid State Commun 47, 973–979.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809012495/wm2226sup1.cif

e-65-00i34-sup1.cif (15.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012495/wm2226Isup2.hkl

e-65-00i34-Isup2.hkl (45.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES