Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 18;65(Pt 5):m522. doi: 10.1107/S1600536809010174

[μ-10,21-Dimethyl-3,6,14,17-tetra­aza­tricyclo­[17.3.1.18,12]tetra­cosa-1(23),8(24),9,11,19,21-hexa­ene-23,24-diolato-κ8 N 3,N 6,O 23,O 24:N 14,N 17,O 23,O 24]bis­[(nitrato-κ2 O,O′)nickel(II)]

Quan-Jun Li a, Jian-Fang Ma a,*, Jie Liu a, Ting-Ting Han a
PMCID: PMC2977579  PMID: 21583765

Abstract

In the title centrosymmetric dinuclear nickel complex, [Ni2(C22H30N4O2)(NO3)2], each of the two NiII atoms has a distorted octa­hedral geometry, defined by two N atoms and two O atoms from the macrocyclic ligand and two O atoms from a chelating nitrate anion. The two Ni atoms are bridged by two phenolate O atoms, forming a four-membered Ni2O2 ring.

Related literature

For general background, see: Caldwell & Crumbliss (1998); Rosa et al. (1998). For related structures, see: Aromi et al. (2002). For the ligand synthesis, see: Mandal & Nag (1986).graphic file with name e-65-0m522-scheme1.jpg

Experimental

Crystal data

  • [Ni2(C22H30N4O2)(NO3)2]

  • M r = 623.90

  • Trigonal, Inline graphic

  • a = 25.020 (5) Å

  • c = 10.616 (5) Å

  • V = 5755 (3) Å3

  • Z = 9

  • Mo Kα radiation

  • μ = 1.53 mm−1

  • T = 293 K

  • 0.40 × 0.30 × 0.25 mm

Data collection

  • Bruker APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.495, T max = 0.609 (expected range = 0.554–0.682)

  • 9432 measured reflections

  • 2213 independent reflections

  • 1745 reflections with I > 2σ(I)

  • R int = 0.107

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.117

  • S = 1.03

  • 2213 reflections

  • 178 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 1.06 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010174/hy2188sup1.cif

e-65-0m522-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010174/hy2188Isup2.hkl

e-65-0m522-Isup2.hkl (106.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni1—O1 2.000 (2)
Ni1—O1i 2.006 (2)
Ni1—N2 2.038 (3)
Ni1—N1 2.054 (3)
Ni1—O3 2.134 (3)
Ni1—O2 2.183 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the National Natural Science Foundation of China (grant No. 20471014), the Program for New Century Excellent Talents in Chinese Universities (grant No. NCET-05-0320), the Fok Ying Tung Education Foundation and the Analysis and Testing Foundation of Northeast Normal University for support.

supplementary crystallographic information

Comment

Crown ether compounds have attracted much interest as a result of their significance in biological transport systems (Caldwell & Crumbliss, 1998). In addition, crown ether compounds are found to have functions in selective molecular recognition (Rosa et al., 1998). To further widen the scope of applications of crown ether, there is a need to prepare new series of crown ether compounds. In this work, a new dinuclear nickel(II) compound has been synthesized and its struture is reported here.

As shown in Fig. 1, the title compound is a centrosymmetric dinuclear nickel complex. The coordination environment around each NiII atom is distorted octahedral, with one N atom and one O atom from the macrocyclic ligand and two O atoms from the nitrate anion occupying the equatorial plane, and the other N atom and O atom from the ligand occupying the axial positions. In the complex molecule, two Ni atoms are bridged by two phenolate O atoms, generating a four-membered Ni2O2 ring, with a Ni···Ni distance of 2.9737 (10) Å. The Ni—O and Ni—N distances are normal (Aromi et al., 2002).

Experimental

The macrocyclic ligand, C22H32N4O2 (H2L), was prepared by the reported procedure (Mandal & Nag, 1986). A mixture of H2L (0.10 g, 0.26 mmol) and Ni(NO3)2.6H2O (0.15 g, 0.52 mmol) in methanol (20 ml) was stirred for 10 min. The resulting solution was filtered. Green single crystals were obtained by slow evaporation of the filtrate at room temperature (yield 56%).

Refinement

H atoms bound to C atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 (aromatic), 0.97 (CH2) and 0.96 (CH3) Å and with Uiso = 1.2(1.5 for methyl)Ueq(C). The imino H atoms were located in a difference Fourier map and refined with Uiso(H) = 0.128 Å2. The highest residual electron density was found 1.03Å from Ni1 and the deepest hole 0.76 Å from Ni1.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound. Displacement ellipsoids are draw at the 30% probability level. H atoms have been omitted for clarity. [Symmetry code: (i) -x + 2/3, -y + 1/3, -z + 1/3.]

Crystal data

[Ni2(C22H30N4O2)(NO3)2] Dx = 1.620 Mg m3
Mr = 623.90 Mo Kα radiation, λ = 0.71069 Å
Trigonal, R3 Cell parameters from 3000 reflections
Hall symbol: -R 3 θ = 2.4–28.4°
a = 25.020 (5) Å µ = 1.53 mm1
c = 10.616 (5) Å T = 293 K
V = 5755 (3) Å3 Block, green
Z = 9 0.40 × 0.30 × 0.25 mm
F(000) = 2916

Data collection

Bruker APEX CCD diffractometer 2213 independent reflections
Radiation source: fine-focus sealed tube 1745 reflections with I > 2σ(I)
graphite Rint = 0.107
φ and ω scans θmax = 24.9°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −15→29
Tmin = 0.495, Tmax = 0.609 k = −29→23
9432 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.117 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.066P)2] where P = (Fo2 + 2Fc2)/3
2213 reflections (Δ/σ)max = 0.007
178 parameters Δρmax = 1.06 e Å3
1 restraint Δρmin = −0.35 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.355561 (19) 0.13534 (2) 0.25357 (4) 0.03150 (19)
C1 0.04882 (19) −0.0620 (2) 0.3314 (4) 0.0658 (13)
H1A 0.0488 −0.0770 0.4147 0.099*
H1B 0.0372 −0.0948 0.2717 0.099*
H1C 0.0199 −0.0475 0.3276 0.099*
C2 0.11262 (17) −0.00973 (17) 0.3005 (3) 0.0431 (9)
C3 0.12561 (16) 0.01995 (17) 0.1862 (3) 0.0410 (9)
H3 0.0947 0.0056 0.1255 0.049*
C4 0.18315 (15) 0.07079 (16) 0.1570 (3) 0.0353 (8)
C5 0.22847 (15) 0.09460 (15) 0.2510 (3) 0.0347 (8)
C6 0.16018 (17) 0.01062 (17) 0.3868 (3) 0.0446 (9)
H6 0.1536 −0.0111 0.4617 0.054*
C7 0.21738 (16) 0.06230 (16) 0.3656 (3) 0.0374 (8)
C8 0.26663 (17) 0.08766 (18) 0.4652 (3) 0.0443 (9)
H8A 0.2746 0.1284 0.4892 0.053*
H8B 0.2515 0.0614 0.5391 0.053*
C9 0.37778 (18) 0.13034 (17) 0.5104 (3) 0.0430 (9)
H9A 0.4112 0.1221 0.4949 0.052*
H9B 0.3646 0.1196 0.5972 0.052*
C10 0.40046 (18) 0.19842 (17) 0.4892 (3) 0.0421 (9)
H10A 0.3704 0.2085 0.5224 0.050*
H10B 0.4390 0.2230 0.5342 0.050*
C11 0.47350 (15) 0.23666 (16) 0.3077 (3) 0.0383 (8)
H11A 0.4824 0.2031 0.3091 0.046*
H11B 0.5022 0.2685 0.3644 0.046*
N1 0.32528 (14) 0.09201 (14) 0.4244 (3) 0.0377 (7)
N2 0.41009 (14) 0.21377 (13) 0.3532 (2) 0.0355 (7)
N3 0.37310 (14) 0.05216 (15) 0.1596 (3) 0.0479 (8)
O1 0.28230 (10) 0.14687 (10) 0.23716 (19) 0.0342 (5)
O2 0.41509 (12) 0.09599 (12) 0.2220 (2) 0.0455 (6)
O3 0.32302 (12) 0.05220 (12) 0.1480 (2) 0.0459 (6)
O4 0.38022 (15) 0.01126 (15) 0.1141 (4) 0.0853 (11)
HN1 0.320 (3) 0.055 (3) 0.423 (6) 0.128*
HN2 0.401 (3) 0.242 (2) 0.336 (6) 0.128*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0299 (3) 0.0299 (3) 0.0353 (3) 0.0154 (2) −0.00202 (16) 0.00065 (16)
C1 0.041 (3) 0.060 (3) 0.081 (3) 0.014 (2) 0.014 (2) 0.004 (2)
C2 0.037 (2) 0.035 (2) 0.052 (2) 0.0137 (17) 0.0119 (16) −0.0027 (16)
C3 0.033 (2) 0.038 (2) 0.055 (2) 0.0200 (18) −0.0023 (16) −0.0069 (16)
C4 0.0299 (19) 0.0322 (19) 0.0451 (18) 0.0165 (16) 0.0011 (14) −0.0002 (14)
C5 0.0322 (19) 0.033 (2) 0.0424 (18) 0.0193 (17) 0.0038 (14) −0.0001 (14)
C6 0.044 (2) 0.042 (2) 0.049 (2) 0.022 (2) 0.0114 (17) 0.0067 (16)
C7 0.037 (2) 0.037 (2) 0.0402 (18) 0.0193 (17) 0.0053 (15) 0.0017 (14)
C8 0.043 (2) 0.051 (2) 0.0380 (18) 0.024 (2) 0.0040 (15) 0.0054 (16)
C9 0.047 (2) 0.045 (2) 0.0366 (18) 0.0226 (19) −0.0053 (15) 0.0029 (15)
C10 0.048 (2) 0.043 (2) 0.0359 (18) 0.0227 (19) −0.0046 (15) −0.0049 (15)
C11 0.033 (2) 0.034 (2) 0.049 (2) 0.0181 (17) −0.0105 (15) −0.0059 (15)
N1 0.0404 (18) 0.0370 (18) 0.0381 (14) 0.0211 (16) −0.0010 (12) 0.0024 (13)
N2 0.0366 (17) 0.0327 (17) 0.0383 (15) 0.0182 (15) −0.0035 (12) −0.0001 (12)
N3 0.0349 (19) 0.040 (2) 0.067 (2) 0.0180 (16) −0.0012 (15) −0.0111 (16)
O1 0.0289 (13) 0.0311 (13) 0.0408 (12) 0.0137 (11) −0.0007 (10) 0.0025 (10)
O2 0.0341 (14) 0.0377 (15) 0.0634 (16) 0.0171 (13) −0.0070 (12) −0.0076 (12)
O3 0.0329 (15) 0.0434 (16) 0.0570 (15) 0.0159 (13) −0.0059 (11) −0.0075 (11)
O4 0.058 (2) 0.062 (2) 0.139 (3) 0.0324 (18) −0.0003 (19) −0.048 (2)

Geometric parameters (Å, °)

Ni1—O1 2.000 (2) C7—C8 1.502 (5)
Ni1—O1i 2.006 (2) C8—N1 1.481 (5)
Ni1—N2 2.038 (3) C8—H8A 0.9700
Ni1—N1 2.054 (3) C8—H8B 0.9700
Ni1—O3 2.134 (3) C9—N1 1.489 (4)
Ni1—O2 2.183 (3) C9—C10 1.519 (5)
Ni1—Ni1i 2.9737 (10) C9—H9A 0.9700
C1—C2 1.510 (5) C9—H9B 0.9700
C1—H1A 0.9600 C10—N2 1.483 (4)
C1—H1B 0.9600 C10—H10A 0.9700
C1—H1C 0.9600 C10—H10B 0.9700
C2—C3 1.374 (5) C11—N2 1.473 (4)
C2—C6 1.382 (5) C11—C4i 1.505 (5)
C3—C4 1.398 (5) C11—H11A 0.9700
C3—H3 0.9300 C11—H11B 0.9700
C4—C5 1.400 (5) N1—HN1 0.87 (6)
C4—C11i 1.505 (5) N2—HN2 0.86 (6)
C5—O1 1.336 (4) N3—O4 1.223 (4)
C5—C7 1.408 (5) N3—O3 1.260 (4)
C6—C7 1.386 (5) N3—O2 1.262 (4)
C6—H6 0.9300
O1—Ni1—O1i 84.17 (9) N1—C8—C7 113.5 (3)
O1—Ni1—N2 97.29 (10) N1—C8—H8A 108.9
O1i—Ni1—N2 87.95 (10) C7—C8—H8A 108.9
O1—Ni1—N1 91.74 (10) N1—C8—H8B 108.9
O1i—Ni1—N1 172.81 (10) C7—C8—H8B 108.9
N2—Ni1—N1 86.72 (12) H8A—C8—H8B 107.7
O1—Ni1—O3 99.46 (9) N1—C9—C10 110.3 (3)
O1i—Ni1—O3 91.39 (10) N1—C9—H9A 109.6
N2—Ni1—O3 163.09 (11) C10—C9—H9A 109.6
N1—Ni1—O3 95.11 (11) N1—C9—H9B 109.6
O1—Ni1—O2 158.83 (9) C10—C9—H9B 109.6
O1i—Ni1—O2 92.93 (9) H9A—C9—H9B 108.1
N2—Ni1—O2 103.57 (11) N2—C10—C9 110.8 (3)
N1—Ni1—O2 92.99 (11) N2—C10—H10A 109.5
O3—Ni1—O2 59.57 (10) C9—C10—H10A 109.5
O1—Ni1—Ni1i 42.16 (6) N2—C10—H10B 109.5
O1i—Ni1—Ni1i 42.01 (6) C9—C10—H10B 109.5
N2—Ni1—Ni1i 93.51 (8) H10A—C10—H10B 108.1
N1—Ni1—Ni1i 133.62 (9) N2—C11—C4i 112.7 (3)
O3—Ni1—Ni1i 97.29 (7) N2—C11—H11A 109.0
O2—Ni1—Ni1i 131.44 (7) C4i—C11—H11A 109.0
C2—C1—H1A 109.5 N2—C11—H11B 109.0
C2—C1—H1B 109.5 C4i—C11—H11B 109.0
H1A—C1—H1B 109.5 H11A—C11—H11B 107.8
C2—C1—H1C 109.5 C8—N1—C9 113.0 (3)
H1A—C1—H1C 109.5 C8—N1—Ni1 112.8 (2)
H1B—C1—H1C 109.5 C9—N1—Ni1 103.2 (2)
C3—C2—C6 117.3 (3) C8—N1—HN1 108 (4)
C3—C2—C1 121.5 (4) C9—N1—HN1 108 (4)
C6—C2—C1 121.2 (4) Ni1—N1—HN1 112 (4)
C2—C3—C4 123.0 (3) C11—N2—C10 115.1 (3)
C2—C3—H3 118.5 C11—N2—Ni1 106.0 (2)
C4—C3—H3 118.5 C10—N2—Ni1 108.2 (2)
C3—C4—C5 118.4 (3) C11—N2—HN2 107 (4)
C3—C4—C11i 118.1 (3) C10—N2—HN2 110 (4)
C5—C4—C11i 123.5 (3) Ni1—N2—HN2 110 (4)
O1—C5—C4 122.9 (3) O4—N3—O3 121.5 (3)
O1—C5—C7 118.0 (3) O4—N3—O2 121.9 (3)
C4—C5—C7 119.1 (3) O3—N3—O2 116.6 (3)
C2—C6—C7 122.2 (3) C5—O1—Ni1 113.40 (19)
C2—C6—H6 118.9 C5—O1—Ni1i 125.52 (19)
C7—C6—H6 118.9 Ni1—O1—Ni1i 95.83 (9)
C6—C7—C5 119.4 (3) N3—O2—Ni1 90.8 (2)
C6—C7—C8 121.7 (3) N3—O3—Ni1 93.11 (19)
C5—C7—C8 118.7 (3)
C6—C2—C3—C4 −3.1 (5) O2—Ni1—N2—C11 32.8 (2)
C1—C2—C3—C4 176.2 (4) Ni1i—Ni1—N2—C11 −101.34 (19)
C2—C3—C4—C5 −3.7 (5) O1—Ni1—N2—C10 92.5 (2)
C2—C3—C4—C11i 175.9 (3) O1i—Ni1—N2—C10 176.3 (2)
C3—C4—C5—O1 −172.4 (3) N1—Ni1—N2—C10 1.1 (2)
C11i—C4—C5—O1 8.1 (5) O3—Ni1—N2—C10 −95.6 (4)
C3—C4—C5—C7 7.8 (5) O2—Ni1—N2—C10 −91.1 (2)
C11i—C4—C5—C7 −171.7 (3) Ni1i—Ni1—N2—C10 134.7 (2)
C3—C2—C6—C7 5.8 (5) C4—C5—O1—Ni1 −120.4 (3)
C1—C2—C6—C7 −173.5 (4) C7—C5—O1—Ni1 59.4 (3)
C2—C6—C7—C5 −1.7 (5) C4—C5—O1—Ni1i −4.0 (4)
C2—C6—C7—C8 173.8 (3) C7—C5—O1—Ni1i 175.8 (2)
O1—C5—C7—C6 174.9 (3) O1i—Ni1—O1—C5 132.9 (2)
C4—C5—C7—C6 −5.2 (5) N2—Ni1—O1—C5 −139.9 (2)
O1—C5—C7—C8 −0.7 (5) N1—Ni1—O1—C5 −53.0 (2)
C4—C5—C7—C8 179.1 (3) O3—Ni1—O1—C5 42.4 (2)
C6—C7—C8—N1 123.4 (4) O2—Ni1—O1—C5 49.8 (3)
C5—C7—C8—N1 −61.0 (4) Ni1i—Ni1—O1—C5 132.9 (2)
N1—C9—C10—N2 −48.9 (4) O1i—Ni1—O1—Ni1i 0.0
C7—C8—N1—C9 166.4 (3) N2—Ni1—O1—Ni1i 87.17 (11)
C7—C8—N1—Ni1 49.9 (4) N1—Ni1—O1—Ni1i 174.08 (11)
C10—C9—N1—C8 −76.0 (4) O3—Ni1—O1—Ni1i −90.44 (10)
C10—C9—N1—Ni1 46.1 (3) O2—Ni1—O1—Ni1i −83.0 (3)
N2—Ni1—N1—C8 96.4 (2) O4—N3—O2—Ni1 −179.5 (4)
O3—Ni1—N1—C8 −100.4 (2) O3—N3—O2—Ni1 −0.4 (3)
O2—Ni1—N1—C8 −160.1 (2) O1—Ni1—O2—N3 −8.2 (4)
Ni1i—Ni1—N1—C8 4.7 (3) O1i—Ni1—O2—N3 −89.6 (2)
N2—Ni1—N1—C9 −25.8 (2) N2—Ni1—O2—N3 −178.2 (2)
O3—Ni1—N1—C9 137.3 (2) N1—Ni1—O2—N3 94.4 (2)
O2—Ni1—N1—C9 77.6 (2) O3—Ni1—O2—N3 0.24 (19)
Ni1i—Ni1—N1—C9 −117.5 (2) Ni1i—Ni1—O2—N3 −71.0 (2)
C4i—C11—N2—C10 −169.3 (3) O4—N3—O3—Ni1 179.5 (4)
C4i—C11—N2—Ni1 71.2 (3) O2—N3—O3—Ni1 0.4 (3)
C9—C10—N2—C11 −94.0 (4) O1—Ni1—O3—N3 176.7 (2)
C9—C10—N2—Ni1 24.3 (4) O1i—Ni1—O3—N3 92.3 (2)
O1—Ni1—N2—C11 −143.54 (19) N2—Ni1—O3—N3 4.8 (5)
O1i—Ni1—N2—C11 −59.7 (2) N1—Ni1—O3—N3 −90.7 (2)
N1—Ni1—N2—C11 125.1 (2) O2—Ni1—O3—N3 −0.24 (19)
O3—Ni1—N2—C11 28.3 (5) Ni1i—Ni1—O3—N3 134.08 (19)

Symmetry codes: (i) −x+2/3, −y+1/3, −z+1/3.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2188).

References

  1. Aromi, G., Gamez, P., Roubeau, O., Carrero-Berzal, P., Kooijrnan, H. L., Spek, A. L., Driesser, W. & Reeddijk, J. (2002). Eur. J. Inorg. Chem.5, 1046–1048.
  2. Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Caldwell, D. C. & Crumbliss, L. A. (1998). Inorg. Chem.37, 1906–1912.
  4. Mandal, S. K. & Nag, K. (1986). J. Org. Chem.51, 3900–3902.
  5. Rosa, T. D., Young, G. V. & Coucouvanis, D. (1998). Inorg. Chem.37, 5042–5043.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809010174/hy2188sup1.cif

e-65-0m522-sup1.cif (19.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809010174/hy2188Isup2.hkl

e-65-0m522-Isup2.hkl (106.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES