Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 18;65(Pt 5):m523–m524. doi: 10.1107/S1600536809013208

mer-(3,5-Dichloro-2-oxidobenzaldehyde thio­semicarbazonato-κ3 S,N 1,O)(methanol-κO)(1,10-phenanthroline-κ2 N,N′)nickel(II)

J Y Gao a, Z Liu a,*, Y Wang a
PMCID: PMC2977580  PMID: 21583766

Abstract

In the title compound, [Ni(C8H5Cl2N3OS)(C12H8N2)(CH3OH)], the NiII atom is octa­hedrally coordinated by one N, one O and one S atom from a 3,5-dichloro-2-oxidobenzaldehyde thio­semicarbazonate ligand, another O atom from methanol and another two N atoms from 1,10-phenanthroline. The crystal structure is constructed by N—H⋯Cl, N—H⋯N, C—H⋯S and O—H⋯S hydrogen bonds.

Related literature

For nickel complexes with salicylic aldehyde thio­semi­carbazone ligands, see: Dapporto et al. (1984); Schulte et al. (1991); García-Reynaldos et al. (2007); Kolotilov et al. (2007); Qiu & Wu (2004). For related Cu(II) compounds with a distorted octahedral coordination as a result of the Jahn–Teller effect, see: García-Orozco et al. (2002). For bond-length data, see: Orpen et al. (1989). For related structures, see: Seena & Kurup (2007); Wang et al. (2008); Zhang et al. (2007).graphic file with name e-65-0m523-scheme1.jpg

Experimental

Crystal data

  • [Ni(C8H5Cl2N3OS)(C12H8N2)(CH4O)]

  • M r = 533.07

  • Monoclinic, Inline graphic

  • a = 12.058 (1) Å

  • b = 12.946 (1) Å

  • c = 14.973 (2) Å

  • β = 105.918 (1)°

  • V = 2247.6 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.22 mm−1

  • T = 298 K

  • 0.30 × 0.28 × 0.13 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.710, T max = 0.857

  • 10910 measured reflections

  • 3951 independent reflections

  • 2708 reflections with I > 2σ(I)

  • R int = 0.040

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.119

  • S = 1.06

  • 3951 reflections

  • 289 parameters

  • H-atom parameters constrained

  • Δρmax = 0.64 e Å−3

  • Δρmin = −0.37 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809013208/im2109sup1.cif

e-65-0m523-sup1.cif (24.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013208/im2109Isup2.hkl

e-65-0m523-Isup2.hkl (193.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯S1i 0.82 2.49 3.310 (3) 174
N3—H3A⋯N2ii 0.86 2.24 3.087 (4) 170
N3—H3B⋯Cl1iii 0.86 2.86 3.573 (2) 142
C11—H11⋯S1iv 0.93 2.81 3.593 (5) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

We acknowledge financial support by the Key Laboratory of Non-ferrous Metal Materials and New Processing Technology, Ministry of Education, P. R. China.

supplementary crystallographic information

Comment

As a special kind of Schiff bases, thiosemicarbazones and their metal complexes have become the subjects of intensive study because of their wide ranging biological activities, analytical applications and interesting chemical and structural properties. By now there are not many nickel complexes with salicylic aldehyde thiosemicarbazone ligands [Dapporto et al. (1984); Schulte et al. (1991); García-Reynaldos et al. (2007); Kolotilov et al. (2007); Qiu et al. (2004)]. The additional use of 1,10-phenanthroline as the third ligand depicts another structural type.

In (I), the NiII atom is coordinated by one N, one O and one S atom from the tridentate dianionic 3,5-dichlorosalicylaldehyde thiosemicarbazonato ligand, one O atom from methanol and two N atoms from phen. The six atoms form a distorted octahedral coordination sphere around the metal because of Jahn-Teller effect (García-Orozco et al., 2002). The Ni—S bond length is 2.358 (1) Å, which is very close to 2.295Å (Orpen et al. 1989). The three-dimensional network of (I) is established by N–H···Cl, N–H···N, C–H···S and O–H···S hydrogen bonds (Fig.2).

Experimental

A solution of 3,5-dichlorosalicylaldehyde (10 mmol) in EtOH (30 ml) was added dropwise to an aqueous solution (25 ml) of thiosemicarbazide (10 mmol) and 1.5 ml acetic anhydride with stirring at ca 70° C for 4.5 h. The light brown precipitate was removed by filtration and recrystallized from 1:1 (v/v) MeOH/EtOH. Then a mixture of the ligand (1 mmol) and nickel nitrate (1 mmol) in MeOH (35 ml) was stirred at ca 65° C for 2 h. After 1,10-phenanthroline (1 mmol) was added to the mixture heating was continued for another 2 h. The Ni complex was dissolved in DMF and the resulting red solution was filtrated. After 4 days, red block crystals were obtained by slow evaporation of the solvent from the filtrate.

Refinement

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C-H distances of 0.93-0.96Å, N-H distances of 0.86Å and O-H distances of 0.82Å,respectively, and Uiso(H) = 1.2-1.5Ueq(C), Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing 30% probability displacement ellipsoids. Carbon-bound H atoms have been omitted.

Fig. 2.

Fig. 2.

Three-dimensional network of (I), broken lines show N–H···Cl, N–H···N, C–H···S and O–H···S hydrogen bonds.

Crystal data

[Ni(C8H5Cl2N3OS)(C12H8N2)(CH4O)] F(000) = 1088
Mr = 533.07 Dx = 1.575 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 12.058 (1) Å Cell parameters from 3309 reflections
b = 12.946 (1) Å θ = 3.6–25.3°
c = 14.973 (2) Å µ = 1.22 mm1
β = 105.918 (1)° T = 298 K
V = 2247.6 (4) Å3 Block, red
Z = 4 0.30 × 0.28 × 0.13 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3951 independent reflections
Radiation source: fine-focus sealed tube 2708 reflections with I > 2σ(I)
graphite Rint = 0.040
φ and ω scans θmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −13→14
Tmin = 0.710, Tmax = 0.857 k = −15→14
10910 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119 H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0487P)2 + 1.8417P] where P = (Fo2 + 2Fc2)/3
3951 reflections (Δ/σ)max = 0.001
289 parameters Δρmax = 0.64 e Å3
0 restraints Δρmin = −0.37 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.79152 (4) 0.87614 (4) 0.19294 (3) 0.03473 (17)
S1 0.73435 (9) 1.01246 (8) 0.27489 (7) 0.0455 (3)
Cl1 0.88829 (11) 0.63336 (11) −0.01564 (9) 0.0725 (4)
Cl2 1.32931 (13) 0.62176 (14) 0.18947 (12) 0.0989 (6)
N1 0.9387 (3) 0.8831 (2) 0.2981 (2) 0.0352 (7)
N2 0.9476 (3) 0.9456 (3) 0.3753 (2) 0.0431 (8)
N3 0.8598 (3) 1.0689 (3) 0.4404 (2) 0.0646 (12)
H3A 0.9190 1.0694 0.4881 0.077*
H3B 0.8024 1.1090 0.4385 0.077*
N4 0.6453 (3) 0.8694 (2) 0.0803 (2) 0.0362 (7)
N5 0.8398 (3) 0.9774 (2) 0.1016 (2) 0.0400 (8)
O1 0.8512 (2) 0.7563 (2) 0.13516 (18) 0.0420 (7)
O2 0.7231 (3) 0.7590 (2) 0.2641 (2) 0.0538 (8)
H2 0.7287 0.6980 0.2512 0.081*
C1 1.0316 (3) 0.8325 (3) 0.3000 (3) 0.0394 (10)
H1 1.0940 0.8421 0.3519 0.047*
C2 1.0484 (3) 0.7622 (3) 0.2296 (3) 0.0382 (9)
C3 0.9579 (3) 0.7308 (3) 0.1505 (3) 0.0378 (9)
C4 0.9926 (4) 0.6668 (3) 0.0864 (3) 0.0483 (11)
C5 1.1037 (4) 0.6326 (4) 0.0978 (3) 0.0584 (12)
H5 1.1217 0.5898 0.0539 0.070*
C6 1.1881 (4) 0.6634 (4) 0.1761 (3) 0.0579 (12)
C7 1.1614 (4) 0.7264 (3) 0.2404 (3) 0.0503 (11)
H7 1.2194 0.7461 0.2926 0.060*
C8 0.8571 (3) 1.0056 (3) 0.3689 (3) 0.0418 (10)
C9 0.5507 (4) 0.8126 (3) 0.0704 (3) 0.0480 (11)
H9 0.5425 0.7747 0.1209 0.058*
C10 0.4635 (4) 0.8078 (4) −0.0128 (3) 0.0587 (13)
H10 0.3990 0.7665 −0.0175 0.070*
C11 0.4735 (4) 0.8640 (3) −0.0866 (3) 0.0560 (13)
H11 0.4154 0.8615 −0.1423 0.067*
C12 0.5710 (4) 0.9260 (3) −0.0794 (3) 0.0460 (11)
C13 0.6555 (3) 0.9246 (3) 0.0063 (3) 0.0371 (9)
C14 0.7589 (3) 0.9836 (3) 0.0181 (3) 0.0385 (9)
C15 0.7722 (4) 1.0463 (3) −0.0550 (3) 0.0501 (11)
C16 0.8737 (5) 1.1054 (4) −0.0371 (3) 0.0611 (13)
H16 0.8860 1.1489 −0.0829 0.073*
C17 0.9543 (4) 1.0995 (4) 0.0467 (4) 0.0631 (14)
H17 1.0213 1.1387 0.0588 0.076*
C18 0.9340 (4) 1.0331 (4) 0.1140 (3) 0.0532 (12)
H18 0.9900 1.0281 0.1706 0.064*
C19 0.5891 (4) 0.9883 (4) −0.1528 (3) 0.0591 (13)
H19 0.5339 0.9884 −0.2101 0.071*
C20 0.6836 (5) 1.0465 (4) −0.1410 (3) 0.0614 (13)
H20 0.6918 1.0879 −0.1896 0.074*
C21 0.6611 (6) 0.7670 (5) 0.3301 (5) 0.108 (2)
H21A 0.7122 0.7870 0.3888 0.162*
H21B 0.6267 0.7015 0.3365 0.162*
H21C 0.6017 0.8181 0.3105 0.162*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0340 (3) 0.0319 (3) 0.0326 (3) 0.0002 (2) −0.0005 (2) −0.0013 (2)
S1 0.0426 (6) 0.0409 (6) 0.0424 (6) 0.0096 (5) −0.0065 (5) −0.0087 (5)
Cl1 0.0662 (8) 0.0739 (9) 0.0733 (9) −0.0054 (7) 0.0119 (6) −0.0356 (7)
Cl2 0.0624 (9) 0.1247 (14) 0.1059 (12) 0.0483 (9) 0.0165 (8) −0.0035 (10)
N1 0.0361 (18) 0.0347 (18) 0.0302 (16) 0.0029 (15) 0.0015 (13) 0.0019 (14)
N2 0.043 (2) 0.044 (2) 0.0340 (18) 0.0084 (16) −0.0028 (15) −0.0093 (15)
N3 0.060 (2) 0.074 (3) 0.047 (2) 0.022 (2) −0.0076 (18) −0.026 (2)
N4 0.0354 (18) 0.0324 (18) 0.0366 (18) 0.0010 (15) 0.0028 (14) −0.0042 (15)
N5 0.0381 (18) 0.0372 (19) 0.0400 (19) −0.0003 (15) 0.0025 (15) 0.0009 (15)
O1 0.0351 (16) 0.0375 (16) 0.0496 (16) −0.0010 (12) 0.0051 (12) −0.0068 (13)
O2 0.071 (2) 0.0428 (18) 0.0553 (19) −0.0042 (16) 0.0301 (16) 0.0033 (15)
C1 0.034 (2) 0.045 (2) 0.031 (2) 0.0009 (19) −0.0040 (17) 0.0041 (18)
C2 0.041 (2) 0.033 (2) 0.039 (2) 0.0036 (18) 0.0088 (18) 0.0083 (17)
C3 0.044 (2) 0.027 (2) 0.044 (2) −0.0016 (18) 0.0137 (19) 0.0038 (17)
C4 0.053 (3) 0.035 (2) 0.056 (3) −0.001 (2) 0.012 (2) −0.007 (2)
C5 0.064 (3) 0.047 (3) 0.070 (3) 0.011 (2) 0.028 (3) −0.007 (2)
C6 0.047 (3) 0.058 (3) 0.069 (3) 0.018 (2) 0.016 (2) 0.009 (3)
C7 0.046 (3) 0.051 (3) 0.050 (3) 0.011 (2) 0.006 (2) 0.010 (2)
C8 0.040 (2) 0.041 (2) 0.037 (2) 0.0004 (19) −0.0015 (18) −0.0050 (18)
C9 0.043 (3) 0.042 (3) 0.056 (3) −0.003 (2) 0.008 (2) −0.006 (2)
C10 0.038 (3) 0.054 (3) 0.070 (3) −0.003 (2) −0.009 (2) −0.013 (3)
C11 0.047 (3) 0.050 (3) 0.053 (3) 0.011 (2) −0.017 (2) −0.016 (2)
C12 0.049 (3) 0.045 (3) 0.035 (2) 0.010 (2) −0.0034 (19) −0.0093 (19)
C13 0.043 (2) 0.030 (2) 0.034 (2) 0.0076 (18) 0.0038 (18) −0.0036 (17)
C14 0.046 (2) 0.033 (2) 0.035 (2) 0.0056 (18) 0.0080 (18) −0.0007 (17)
C15 0.058 (3) 0.044 (3) 0.049 (3) 0.008 (2) 0.016 (2) 0.007 (2)
C16 0.076 (4) 0.052 (3) 0.063 (3) 0.004 (3) 0.031 (3) 0.018 (2)
C17 0.060 (3) 0.051 (3) 0.077 (4) −0.013 (2) 0.017 (3) 0.009 (3)
C18 0.045 (3) 0.054 (3) 0.054 (3) −0.009 (2) 0.003 (2) 0.002 (2)
C19 0.070 (3) 0.061 (3) 0.036 (2) 0.015 (3) −0.004 (2) −0.002 (2)
C20 0.080 (4) 0.064 (3) 0.037 (3) 0.019 (3) 0.012 (2) 0.012 (2)
C21 0.132 (6) 0.090 (5) 0.108 (5) −0.016 (4) 0.043 (5) 0.021 (4)

Geometric parameters (Å, °)

Ni1—O1 2.004 (3) C5—C6 1.383 (6)
Ni1—N1 2.026 (3) C5—H5 0.9300
Ni1—N4 2.081 (3) C6—C7 1.366 (6)
Ni1—N5 2.089 (3) C7—H7 0.9300
Ni1—O2 2.145 (3) C9—C10 1.393 (6)
Ni1—S1 2.3578 (11) C9—H9 0.9300
S1—C8 1.743 (4) C10—C11 1.357 (7)
Cl1—C4 1.746 (4) C10—H10 0.9300
Cl2—C6 1.745 (5) C11—C12 1.403 (6)
N1—C1 1.290 (5) C11—H11 0.9300
N1—N2 1.391 (4) C12—C13 1.403 (5)
N2—C8 1.321 (5) C12—C19 1.427 (6)
N3—C8 1.342 (5) C13—C14 1.430 (5)
N3—H3A 0.8600 C14—C15 1.406 (6)
N3—H3B 0.8600 C15—C16 1.405 (6)
N4—C9 1.331 (5) C15—C20 1.430 (6)
N4—C13 1.353 (5) C16—C17 1.362 (6)
N5—C18 1.314 (5) C16—H16 0.9300
N5—C14 1.362 (5) C17—C18 1.396 (6)
O1—C3 1.286 (4) C17—H17 0.9300
O2—C21 1.398 (7) C18—H18 0.9300
O2—H2 0.8200 C19—C20 1.338 (7)
C1—C2 1.448 (5) C19—H19 0.9300
C1—H1 0.9300 C20—H20 0.9300
C2—C7 1.407 (5) C21—H21A 0.9600
C2—C3 1.433 (5) C21—H21B 0.9600
C3—C4 1.415 (6) C21—H21C 0.9600
C4—C5 1.376 (6)
O1—Ni1—N1 91.59 (11) C5—C6—Cl2 118.4 (4)
O1—Ni1—N4 86.69 (11) C6—C7—C2 121.6 (4)
N1—Ni1—N4 177.11 (12) C6—C7—H7 119.2
O1—Ni1—N5 90.32 (12) C2—C7—H7 119.2
N1—Ni1—N5 97.97 (12) N2—C8—N3 117.6 (3)
N4—Ni1—N5 79.74 (12) N2—C8—S1 126.2 (3)
O1—Ni1—O2 84.23 (11) N3—C8—S1 116.3 (3)
N1—Ni1—O2 91.15 (12) N4—C9—C10 122.5 (4)
N4—Ni1—O2 90.98 (12) N4—C9—H9 118.7
N5—Ni1—O2 169.51 (12) C10—C9—H9 118.7
O1—Ni1—S1 174.34 (8) C11—C10—C9 119.4 (4)
N1—Ni1—S1 83.20 (9) C11—C10—H10 120.3
N4—Ni1—S1 98.62 (9) C9—C10—H10 120.3
N5—Ni1—S1 92.58 (10) C10—C11—C12 120.2 (4)
O2—Ni1—S1 93.65 (9) C10—C11—H11 119.9
C8—S1—Ni1 94.43 (14) C12—C11—H11 119.9
C1—N1—N2 114.1 (3) C13—C12—C11 116.5 (4)
C1—N1—Ni1 124.4 (3) C13—C12—C19 119.0 (4)
N2—N1—Ni1 121.5 (2) C11—C12—C19 124.4 (4)
C8—N2—N1 114.1 (3) N4—C13—C12 123.3 (4)
C8—N3—H3A 120.0 N4—C13—C14 116.9 (3)
C8—N3—H3B 120.0 C12—C13—C14 119.7 (4)
H3A—N3—H3B 120.0 N5—C14—C15 122.9 (4)
C9—N4—C13 118.0 (3) N5—C14—C13 117.5 (3)
C9—N4—Ni1 128.5 (3) C15—C14—C13 119.6 (4)
C13—N4—Ni1 113.3 (2) C16—C15—C14 116.4 (4)
C18—N5—C14 118.1 (4) C16—C15—C20 124.5 (4)
C18—N5—Ni1 129.5 (3) C14—C15—C20 119.0 (4)
C14—N5—Ni1 112.3 (3) C17—C16—C15 120.6 (4)
C3—O1—Ni1 125.6 (2) C17—C16—H16 119.7
C21—O2—Ni1 130.7 (3) C15—C16—H16 119.7
C21—O2—H2 109.5 C16—C17—C18 118.5 (4)
Ni1—O2—H2 119.7 C16—C17—H17 120.7
N1—C1—C2 126.6 (3) C18—C17—H17 120.7
N1—C1—H1 116.7 N5—C18—C17 123.4 (4)
C2—C1—H1 116.7 N5—C18—H18 118.3
C7—C2—C3 119.7 (4) C17—C18—H18 118.3
C7—C2—C1 116.6 (4) C20—C19—C12 121.5 (4)
C3—C2—C1 123.6 (4) C20—C19—H19 119.3
O1—C3—C4 119.8 (4) C12—C19—H19 119.3
O1—C3—C2 124.9 (4) C19—C20—C15 121.1 (4)
C4—C3—C2 115.3 (4) C19—C20—H20 119.5
C5—C4—C3 124.2 (4) C15—C20—H20 119.5
C5—C4—Cl1 118.2 (3) O2—C21—H21A 109.5
C3—C4—Cl1 117.5 (3) O2—C21—H21B 109.5
C4—C5—C6 118.5 (4) H21A—C21—H21B 109.5
C4—C5—H5 120.7 O2—C21—H21C 109.5
C6—C5—H5 120.7 H21A—C21—H21C 109.5
C7—C6—C5 120.6 (4) H21B—C21—H21C 109.5
C7—C6—Cl2 121.0 (4)
O1—Ni1—S1—C8 17.3 (9) C7—C2—C3—C4 −2.1 (5)
N1—Ni1—S1—C8 −5.61 (16) C1—C2—C3—C4 176.2 (4)
N4—Ni1—S1—C8 176.66 (17) O1—C3—C4—C5 −177.9 (4)
N5—Ni1—S1—C8 −103.33 (16) C2—C3—C4—C5 2.0 (6)
O2—Ni1—S1—C8 85.12 (16) O1—C3—C4—Cl1 4.5 (5)
O1—Ni1—N1—C1 10.5 (3) C2—C3—C4—Cl1 −175.6 (3)
N4—Ni1—N1—C1 −43 (3) C3—C4—C5—C6 −1.0 (7)
N5—Ni1—N1—C1 −80.1 (3) Cl1—C4—C5—C6 176.6 (4)
O2—Ni1—N1—C1 94.7 (3) C4—C5—C6—C7 −0.1 (7)
S1—Ni1—N1—C1 −171.7 (3) C4—C5—C6—Cl2 −178.9 (4)
O1—Ni1—N1—N2 −170.2 (3) C5—C6—C7—C2 −0.1 (7)
N4—Ni1—N1—N2 137 (2) Cl2—C6—C7—C2 178.7 (3)
N5—Ni1—N1—N2 99.2 (3) C3—C2—C7—C6 1.3 (6)
O2—Ni1—N1—N2 −86.0 (3) C1—C2—C7—C6 −177.1 (4)
S1—Ni1—N1—N2 7.6 (3) N1—N2—C8—N3 −179.3 (4)
C1—N1—N2—C8 173.2 (3) N1—N2—C8—S1 −0.6 (5)
Ni1—N1—N2—C8 −6.2 (4) Ni1—S1—C8—N2 5.3 (4)
O1—Ni1—N4—C9 87.0 (3) Ni1—S1—C8—N3 −175.9 (3)
N1—Ni1—N4—C9 140 (2) C13—N4—C9—C10 0.4 (6)
N5—Ni1—N4—C9 177.9 (4) Ni1—N4—C9—C10 −173.5 (3)
O2—Ni1—N4—C9 2.8 (3) N4—C9—C10—C11 −1.0 (7)
S1—Ni1—N4—C9 −91.0 (3) C9—C10—C11—C12 0.3 (7)
O1—Ni1—N4—C13 −87.1 (3) C10—C11—C12—C13 0.9 (6)
N1—Ni1—N4—C13 −34 (3) C10—C11—C12—C19 −179.6 (4)
N5—Ni1—N4—C13 3.8 (3) C9—N4—C13—C12 0.9 (6)
O2—Ni1—N4—C13 −171.3 (3) Ni1—N4—C13—C12 175.7 (3)
S1—Ni1—N4—C13 94.8 (2) C9—N4—C13—C14 −179.0 (3)
O1—Ni1—N5—C18 −96.3 (4) Ni1—N4—C13—C14 −4.1 (4)
N1—Ni1—N5—C18 −4.6 (4) C11—C12—C13—N4 −1.6 (6)
N4—Ni1—N5—C18 177.2 (4) C19—C12—C13—N4 178.9 (4)
O2—Ni1—N5—C18 −154.8 (6) C11—C12—C13—C14 178.3 (4)
S1—Ni1—N5—C18 78.9 (4) C19—C12—C13—C14 −1.2 (6)
O1—Ni1—N5—C14 83.7 (3) C18—N5—C14—C15 0.4 (6)
N1—Ni1—N5—C14 175.4 (3) Ni1—N5—C14—C15 −179.6 (3)
N4—Ni1—N5—C14 −2.8 (3) C18—N5—C14—C13 −178.5 (4)
O2—Ni1—N5—C14 25.2 (8) Ni1—N5—C14—C13 1.5 (4)
S1—Ni1—N5—C14 −101.1 (3) N4—C13—C14—N5 1.8 (5)
N1—Ni1—O1—C3 −20.1 (3) C12—C13—C14—N5 −178.1 (4)
N4—Ni1—O1—C3 157.6 (3) N4—C13—C14—C15 −177.2 (4)
N5—Ni1—O1—C3 77.9 (3) C12—C13—C14—C15 3.0 (6)
O2—Ni1—O1—C3 −111.1 (3) N5—C14—C15—C16 −1.5 (6)
S1—Ni1—O1—C3 −42.8 (10) C13—C14—C15—C16 177.4 (4)
O1—Ni1—O2—C21 178.3 (5) N5—C14—C15—C20 178.8 (4)
N1—Ni1—O2—C21 86.9 (5) C13—C14—C15—C20 −2.3 (6)
N4—Ni1—O2—C21 −95.1 (5) C14—C15—C16—C17 1.0 (7)
N5—Ni1—O2—C21 −122.7 (7) C20—C15—C16—C17 −179.3 (5)
S1—Ni1—O2—C21 3.6 (5) C15—C16—C17—C18 0.3 (7)
N2—N1—C1—C2 −179.7 (4) C14—N5—C18—C17 1.1 (7)
Ni1—N1—C1—C2 −0.3 (6) Ni1—N5—C18—C17 −178.9 (3)
N1—C1—C2—C7 171.7 (4) C16—C17—C18—N5 −1.5 (8)
N1—C1—C2—C3 −6.6 (6) C13—C12—C19—C20 −1.2 (7)
Ni1—O1—C3—C4 −160.4 (3) C11—C12—C19—C20 179.3 (4)
Ni1—O1—C3—C2 19.7 (5) C12—C19—C20—C15 1.9 (7)
C7—C2—C3—O1 177.8 (4) C16—C15—C20—C19 −179.8 (5)
C1—C2—C3—O1 −3.9 (6) C14—C15—C20—C19 −0.1 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2···S1i 0.82 2.49 3.310 (3) 174
N3—H3A···N2ii 0.86 2.24 3.087 (4) 170
N3—H3B···Cl1iii 0.86 2.86 3.573 (2) 142
C11—H11···S1iv 0.93 2.81 3.593 (5) 142

Symmetry codes: (i) −x+3/2, y−1/2, −z+1/2; (ii) −x+2, −y+2, −z+1; (iii) −x+3/2, y+1/2, −z+1/2; (iv) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2109).

References

  1. Bruker (2001). SAINT and SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Dapporto, P., De Munno, G. & Tomlinson, A. G. (1984). J. Chem. Res.40, 501–502.
  3. García-Orozco, I., Tapia-Benavides, A. R., Alvarez-Toledano, C., Toscano, R. A., Ramírez-Rosales, D., Zamorano-Ulloa, R. & Reyes-Ortega, Y. (2002). J. Mol. Struct.604, 57–64.
  4. García-Reynaldos, P. X., Hernández-Ortega, S., Toscano, R. A. & Valdés-Martínez, J. (2007). Supramol. Chem. 19, 613–619.
  5. Kolotilov, S. V., Cador, O., Golhen, S., Shvets, O., Ilyin, V. G., Pavlishchuk, V. V. & Ouahab, L. (2007). Inorg. Chim. Acta, 360, 1883–1889.
  6. Orpen, A. G., Brammer, L. & Allen, F. H. (1989). J. Chem. Soc. Dalton Trans. pp. S1–84.
  7. Qiu, X.-H. & Wu, H.-Y. (2004). Acta Cryst. E60, m1151–m1152.
  8. Schulte, G., Luo, X.-L., Crabtree, R. H. & Zimmer, M. (1991). Angew. Chem. Int. Ed. Engl.30, 193–194.
  9. Seena, E. B. & Kurup, M. R. P. (2007). Polyhedron, 26, 829–836.
  10. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Wang, Y., Liu, Z. & Gao, J.-Y. (2008). Acta Cryst. E64, m633–m634. [DOI] [PMC free article] [PubMed]
  13. Zhang, S.-H., Feng, X.-Z., Li, G.-Z., Jing, L.-X. & Liu, Z. (2007). Acta Cryst. E63, m535–m536.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809013208/im2109sup1.cif

e-65-0m523-sup1.cif (24.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013208/im2109Isup2.hkl

e-65-0m523-Isup2.hkl (193.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES