Abstract
In the crystal structure of the title compound, [Cu(C4H4O4)(C8H6N4)(H2O)]·2H2O, the CuII atom is chelated by a 2,2′-bipyrimidine (bpm) ligand and a succinate anion in the basal plane; a water molecule in the apical position completes the slightly distorted square-pyramidal coordination geometry. Another carboxylate O atom from an adjacent complex is located in the opposite apical direction, with a Cu⋯O distance of 2.706 (3) Å, and is not considered as a bridging atom. Extensive O—H⋯O and O—H⋯N hydrogen bonding is present in the crystal structure.
Related literature
For general background, see: McCann et al. (1997 ▶); Ray et al. (2004 ▶); Zhang et al. (2004 ▶).
Experimental
Crystal data
[Cu(C4H4O4)(C8H6N4)(H2O)]·2H2O
M r = 391.83
Monoclinic,
a = 10.6905 (8) Å
b = 18.9321 (14) Å
c = 7.6105 (6) Å
β = 92.2290 (10)°
V = 1539.2 (2) Å3
Z = 4
Mo Kα radiation
μ = 1.46 mm−1
T = 293 K
0.30 × 0.20 × 0.09 mm
Data collection
Bruker SMART CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996 ▶) T min = 0.700, T max = 0.877
7725 measured reflections
2735 independent reflections
2085 reflections with I > 2σ(I)
R int = 0.036
Refinement
R[F 2 > 2σ(F 2)] = 0.043
wR(F 2) = 0.123
S = 1.06
2735 reflections
235 parameters
10 restraints
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.46 e Å−3
Δρmin = −0.66 e Å−3
Data collection: SMART (Bruker, 1997 ▶); cell refinement: SAINT (Bruker, 1997 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809013518/xu2509sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013518/xu2509Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected bond lengths (Å).
| Cu1—O1 | 2.386 (3) |
| Cu1—O2 | 1.918 (3) |
| Cu1—O5 | 1.940 (3) |
| Cu1—N1 | 2.017 (3) |
| Cu1—N2 | 2.012 (3) |
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O1—H1A⋯O1W | 0.85 (4) | 1.89 (4) | 2.703 (5) | 162 (4) |
| O1—H1B⋯O4i | 0.85 (4) | 2.05 (4) | 2.903 (4) | 178 (4) |
| O1W—H1WA⋯O2Wii | 0.85 (4) | 1.950 (17) | 2.790 (6) | 169 (5) |
| O1W—H1WB⋯N3iii | 0.84 (4) | 2.45 (5) | 3.216 (5) | 152 (4) |
| O1W—H1WB⋯N4iii | 0.84 (4) | 2.46 (4) | 3.130 (5) | 137 (5) |
| O2W—H2WA⋯O3iii | 0.85 (4) | 2.04 (4) | 2.876 (6) | 167 (5) |
| O2W—H2WB⋯O3iv | 0.85 (4) | 1.94 (4) | 2.777 (5) | 168 (4) |
Symmetry codes: (i)
; (ii)
; (iii)
; (iv)
.
Acknowledgments
This work was supported financially by the National Natural Science Foundation of China (grant No. 20773104), the Program for New Century Excellent Talents in Universities (NCET-06-0891), the Natural Science Foundation of Hubei/Shaanxi Provinces of China (2008CDB030) and the Important Project of Hubei Provincial Education Office, China (Z20091301).
supplementary crystallographic information
Comment
Recently, the area of metal-organic framework materials has become one of the intense research activities for their fascinating structural diversities and potential applications in catalysis, nonlinear optics and molecular sensing. As an important family of multidentate O-donor ligands, saturated aliphatic carboxylate ligands have been extensively employed in the preparation of metal-organic complexes because of their potential properties and intriguing structural topologies (McCann et al., 1997; Ray et al., 2004; Zhang et al. 2004). Herein, we report the structure of the title complex.
The title compound contains one CuII cation, one suc ligands, one bpm ligands, one coordinated water and two lattice water molecules, as illustrated in Fig. 1. The CuII atom has a slightly distored square-pyramidal geometry (Table 1), in which the CuIIatom is coordinated by two N atoms of bpm ligand, two O atoms from carboxyl groups of succinate anions and one O atom from coordinated water molecule. Each unit is connected by O—H···O hydrogen bonds between carboxyl groups and coordinated water molecules (Table 2) into one-dimensional chain along c-axis. The lattice water molecule acts as both hydrogen-bond donor and acceptor. Just through hydrogen bonds (O—H···O) involving lattice water molecules, those one-dimensional chains are further connected to generate a three-dimensional supramolecular framework.
Experimental
A mixture of CuCl2.2H2O (0.017 g, 0.1 mmol), bpm (0.015 g, 0.1 mmol), sodium succinate (0.0139 g, 0.1 mmol) and distilled water (10 ml) was sealed in a 25 ml Teflon-lined stainless autoclave. The pH value of the mixture was adjusted to 6 by an aqueous solution of NaOH (0.1 mol/L), and then heated at 393 K for 3 days; blue crystals were obtained on cooling to room temperature at 5 K/h.
Refinement
Water H atoms were located in a difference Fourier map and refined with distance restraints O—H = 0.85 (2) Å, Uiso(H) = 1.5Ueq(O). Other H atoms were placed in calculated positions and treated using a riding-model approximation with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C).
Figures
Fig. 1.
View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Crystal data
| [Cu(C4H4O4)(C8H6N4)(H2O)]·2H2O | F(000) = 804 |
| Mr = 391.83 | Dx = 1.691 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| Hall symbol: -P 2ybc | Cell parameters from 3225 reflections |
| a = 10.6905 (8) Å | θ = 1.9–25.1° |
| b = 18.9321 (14) Å | µ = 1.46 mm−1 |
| c = 7.6105 (6) Å | T = 293 K |
| β = 92.229 (1)° | Prism, blue |
| V = 1539.2 (2) Å3 | 0.30 × 0.20 × 0.09 mm |
| Z = 4 |
Data collection
| Bruker SMART CCD diffractometer | 2735 independent reflections |
| Radiation source: fine-focus sealed tube | 2085 reflections with I > 2σ(I) |
| graphite | Rint = 0.036 |
| φ and ω scans | θmax = 25.1°, θmin = 1.9° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −12→12 |
| Tmin = 0.700, Tmax = 0.877 | k = −22→22 |
| 7725 measured reflections | l = −9→4 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.123 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.06 | w = 1/[σ2(Fo2) + (0.0588P)2 + 1.4777P] where P = (Fo2 + 2Fc2)/3 |
| 2735 reflections | (Δ/σ)max = 0.001 |
| 235 parameters | Δρmax = 0.46 e Å−3 |
| 10 restraints | Δρmin = −0.65 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cu1 | 0.83883 (5) | 0.98092 (2) | 0.42287 (7) | 0.0376 (2) | |
| O1 | 0.7210 (3) | 0.94912 (16) | 0.1622 (4) | 0.0477 (8) | |
| H1A | 0.673 (4) | 0.9136 (17) | 0.160 (6) | 0.072* | |
| H1B | 0.774 (4) | 0.945 (2) | 0.082 (5) | 0.072* | |
| O1W | 0.6018 (4) | 0.82533 (18) | 0.2132 (6) | 0.0724 (11) | |
| H1WA | 0.5230 (12) | 0.819 (3) | 0.212 (9) | 0.109* | |
| H1WB | 0.637 (4) | 0.790 (2) | 0.170 (9) | 0.109* | |
| O2 | 0.7834 (3) | 1.07626 (14) | 0.4543 (4) | 0.0459 (7) | |
| O2W | 0.6560 (4) | 0.3145 (2) | 0.2485 (6) | 0.0810 (12) | |
| H2WB | 0.674 (7) | 0.2726 (15) | 0.280 (8) | 0.121* | |
| H2WA | 0.676 (7) | 0.321 (3) | 0.143 (4) | 0.121* | |
| O3 | 0.7344 (3) | 1.18623 (16) | 0.3913 (5) | 0.0606 (9) | |
| O4 | 1.1035 (3) | 1.06421 (15) | 0.1176 (4) | 0.0490 (8) | |
| O5 | 0.9903 (3) | 1.00736 (14) | 0.3069 (4) | 0.0395 (7) | |
| N1 | 0.8883 (3) | 0.87826 (17) | 0.4388 (4) | 0.0362 (8) | |
| N2 | 0.7034 (3) | 0.94476 (18) | 0.5757 (4) | 0.0382 (8) | |
| N3 | 0.8133 (3) | 0.76731 (17) | 0.5315 (5) | 0.0468 (9) | |
| N4 | 0.6295 (3) | 0.8392 (2) | 0.7042 (5) | 0.0494 (10) | |
| C1 | 0.9872 (4) | 0.8470 (2) | 0.3680 (6) | 0.0435 (10) | |
| H1C | 1.0466 | 0.8745 | 0.3135 | 0.052* | |
| C2 | 1.0017 (4) | 0.7748 (2) | 0.3750 (6) | 0.0499 (11) | |
| H2 | 1.0700 | 0.7525 | 0.3272 | 0.060* | |
| C3 | 0.9102 (4) | 0.7374 (2) | 0.4561 (6) | 0.0491 (11) | |
| H3 | 0.9164 | 0.6884 | 0.4584 | 0.059* | |
| C4 | 0.8069 (4) | 0.8370 (2) | 0.5194 (5) | 0.0368 (9) | |
| C5 | 0.7056 (4) | 0.8751 (2) | 0.6045 (5) | 0.0376 (9) | |
| C6 | 0.5436 (4) | 0.8772 (3) | 0.7835 (7) | 0.0573 (13) | |
| H6 | 0.4886 | 0.8539 | 0.8557 | 0.069* | |
| C7 | 0.5319 (4) | 0.9492 (3) | 0.7641 (6) | 0.0546 (12) | |
| H7 | 0.4704 | 0.9746 | 0.8201 | 0.066* | |
| C8 | 0.6163 (4) | 0.9822 (2) | 0.6570 (6) | 0.0459 (11) | |
| H8 | 0.6124 | 1.0309 | 0.6414 | 0.055* | |
| C9 | 0.7701 (4) | 1.1270 (2) | 0.3460 (6) | 0.0413 (10) | |
| C10 | 0.7927 (4) | 1.1167 (2) | 0.1584 (6) | 0.0442 (11) | |
| H10A | 0.7179 | 1.0939 | 0.1097 | 0.053* | |
| H10B | 0.7932 | 1.1638 | 0.1082 | 0.053* | |
| C11 | 0.8904 (4) | 1.0823 (2) | 0.0863 (6) | 0.0409 (10) | |
| H11A | 0.9243 | 1.1155 | 0.0036 | 0.049* | |
| H11B | 0.8523 | 1.0448 | 0.0156 | 0.049* | |
| C12 | 1.0022 (4) | 1.0491 (2) | 0.1772 (5) | 0.0370 (9) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cu1 | 0.0438 (3) | 0.0255 (3) | 0.0444 (3) | 0.0014 (2) | 0.0122 (2) | 0.0028 (2) |
| O1 | 0.0475 (18) | 0.0452 (17) | 0.0511 (19) | −0.0081 (14) | 0.0088 (15) | −0.0032 (15) |
| O1W | 0.071 (2) | 0.0425 (19) | 0.104 (3) | −0.0055 (18) | 0.012 (2) | −0.008 (2) |
| O2 | 0.0617 (19) | 0.0287 (14) | 0.0479 (18) | 0.0054 (14) | 0.0112 (15) | 0.0025 (13) |
| O2W | 0.100 (3) | 0.063 (2) | 0.081 (3) | 0.028 (2) | 0.022 (3) | 0.024 (2) |
| O3 | 0.083 (2) | 0.0362 (17) | 0.063 (2) | 0.0214 (17) | 0.0051 (19) | −0.0003 (16) |
| O4 | 0.0475 (18) | 0.0434 (17) | 0.057 (2) | −0.0044 (14) | 0.0187 (16) | 0.0048 (15) |
| O5 | 0.0417 (16) | 0.0332 (14) | 0.0439 (17) | −0.0001 (12) | 0.0055 (13) | 0.0063 (13) |
| N1 | 0.0393 (18) | 0.0300 (17) | 0.0395 (19) | 0.0004 (15) | 0.0026 (16) | −0.0003 (15) |
| N2 | 0.0403 (18) | 0.0358 (18) | 0.039 (2) | 0.0019 (15) | 0.0066 (16) | 0.0009 (15) |
| N3 | 0.055 (2) | 0.0281 (18) | 0.057 (2) | −0.0029 (16) | 0.001 (2) | 0.0058 (17) |
| N4 | 0.042 (2) | 0.049 (2) | 0.058 (2) | −0.0074 (17) | 0.0105 (19) | 0.0130 (19) |
| C1 | 0.046 (2) | 0.041 (2) | 0.044 (2) | −0.001 (2) | 0.008 (2) | −0.002 (2) |
| C2 | 0.052 (3) | 0.041 (2) | 0.057 (3) | 0.010 (2) | 0.005 (2) | −0.003 (2) |
| C3 | 0.062 (3) | 0.030 (2) | 0.056 (3) | 0.006 (2) | 0.003 (2) | −0.001 (2) |
| C4 | 0.038 (2) | 0.033 (2) | 0.039 (2) | −0.0051 (17) | 0.0001 (19) | 0.0064 (18) |
| C5 | 0.038 (2) | 0.037 (2) | 0.038 (2) | −0.0028 (18) | −0.0011 (19) | 0.0060 (18) |
| C6 | 0.045 (3) | 0.069 (3) | 0.059 (3) | −0.003 (2) | 0.011 (2) | 0.014 (3) |
| C7 | 0.045 (3) | 0.068 (3) | 0.051 (3) | 0.005 (2) | 0.012 (2) | 0.002 (3) |
| C8 | 0.050 (3) | 0.042 (2) | 0.046 (3) | 0.010 (2) | 0.005 (2) | 0.002 (2) |
| C9 | 0.038 (2) | 0.032 (2) | 0.054 (3) | 0.0007 (18) | 0.006 (2) | 0.001 (2) |
| C10 | 0.044 (2) | 0.033 (2) | 0.056 (3) | −0.0061 (19) | 0.001 (2) | 0.010 (2) |
| C11 | 0.050 (2) | 0.031 (2) | 0.042 (2) | −0.0139 (19) | 0.003 (2) | 0.0073 (19) |
| C12 | 0.048 (2) | 0.0251 (19) | 0.039 (2) | −0.0006 (18) | 0.008 (2) | −0.0044 (18) |
Geometric parameters (Å, °)
| Cu1—O1 | 2.386 (3) | N4—C5 | 1.323 (5) |
| Cu1—O2 | 1.918 (3) | N4—C6 | 1.330 (6) |
| Cu1—O5 | 1.940 (3) | C1—C2 | 1.376 (6) |
| Cu1—N1 | 2.017 (3) | C1—H1C | 0.9300 |
| Cu1—N2 | 2.012 (3) | C2—C3 | 1.374 (6) |
| O1—H1A | 0.85 (4) | C2—H2 | 0.9300 |
| O1—H1B | 0.85 (4) | C3—H3 | 0.9300 |
| O1W—H1WA | 0.85 (4) | C4—C5 | 1.472 (6) |
| O1W—H1WB | 0.84 (4) | C6—C7 | 1.377 (7) |
| O2—C9 | 1.270 (5) | C6—H6 | 0.9300 |
| O2W—H2WB | 0.85 (4) | C7—C8 | 1.388 (6) |
| O2W—H2WA | 0.85 (4) | C7—H7 | 0.9300 |
| O3—C9 | 1.239 (5) | C8—H8 | 0.9300 |
| O4—C12 | 1.224 (5) | C9—C10 | 1.469 (6) |
| O5—C12 | 1.275 (5) | C10—C11 | 1.365 (5) |
| N1—C4 | 1.336 (5) | C10—H10A | 0.9700 |
| N1—C1 | 1.343 (5) | C10—H10B | 0.9700 |
| N2—C5 | 1.336 (5) | C11—C12 | 1.495 (6) |
| N2—C8 | 1.341 (5) | C11—H11A | 0.9700 |
| N3—C4 | 1.324 (5) | C11—H11B | 0.9700 |
| N3—C3 | 1.330 (5) | ||
| O2—Cu1—O5 | 94.68 (12) | N3—C4—N1 | 125.6 (4) |
| O2—Cu1—N2 | 90.87 (13) | N3—C4—C5 | 119.7 (3) |
| O5—Cu1—N2 | 169.41 (13) | N1—C4—C5 | 114.7 (3) |
| O2—Cu1—N1 | 168.87 (13) | N4—C5—N2 | 126.5 (4) |
| O5—Cu1—N1 | 93.13 (13) | N4—C5—C4 | 118.6 (4) |
| N2—Cu1—N1 | 80.22 (13) | N2—C5—C4 | 114.9 (3) |
| O2—Cu1—O1 | 100.69 (12) | N4—C6—C7 | 123.2 (4) |
| O5—Cu1—O1 | 96.32 (12) | N4—C6—H6 | 118.4 |
| N2—Cu1—O1 | 91.50 (12) | C7—C6—H6 | 118.4 |
| N1—Cu1—O1 | 86.30 (12) | C6—C7—C8 | 116.8 (4) |
| Cu1—O1—H1A | 121 (4) | C6—C7—H7 | 121.6 |
| Cu1—O1—H1B | 106 (3) | C8—C7—H7 | 121.6 |
| H1A—O1—H1B | 109 (4) | N2—C8—C7 | 120.8 (4) |
| H1WA—O1W—H1WB | 110 (5) | N2—C8—H8 | 119.6 |
| C9—O2—Cu1 | 131.1 (3) | C7—C8—H8 | 119.6 |
| H2WB—O2W—H2WA | 110 (6) | O3—C9—O2 | 122.1 (4) |
| C12—O5—Cu1 | 128.5 (3) | O3—C9—C10 | 117.0 (4) |
| C4—N1—C1 | 117.6 (3) | O2—C9—C10 | 120.9 (4) |
| C4—N1—Cu1 | 114.7 (3) | C11—C10—C9 | 127.7 (4) |
| C1—N1—Cu1 | 127.5 (3) | C11—C10—H10A | 105.4 |
| C5—N2—C8 | 117.0 (4) | C9—C10—H10A | 105.4 |
| C5—N2—Cu1 | 115.0 (3) | C11—C10—H10B | 105.4 |
| C8—N2—Cu1 | 128.0 (3) | C9—C10—H10B | 105.4 |
| C4—N3—C3 | 115.7 (4) | H10A—C10—H10B | 106.0 |
| C5—N4—C6 | 115.7 (4) | C10—C11—C12 | 128.7 (4) |
| N1—C1—C2 | 120.7 (4) | C10—C11—H11A | 105.1 |
| N1—C1—H1C | 119.6 | C12—C11—H11A | 105.1 |
| C2—C1—H1C | 119.6 | C10—C11—H11B | 105.1 |
| C3—C2—C1 | 116.7 (4) | C12—C11—H11B | 105.1 |
| C3—C2—H2 | 121.7 | H11A—C11—H11B | 105.9 |
| C1—C2—H2 | 121.7 | O4—C12—O5 | 123.2 (4) |
| N3—C3—C2 | 123.6 (4) | O4—C12—C11 | 115.7 (4) |
| N3—C3—H3 | 118.2 | O5—C12—C11 | 121.1 (4) |
| C2—C3—H3 | 118.2 | ||
| O5—Cu1—O2—C9 | 51.3 (4) | C3—N3—C4—C5 | −177.7 (4) |
| N2—Cu1—O2—C9 | −137.8 (4) | C1—N1—C4—N3 | −2.0 (6) |
| N1—Cu1—O2—C9 | −174.3 (6) | Cu1—N1—C4—N3 | 173.5 (4) |
| O1—Cu1—O2—C9 | −46.1 (4) | C1—N1—C4—C5 | 176.0 (4) |
| O2—Cu1—O5—C12 | −50.4 (3) | Cu1—N1—C4—C5 | −8.5 (4) |
| N2—Cu1—O5—C12 | −171.8 (6) | C6—N4—C5—N2 | −0.5 (7) |
| N1—Cu1—O5—C12 | 137.5 (3) | C6—N4—C5—C4 | 177.1 (4) |
| O1—Cu1—O5—C12 | 50.9 (3) | C8—N2—C5—N4 | 0.7 (6) |
| O2—Cu1—N1—C4 | 43.9 (8) | Cu1—N2—C5—N4 | 177.8 (3) |
| O5—Cu1—N1—C4 | 178.4 (3) | C8—N2—C5—C4 | −177.1 (4) |
| N2—Cu1—N1—C4 | 6.7 (3) | Cu1—N2—C5—C4 | 0.0 (5) |
| O1—Cu1—N1—C4 | −85.5 (3) | N3—C4—C5—N4 | 5.8 (6) |
| O2—Cu1—N1—C1 | −141.1 (6) | N1—C4—C5—N4 | −172.3 (4) |
| O5—Cu1—N1—C1 | −6.6 (4) | N3—C4—C5—N2 | −176.3 (4) |
| N2—Cu1—N1—C1 | −178.3 (4) | N1—C4—C5—N2 | 5.6 (5) |
| O1—Cu1—N1—C1 | 89.5 (4) | C5—N4—C6—C7 | 0.5 (7) |
| O2—Cu1—N2—C5 | −176.8 (3) | N4—C6—C7—C8 | −0.6 (8) |
| O5—Cu1—N2—C5 | −55.1 (8) | C5—N2—C8—C7 | −0.8 (6) |
| N1—Cu1—N2—C5 | −3.5 (3) | Cu1—N2—C8—C7 | −177.4 (3) |
| O1—Cu1—N2—C5 | 82.5 (3) | C6—C7—C8—N2 | 0.8 (7) |
| O2—Cu1—N2—C8 | 0.0 (4) | Cu1—O2—C9—O3 | −178.8 (3) |
| O5—Cu1—N2—C8 | 121.6 (7) | Cu1—O2—C9—C10 | 3.2 (6) |
| N1—Cu1—N2—C8 | 173.2 (4) | O3—C9—C10—C11 | 137.1 (5) |
| O1—Cu1—N2—C8 | −100.8 (4) | O2—C9—C10—C11 | −44.9 (7) |
| C4—N1—C1—C2 | 1.6 (6) | C9—C10—C11—C12 | −3.2 (7) |
| Cu1—N1—C1—C2 | −173.3 (3) | Cu1—O5—C12—O4 | 177.3 (3) |
| N1—C1—C2—C3 | 0.5 (7) | Cu1—O5—C12—C11 | −3.5 (5) |
| C4—N3—C3—C2 | 2.2 (7) | C10—C11—C12—O4 | −131.7 (4) |
| C1—C2—C3—N3 | −2.5 (7) | C10—C11—C12—O5 | 49.0 (6) |
| C3—N3—C4—N1 | 0.2 (6) |
Hydrogen-bond geometry (Å, °)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O1—H1A···O1W | 0.85 (4) | 1.89 (4) | 2.703 (5) | 162 (4) |
| O1—H1B···O4i | 0.85 (4) | 2.05 (4) | 2.903 (4) | 178 (4) |
| O1W—H1WA···O2Wii | 0.85 (4) | 1.95 (2) | 2.790 (6) | 169 (5) |
| O1W—H1WB···N3iii | 0.84 (4) | 2.45 (5) | 3.216 (5) | 152 (4) |
| O1W—H1WB···N4iii | 0.84 (4) | 2.46 (4) | 3.130 (5) | 137 (5) |
| O2W—H2WA···O3iii | 0.85 (4) | 2.04 (4) | 2.876 (6) | 167 (5) |
| O2W—H2WB···O3iv | 0.85 (4) | 1.94 (4) | 2.777 (5) | 168 (4) |
Symmetry codes: (i) −x+2, −y+2, −z; (ii) −x+1, y+1/2, −z+1/2; (iii) x, −y+3/2, z−1/2; (iv) x, y−1, z.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2509).
References
- Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
- McCann, M., Casey, M.-T., Devereux, M., Curran, M. & Ferguson, G. (1997). Polyhedron, 15, 2547–2552.
- Ray, M.-S., Ghosh, A., Das, A., Drew, M.-G. B., Ribas-Ariňo, J., Novoa, J. & Ribas, J. (2004). Chem. Commun. pp. 1102–1103. [DOI] [PubMed]
- Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Zhang, J., Li, Zh.-J., Wen, Y.-H., Kang, Y., Cheng, J.-K. & Yao, Y.-G. (2004). Z. Anorg. Allg. Chem 630, 2731–2735.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809013518/xu2509sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013518/xu2509Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report

