Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 22;65(Pt 5):m552. doi: 10.1107/S1600536809014263

Bis(2,2′-bipyrid­yl)-1κ2 N,N′;3κ2 N,N′-bis­(4-bromo-2-formyl­phenolato)-1κ2 O,O′;3κ2 O,O′-bis­[μ-2-(5-bromo-2-oxidobenzylidene­amino)­ethane­sul­fon­ato]-1:2κ3 O:N,O 2;2:3κ3 N,O 2:O-tricopper(II) monohydrate

Ling Zhang a,*
PMCID: PMC2977599  PMID: 21583785

Abstract

The title complex, [Cu3(C9H8BrNO4S)2(C7H4BrO2)2(C10H8N2)2]·H2O, lies on an inversion center located on the central Cu atom, which is four-coordinated in a square-planar geometry, whereas the outer Cu atoms related by symmetry are five-coordinated in a square-pyramidal geometry. The trinuclear mol­ecules, with an intramolecular Cu⋯Cu separation of 6.313 (3) Å, are linked to each other, forming a chain through O—H⋯O and O—H⋯Br hydrogen bonds involving the half-occupied water mol­ecule. Futhermore, weak C—H⋯O inter­actions link the chains to form a supra­molecular network.

Related literature

For general background on coordination polymers and open framework materials, see: Kim et al. (2003); Iglesias et al. (2003); Moulton & Zaworotko (2001). For background on 2,2′-bipyridyl and 5-bromo-2-hydroxy­benzaldehyde, see: Sun & Gao (2005); Murphy et al. (2004).graphic file with name e-65-0m552-scheme1.jpg

Experimental

Crystal data

  • [Cu3(C9H8BrNO4S)2(C7H4BrO2)2(C10H8N2)2]·H2O

  • M r = 1533.30

  • Triclinic, Inline graphic

  • a = 10.031 (2) Å

  • b = 11.480 (2) Å

  • c = 12.913 (3) Å

  • α = 73.13 (3)°

  • β = 78.58 (3)°

  • γ = 75.24 (3)°

  • V = 1363.6 (6) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 4.24 mm−1

  • T = 293 K

  • 0.23 × 0.16 × 0.10 mm

Data collection

  • Bruker APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.442, T max = 0.677

  • 12051 measured reflections

  • 4888 independent reflections

  • 1651 reflections with I > 2σ(I)

  • R int = 0.077

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.099

  • S = 0.76

  • 4888 reflections

  • 367 parameters

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.39 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2; data reduction: APEX2; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809014263/dn2446sup1.cif

e-65-0m552-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014263/dn2446Isup2.hkl

e-65-0m552-Isup2.hkl (234.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1WB⋯O2 0.84 2.40 3.197 (11) 159
O1W—H1WA⋯Br2i 0.83 2.55 3.145 (9) 130
C4—H4⋯O1ii 0.93 2.42 3.316 (9) 163
C23—H23⋯O2iii 0.93 2.54 3.324 (9) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The author acknowledges financial support by the Youth Foundation of Lishui University, China (No. QN05002).

supplementary crystallographic information

Comment

Molecular self-assembly of supramolecular architectures has received much attention during recent decades (Kim et al., 2003; Iglesias et al., 2003; Moulton & Zaworotko, 2001). The structures and properties of such systems depend on the coordination and geometric preferences of both the central metals ions and bridging building blocks as well as the influence of weaker non-covalent interactions, such as hydrogen bonds and π-π stacking interactions. 2,2'-bipyridyl, 5-bromo-2-hydroxybenzaldehyde are excellent candidates for the construction of supramolecula complexes, since they not only have multiple coordination modes but also can form regular hydrogen bonds by functioning as both hydrogen-bond donor and acceptor (Sun & Gao, 2005; Murphy et al., 2004). 2-(5-bromo-2-hydroxybenzylamino)ethanesulfonic has a versatile binding ability, whose structure of complexes have not been reported to date. Recently, we obtained the title novel trinuclear copper complex (I) by the reaction of copper nitryl, 2,2'-bipyridyl, 5-bromo-2-hydroxybenzaldehyde and 2-(5-bromo-2-hydroxybenzylamino)ethanesulfonic in an aqueous solution, and its crystal is reported here.

The trinuclear complex lyies on a crystallographic inversion center located on the central Cu1 atom which is four-coordinated in a square planar geometry, whereas the other Cu2 atoms related by symmetry are five-coordinated in a square pyramidal geometry (Fig. 1). The compound forms trinuclear structure via the flexible 2-(5-bromo-2-hydroxybenzylamino)ethanesulfonic ligand, with a Cu···Cu separation of 6.313 (3) Å. These trinuclear units are linked to each other to form a chain through O-H···O and O-H···Br hydrogen bonds involving the water molecule (table 1, Fig. 2). Futhermore, weak C-H···O interactions link the chain to form a supramolecular network.

Experimental

A mixture of copper chloride(1 mmol), 5-bromo-2-hydroxybenzaldehyde (1 mmol), 2,2'-bipyridyl(1 mmol), 2-(5-bromo-2-hydroxybenzylamino)ethanesulfonic (1 mmol) and H2O (12 ml) was placed in a 23 ml Teflon reactor, which was heated to 433 K for three days and then cooled to room temperature at a rate of 10 K h-1. The crystals obtained were washed with water and dryed in air.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 Å (aromatic) or 0.97 Å (methylene) with Uiso(H) = 1.2Ueq(C). H atoms of water molecule were located in difference Fourier maps and included in the subsequent refinement using restraints (O-H= 0.82 (1)Å and H···H= 1.38 (2)Å) with Uiso(H) = 1.5Ueq(O). In the last stage of refinement, they were treated as riding on their parent O atom.

Figures

Fig. 1.

Fig. 1.

The structure of the trinuclear complex with the atom labeling scheme, Displacement ellipsoids are shown at the 30% probability level. H atom and water molecule have been omitted for clarity. [Symmetry code: (i) -x+1, -y+1, -z+1]

Fig. 2.

Fig. 2.

Partial packing view showing the H bond interactions linking the trinuclear unit through the water molecule. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.[Symmetry codes: (ii) -x, -y+1, -z+2]

Crystal data

[Cu3(C9H8BrNO4S)2(C7H4BrO2)2(C10H8N2)2]·H2O Z = 1
Mr = 1533.30 F(000) = 759
Triclinic, P1 Dx = 1.867 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.031 (2) Å Cell parameters from 2895 reflections
b = 11.480 (2) Å θ = 2.4–27.9°
c = 12.913 (3) Å µ = 4.24 mm1
α = 73.13 (3)° T = 293 K
β = 78.58 (3)° Block, colorless
γ = 75.24 (3)° 0.23 × 0.16 × 0.10 mm
V = 1363.6 (6) Å3

Data collection

Bruker APEXII area-detector diffractometer 4888 independent reflections
Radiation source: fine-focus sealed tube 1651 reflections with I > 2σ(I)
graphite Rint = 0.077
φ and ω scans θmax = 25.2°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −12→12
Tmin = 0.442, Tmax = 0.677 k = −13→13
12051 measured reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099 H-atom parameters constrained
S = 0.76 w = 1/[σ2(Fo2) + (0.0382P)2] where P = (Fo2 + 2Fc2)/3
4888 reflections (Δ/σ)max = 0.001
367 parameters Δρmax = 0.43 e Å3
0 restraints Δρmin = −0.39 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Cu1 0.5000 0.5000 0.5000 0.0567 (4)
Cu2 0.16643 (9) 1.01005 (8) 0.23932 (7) 0.0545 (3)
Br1 0.56422 (9) 0.78255 (8) 0.70805 (6) 0.0780 (3)
Br2 0.20594 (10) 0.35954 (9) 1.08489 (7) 0.0900 (4)
S1 0.0325 (2) 0.7374 (2) 0.34555 (18) 0.0589 (6)
N1 0.2317 (7) 0.9972 (6) 0.0858 (5) 0.0490 (16)
N2 0.0114 (6) 1.1303 (5) 0.1664 (6) 0.0499 (17)
N3 0.3009 (6) 0.5065 (5) 0.5526 (5) 0.0539 (18)
O1 0.0575 (6) 0.6616 (5) 0.2703 (4) 0.100 (2)
O2 −0.0917 (5) 0.7223 (5) 0.4217 (4) 0.0901 (18)
O3 0.0319 (5) 0.8680 (4) 0.2953 (4) 0.0853 (18)
O4 0.5413 (5) 0.4760 (5) 0.6422 (4) 0.0695 (16)
O5 0.1069 (5) 1.0634 (4) 0.3756 (4) 0.0677 (16)
O6 0.3395 (4) 0.9154 (4) 0.2812 (3) 0.0529 (13)
C1 −0.0981 (10) 1.1957 (8) 0.2182 (6) 0.066 (2)
H1 −0.1040 1.1861 0.2929 0.079*
C2 −0.2050 (8) 1.2792 (7) 0.1604 (8) 0.070 (2)
H2 −0.2822 1.3230 0.1965 0.084*
C3 −0.1923 (10) 1.2938 (8) 0.0521 (8) 0.078 (3)
H3 −0.2616 1.3488 0.0131 0.094*
C4 −0.0822 (9) 1.2309 (8) −0.0011 (7) 0.066 (3)
H4 −0.0750 1.2429 −0.0762 0.080*
C5 0.0231 (9) 1.1459 (7) 0.0577 (8) 0.056 (2)
C6 0.1483 (9) 1.0735 (7) 0.0102 (7) 0.054 (2)
C7 0.1860 (10) 1.0791 (7) −0.0994 (7) 0.070 (3)
H7 0.1294 1.1312 −0.1507 0.083*
C8 0.3088 (11) 1.0058 (9) −0.1304 (7) 0.074 (3)
H8 0.3363 1.0089 −0.2041 0.089*
C9 0.3919 (9) 0.9284 (7) −0.0566 (8) 0.074 (3)
H9 0.4750 0.8777 −0.0781 0.089*
C10 0.3483 (9) 0.9282 (7) 0.0509 (7) 0.059 (2)
H10 0.4047 0.8760 0.1023 0.071*
C11 0.3250 (10) 0.4410 (6) 0.7469 (6) 0.059 (2)
C12 0.2482 (8) 0.4121 (6) 0.8509 (6) 0.059 (2)
H12 0.1554 0.4079 0.8578 0.071*
C13 0.3108 (9) 0.3899 (6) 0.9436 (5) 0.058 (2)
C14 0.4491 (9) 0.3968 (7) 0.9313 (7) 0.069 (2)
H14 0.4903 0.3812 0.9939 0.083*
C15 0.5277 (8) 0.4253 (6) 0.8325 (7) 0.061 (2)
H15 0.6201 0.4296 0.8276 0.073*
C16 0.4641 (9) 0.4487 (7) 0.7348 (7) 0.056 (2)
C17 0.2491 (7) 0.4750 (5) 0.6544 (6) 0.048 (2)
H17 0.1547 0.4741 0.6694 0.057*
C18 0.1956 (7) 0.5436 (6) 0.4753 (5) 0.056 (2)
H18A 0.1090 0.5212 0.5143 0.067*
H18B 0.2284 0.4991 0.4186 0.067*
C19 0.1708 (7) 0.6813 (6) 0.4242 (5) 0.058 (2)
H19A 0.2551 0.7010 0.3781 0.070*
H19B 0.1517 0.7245 0.4816 0.070*
C20 0.3051 (8) 0.9405 (7) 0.4636 (6) 0.0427 (19)
C21 0.3588 (8) 0.9097 (6) 0.5629 (6) 0.052 (2)
H21 0.3079 0.9415 0.6208 0.062*
C22 0.4862 (9) 0.8328 (7) 0.5734 (6) 0.053 (2)
C23 0.5646 (8) 0.7859 (6) 0.4863 (7) 0.058 (2)
H23 0.6518 0.7343 0.4951 0.069*
C24 0.5151 (8) 0.8146 (6) 0.3881 (5) 0.051 (2)
H24 0.5683 0.7829 0.3309 0.061*
C25 0.3833 (8) 0.8923 (6) 0.3751 (7) 0.0455 (19)
C26 0.1759 (9) 1.0241 (7) 0.4569 (6) 0.067 (2)
H26 0.1361 1.0541 0.5181 0.080*
O1W −0.0713 (9) 0.6212 (10) 0.6775 (8) 0.101 (4) 0.50
H1WA −0.1452 0.6481 0.7125 0.152* 0.50
H1WB −0.0587 0.6569 0.6109 0.152* 0.50

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0656 (10) 0.0561 (9) 0.0502 (9) −0.0107 (8) −0.0282 (8) −0.0044 (7)
Cu2 0.0598 (7) 0.0578 (7) 0.0444 (6) −0.0086 (5) −0.0168 (5) −0.0072 (5)
Br1 0.0910 (7) 0.0913 (7) 0.0530 (6) −0.0181 (6) −0.0290 (5) −0.0083 (5)
Br2 0.1119 (8) 0.1085 (8) 0.0554 (6) −0.0490 (7) −0.0213 (6) −0.0006 (5)
S1 0.0574 (16) 0.0591 (17) 0.0571 (15) −0.0124 (13) −0.0245 (13) 0.0013 (13)
N1 0.057 (5) 0.045 (4) 0.049 (4) −0.012 (4) −0.015 (4) −0.012 (4)
N2 0.045 (5) 0.050 (5) 0.057 (5) −0.010 (4) −0.012 (4) −0.014 (4)
N3 0.074 (5) 0.052 (4) 0.037 (4) −0.019 (4) −0.028 (4) 0.005 (3)
O1 0.132 (5) 0.107 (5) 0.067 (4) 0.007 (4) −0.059 (4) −0.029 (4)
O2 0.059 (4) 0.080 (4) 0.116 (5) −0.014 (3) −0.006 (4) −0.005 (4)
O3 0.083 (4) 0.060 (4) 0.102 (4) −0.023 (3) −0.058 (3) 0.033 (3)
O4 0.061 (4) 0.094 (4) 0.055 (4) −0.011 (3) −0.022 (3) −0.018 (3)
O5 0.068 (4) 0.086 (4) 0.045 (3) 0.003 (3) −0.016 (3) −0.021 (3)
O6 0.061 (3) 0.059 (3) 0.044 (3) −0.011 (3) −0.019 (3) −0.013 (3)
C1 0.077 (7) 0.069 (7) 0.054 (6) −0.028 (6) −0.016 (6) −0.004 (5)
C2 0.063 (6) 0.057 (6) 0.090 (7) −0.014 (5) −0.024 (6) −0.010 (6)
C3 0.070 (7) 0.075 (7) 0.085 (8) 0.008 (6) −0.041 (6) −0.013 (6)
C4 0.060 (6) 0.089 (7) 0.058 (6) −0.016 (6) −0.026 (6) −0.016 (6)
C5 0.060 (7) 0.048 (6) 0.064 (7) −0.020 (5) −0.025 (6) −0.004 (5)
C6 0.064 (7) 0.043 (6) 0.057 (6) −0.015 (5) −0.017 (6) −0.006 (5)
C7 0.103 (8) 0.062 (7) 0.040 (6) −0.016 (6) −0.017 (6) −0.003 (5)
C8 0.109 (9) 0.076 (7) 0.043 (6) −0.032 (6) 0.007 (6) −0.025 (6)
C9 0.083 (7) 0.068 (7) 0.067 (7) −0.007 (5) −0.013 (6) −0.016 (6)
C10 0.052 (6) 0.066 (6) 0.054 (6) −0.004 (5) −0.013 (5) −0.009 (5)
C11 0.085 (7) 0.058 (6) 0.035 (5) −0.014 (5) −0.022 (5) −0.005 (4)
C12 0.075 (6) 0.047 (5) 0.061 (6) −0.014 (5) −0.022 (5) −0.013 (5)
C13 0.093 (7) 0.048 (5) 0.032 (5) −0.021 (5) −0.015 (5) 0.001 (4)
C14 0.061 (6) 0.086 (7) 0.064 (6) −0.016 (5) −0.024 (5) −0.014 (5)
C15 0.062 (6) 0.063 (6) 0.063 (6) −0.013 (5) −0.025 (5) −0.012 (5)
C16 0.063 (7) 0.047 (6) 0.060 (7) −0.001 (5) −0.027 (6) −0.011 (5)
C17 0.051 (5) 0.027 (5) 0.068 (6) −0.002 (4) −0.033 (5) −0.004 (4)
C18 0.065 (5) 0.048 (5) 0.062 (5) −0.018 (4) −0.040 (4) 0.001 (4)
C19 0.061 (6) 0.051 (5) 0.056 (5) −0.007 (4) −0.031 (4) 0.008 (4)
C20 0.037 (5) 0.041 (5) 0.052 (6) 0.002 (4) −0.011 (5) −0.021 (4)
C21 0.052 (6) 0.051 (6) 0.054 (6) −0.016 (5) 0.001 (5) −0.019 (4)
C22 0.057 (6) 0.059 (6) 0.047 (5) −0.013 (5) −0.019 (5) −0.011 (4)
C23 0.049 (6) 0.047 (5) 0.074 (6) 0.004 (4) −0.017 (5) −0.017 (5)
C24 0.062 (6) 0.050 (5) 0.044 (5) −0.010 (5) −0.018 (5) −0.014 (4)
C25 0.046 (6) 0.035 (5) 0.055 (6) −0.004 (4) −0.014 (5) −0.009 (4)
C26 0.085 (7) 0.069 (6) 0.046 (6) −0.014 (6) 0.003 (5) −0.025 (5)
O1W 0.071 (8) 0.148 (11) 0.085 (8) 0.006 (7) 0.019 (7) −0.076 (8)

Geometric parameters (Å, °)

Cu1—O4 1.889 (5) C7—H7 0.9300
Cu1—O4i 1.889 (5) C8—C9 1.356 (9)
Cu1—N3 1.967 (6) C8—H8 0.9300
Cu1—N3i 1.967 (6) C9—C10 1.370 (9)
Cu2—O6 1.886 (4) C9—H9 0.9300
Cu2—O5 1.963 (5) C10—H10 0.9300
Cu2—N2 1.986 (6) C11—C16 1.395 (10)
Cu2—N1 1.996 (6) C11—C12 1.403 (9)
Cu2—O3 2.249 (5) C11—C17 1.449 (8)
Br1—C22 1.922 (7) C12—C13 1.389 (8)
Br2—C13 1.901 (7) C12—H12 0.9300
S1—O1 1.431 (5) C13—C14 1.385 (9)
S1—O2 1.441 (5) C14—C15 1.359 (9)
S1—O3 1.449 (4) C14—H14 0.9300
S1—C19 1.758 (6) C15—C16 1.450 (9)
N1—C10 1.314 (8) C15—H15 0.9300
N1—C6 1.369 (8) C17—H17 0.9300
N2—C1 1.341 (8) C18—C19 1.502 (7)
N2—C5 1.348 (8) C18—H18A 0.9700
N3—C17 1.296 (7) C18—H18B 0.9700
N3—C18 1.495 (7) C19—H19A 0.9700
O4—C16 1.292 (8) C19—H19B 0.9700
O5—C26 1.280 (7) C20—C26 1.404 (9)
O6—C25 1.303 (7) C20—C21 1.404 (8)
C1—C2 1.415 (9) C20—C25 1.421 (9)
C1—H1 0.9300 C21—C22 1.362 (8)
C2—C3 1.343 (9) C21—H21 0.9300
C2—H2 0.9300 C22—C23 1.400 (9)
C3—C4 1.339 (9) C23—C24 1.373 (8)
C3—H3 0.9300 C23—H23 0.9300
C4—C5 1.416 (9) C24—C25 1.405 (8)
C4—H4 0.9300 C24—H24 0.9300
C5—C6 1.449 (10) C26—H26 0.9300
C6—C7 1.379 (9) O1W—H1WA 0.8251
C7—C8 1.363 (9) O1W—H1WB 0.8381
O4—Cu1—O4i 180.000 (1) C8—C9—H9 121.4
O4—Cu1—N3 92.1 (2) C10—C9—H9 121.4
O4i—Cu1—N3 87.9 (2) N1—C10—C9 124.0 (8)
O4—Cu1—N3i 87.9 (2) N1—C10—H10 118.0
O4i—Cu1—N3i 92.1 (2) C9—C10—H10 118.0
N3—Cu1—N3i 180.0 (3) C16—C11—C12 120.9 (7)
O6—Cu2—O5 93.61 (19) C16—C11—C17 122.1 (7)
O6—Cu2—N2 166.7 (2) C12—C11—C17 116.7 (8)
O5—Cu2—N2 93.4 (3) C13—C12—C11 120.0 (7)
O6—Cu2—N1 90.5 (2) C13—C12—H12 120.0
O5—Cu2—N1 166.5 (2) C11—C12—H12 120.0
N2—Cu2—N1 80.3 (3) C14—C13—C12 119.0 (7)
O6—Cu2—O3 102.37 (17) C14—C13—Br2 120.3 (6)
O5—Cu2—O3 91.9 (2) C12—C13—Br2 120.7 (7)
N2—Cu2—O3 88.68 (19) C15—C14—C13 123.3 (7)
N1—Cu2—O3 99.8 (2) C15—C14—H14 118.4
O1—S1—O2 111.7 (4) C13—C14—H14 118.4
O1—S1—O3 114.7 (3) C14—C15—C16 118.5 (7)
O2—S1—O3 110.9 (3) C14—C15—H15 120.7
O1—S1—C19 106.6 (3) C16—C15—H15 120.7
O2—S1—C19 105.8 (3) O4—C16—C11 124.6 (7)
O3—S1—C19 106.4 (3) O4—C16—C15 117.0 (8)
C10—N1—C6 118.0 (7) C11—C16—C15 118.3 (8)
C10—N1—Cu2 126.4 (6) N3—C17—C11 125.8 (7)
C6—N1—Cu2 115.5 (6) N3—C17—H17 117.1
C1—N2—C5 120.3 (7) C11—C17—H17 117.1
C1—N2—Cu2 124.1 (6) N3—C18—C19 110.6 (5)
C5—N2—Cu2 115.6 (6) N3—C18—H18A 109.5
C17—N3—C18 113.8 (6) C19—C18—H18A 109.5
C17—N3—Cu1 124.5 (5) N3—C18—H18B 109.5
C18—N3—Cu1 121.6 (4) C19—C18—H18B 109.5
S1—O3—Cu2 143.6 (3) H18A—C18—H18B 108.1
C16—O4—Cu1 129.1 (5) C18—C19—S1 114.0 (4)
C26—O5—Cu2 124.1 (5) C18—C19—H19A 108.7
C25—O6—Cu2 127.8 (5) S1—C19—H19A 108.7
N2—C1—C2 120.6 (8) C18—C19—H19B 108.7
N2—C1—H1 119.7 S1—C19—H19B 108.7
C2—C1—H1 119.7 H19A—C19—H19B 107.6
C3—C2—C1 118.5 (9) C26—C20—C21 116.3 (8)
C3—C2—H2 120.7 C26—C20—C25 123.4 (7)
C1—C2—H2 120.7 C21—C20—C25 120.3 (7)
C4—C3—C2 121.5 (9) C22—C21—C20 119.2 (7)
C4—C3—H3 119.3 C22—C21—H21 120.4
C2—C3—H3 119.3 C20—C21—H21 120.4
C3—C4—C5 119.7 (8) C21—C22—C23 120.9 (7)
C3—C4—H4 120.1 C21—C22—Br1 121.7 (6)
C5—C4—H4 120.1 C23—C22—Br1 117.4 (7)
N2—C5—C4 119.3 (8) C24—C23—C22 121.2 (7)
N2—C5—C6 115.3 (8) C24—C23—H23 119.4
C4—C5—C6 125.3 (9) C22—C23—H23 119.4
N1—C6—C7 121.1 (8) C23—C24—C25 119.3 (7)
N1—C6—C5 113.3 (8) C23—C24—H24 120.3
C7—C6—C5 125.6 (9) C25—C24—H24 120.3
C8—C7—C6 117.9 (8) O6—C25—C24 117.2 (7)
C8—C7—H7 121.0 O6—C25—C20 123.7 (7)
C6—C7—H7 121.0 C24—C25—C20 119.1 (7)
C9—C8—C7 121.8 (9) O5—C26—C20 127.0 (7)
C9—C8—H8 119.1 O5—C26—H26 116.5
C7—C8—H8 119.1 C20—C26—H26 116.5
C8—C9—C10 117.1 (8) H1WA—O1W—H1WB 116.5

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1W—H1WB···O2 0.84 2.40 3.197 (11) 159
O1W—H1WA···Br2ii 0.83 2.55 3.145 (9) 130
C4—H4···O1iii 0.93 2.42 3.316 (9) 163
C23—H23···O2iv 0.93 2.54 3.324 (9) 142

Symmetry codes: (ii) −x, −y+1, −z+2; (iii) −x, −y+2, −z; (iv) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2446).

References

  1. Bruker (2007). APEX2 and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Iglesias, S., Castillo, O., Luque, A. & Romaan, P. (2003). Inorg. Chim. Acta, 349, 273–278.
  3. Kim, J. C., Jo, H., Lough, A. J., Cho, J., Lee, U. & Pyun, S. Y. (2003). Inorg. Chem. Commun.6, 474–477.
  4. Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev.101, 1629–1658. [DOI] [PubMed]
  5. Murphy, B., Roberts, G., Tyagi, S. & Hathaway, B. J. (2004). J. Mol. Struct.698, 25–36.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Sun, Y.-X. & Gao, G.-Z. (2005). Acta Cryst. E61, m354–m355.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809014263/dn2446sup1.cif

e-65-0m552-sup1.cif (22.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014263/dn2446Isup2.hkl

e-65-0m552-Isup2.hkl (234.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES