Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 22;65(Pt 5):m554. doi: 10.1107/S1600536809014214

Bis(μ-2-methyl­quinolin-8-olato)-κ3 N,O:O3 O:N,O-bis­[(acetato-κO)(methanol-κO)zinc(II)]

Elham Sattarzadeh a, Gholamhossein Mohammadnezhad a, Mostafa M Amini a, Seik Weng Ng b,*
PMCID: PMC2977601  PMID: 21583787

Abstract

The reaction of zinc acetate and 2-methyl-8-hydroxy­quinoline in methanol yielded the centrosymmetric dinuclear title compound, [Zn2(C10H8NO)2(CH3CO2)2(CH3OH)2], which has the Zn atom within a distorted NO4 trigonal–bipyramidal coordination geometry. Methanol–acetate O—H⋯O hydrogen bonds link the dinculear units into a linear supra­molecular chain extending parallel to [100].

Related literature

Unlike 8-hydroxy­quinoline, which yields a large number of metal derivatives, 2-methyl-8-hydroxy­quinoline forms only a small number of metal chelates. Besides a related chloride salt (Sattarzadeh et al., 2009), there is only one crystal structure report of another zinc derivative; for aqua­bis(2-methyl­quinolin-8-ato)zinc, see: da Silva et al. (2007).graphic file with name e-65-0m554-scheme1.jpg

Experimental

Crystal data

  • [Zn2(C10H8NO)2(C2H3O2)2(CH4O)2]

  • M r = 629.26

  • Triclinic, Inline graphic

  • a = 6.9496 (1) Å

  • b = 9.6262 (2) Å

  • c = 9.8232 (2) Å

  • α = 75.241 (1)°

  • β = 89.688 (1)°

  • γ = 86.596 (1)°

  • V = 634.32 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 1.95 mm−1

  • T = 100 K

  • 0.38 × 0.28 × 0.18 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.525, T max = 0.721

  • 5601 measured reflections

  • 2855 independent reflections

  • 2534 reflections with I > 2σ(I)

  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076

  • wR(F 2) = 0.230

  • S = 1.13

  • 2855 reflections

  • 175 parameters

  • H-atom parameters constrained

  • Δρmax = 3.72 e Å−3

  • Δρmin = −1.85 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809014214/tk2424sup1.cif

e-65-0m554-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014214/tk2424Isup2.hkl

e-65-0m554-Isup2.hkl (140.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4⋯O3i 0.84 1.88 2.602 (6) 143

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Shahid Beheshti University and the University of Malaya for supporting this study.

supplementary crystallographic information

Experimental

Zinc acetate (0.17 g, 0.75 mmol) and 2-methyl-8-hydroxyquinoline (0.24 g, 1.5 mmol) were loaded into a convection tube; the tube was filled with dry methanol and kept at 333 K. Crystals were collected from the side arm after several days. Although well formed, all specimens had a slightly blemished interior.

Refinement

The crystal used in the study was a multiply twinned crystal. The diffraction intensities were separated with the RLATT routine of the data collection software, and that component that diffracted to the highest 2θ limit was selected for integration. Although the specimen diffracted strongly, with a high proportion of 'observeds', there was serious overlapping between the main component and the minor components, particularly at low angles.

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.98 Å; O–H 0.84 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C, O).

The final difference Fourier map had a large peak/deep hole in the vicinity of the Zn1 atom. These could not be reduced even with the 2θ maximum was lowered to 50 °.

Figures

Fig. 1.

Fig. 1.

Thermal ellipsoid plot (Barbour, 2001) of dinuclear [Zn(C10H8NO)(CH3OH)(CH3CO2)]2; ellipsoids are drawn at the 70% probability level and H atoms of arbitrary radius. The unlabelled atoms are related by a centre of inversion.

Crystal data

[Zn2(C10H8NO)2(C2H3O2)2(CH4O)2] Z = 1
Mr = 629.26 F(000) = 324
Triclinic, P1 Dx = 1.647 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.9496 (1) Å Cell parameters from 3551 reflections
b = 9.6262 (2) Å θ = 2.2–28.3°
c = 9.8232 (2) Å µ = 1.95 mm1
α = 75.241 (1)° T = 100 K
β = 89.688 (1)° Block, yellow
γ = 86.596 (1)° 0.38 × 0.28 × 0.18 mm
V = 634.32 (2) Å3

Data collection

Bruker SMART APEX diffractometer 2855 independent reflections
Radiation source: fine-focus sealed tube 2534 reflections with I > 2σ(I)
graphite Rint = 0.042
ω scans θmax = 27.5°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −9→9
Tmin = 0.525, Tmax = 0.721 k = −12→12
5601 measured reflections l = −12→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.230 H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.1574P)2 + 1.7954P] where P = (Fo2 + 2Fc2)/3
2855 reflections (Δ/σ)max = 0.001
175 parameters Δρmax = 3.72 e Å3
0 restraints Δρmin = −1.85 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Zn1 0.57254 (8) 0.63131 (6) 0.87572 (5) 0.0148 (3)
O1 0.5349 (5) 0.4205 (4) 0.9193 (4) 0.0174 (8)
O2 0.4331 (6) 0.8211 (4) 0.8160 (4) 0.0201 (8)
O3 0.1619 (6) 0.7137 (5) 0.8017 (4) 0.0236 (9)
O4 0.8356 (6) 0.6830 (5) 0.9340 (4) 0.0233 (9)
H4 0.9089 0.7231 0.8695 0.028*
N1 0.6717 (6) 0.5859 (5) 0.6847 (5) 0.0165 (9)
C1 0.5872 (7) 0.3551 (6) 0.8200 (5) 0.0169 (10)
C2 0.5764 (8) 0.2097 (6) 0.8320 (6) 0.0184 (10)
H2 0.5313 0.1493 0.9168 0.022*
C3 0.6315 (9) 0.1497 (6) 0.7196 (6) 0.0229 (11)
H3 0.6238 0.0492 0.7303 0.028*
C4 0.6955 (8) 0.2334 (6) 0.5956 (6) 0.0232 (11)
H4A 0.7301 0.1912 0.5207 0.028*
C5 0.7104 (8) 0.3827 (6) 0.5786 (6) 0.0191 (10)
C6 0.6596 (7) 0.4431 (6) 0.6917 (5) 0.0150 (9)
C7 0.7707 (8) 0.4776 (6) 0.4547 (6) 0.0196 (11)
H7 0.8029 0.4427 0.3748 0.023*
C8 0.7834 (8) 0.6205 (6) 0.4485 (5) 0.0208 (11)
H8 0.8248 0.6846 0.3646 0.025*
C9 0.7341 (8) 0.6730 (6) 0.5687 (5) 0.0178 (10)
C10 0.7542 (9) 0.8281 (6) 0.5643 (6) 0.0227 (11)
H10A 0.7336 0.8427 0.6586 0.034*
H10B 0.6582 0.8879 0.4988 0.034*
H10C 0.8838 0.8552 0.5326 0.034*
C11 0.2496 (8) 0.8207 (6) 0.8104 (5) 0.0179 (10)
C12 0.1384 (9) 0.9585 (7) 0.8161 (7) 0.0297 (13)
H12A 0.2244 1.0381 0.7939 0.045*
H12B 0.0864 0.9488 0.9108 0.045*
H12C 0.0322 0.9780 0.7474 0.045*
C13 0.9045 (8) 0.6565 (7) 1.0750 (6) 0.0233 (11)
H13A 1.0426 0.6285 1.0786 0.035*
H13B 0.8350 0.5787 1.1356 0.035*
H13C 0.8832 0.7441 1.1079 0.035*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0190 (4) 0.0192 (4) 0.0083 (4) −0.0030 (2) 0.0016 (2) −0.0068 (2)
O1 0.027 (2) 0.0212 (18) 0.0063 (16) −0.0035 (15) 0.0078 (14) −0.0071 (14)
O2 0.025 (2) 0.0206 (19) 0.0146 (17) −0.0033 (15) 0.0021 (15) −0.0033 (14)
O3 0.023 (2) 0.032 (2) 0.020 (2) −0.0040 (16) 0.0045 (16) −0.0146 (17)
O4 0.0186 (19) 0.041 (2) 0.0123 (18) −0.0090 (16) 0.0026 (14) −0.0094 (16)
N1 0.018 (2) 0.024 (2) 0.0098 (19) −0.0017 (16) −0.0004 (15) −0.0079 (16)
C1 0.018 (2) 0.024 (3) 0.012 (2) −0.0030 (19) 0.0016 (18) −0.0084 (19)
C2 0.023 (3) 0.019 (2) 0.015 (2) −0.0026 (19) 0.0028 (19) −0.0058 (19)
C3 0.030 (3) 0.021 (3) 0.021 (3) 0.001 (2) −0.002 (2) −0.012 (2)
C4 0.025 (3) 0.029 (3) 0.020 (3) −0.001 (2) 0.000 (2) −0.015 (2)
C5 0.017 (2) 0.027 (3) 0.016 (2) 0.000 (2) −0.0011 (19) −0.012 (2)
C6 0.017 (2) 0.021 (2) 0.008 (2) 0.0006 (18) 0.0004 (17) −0.0055 (18)
C7 0.018 (2) 0.032 (3) 0.012 (2) 0.002 (2) 0.0005 (19) −0.012 (2)
C8 0.020 (3) 0.033 (3) 0.010 (2) −0.001 (2) −0.0003 (19) −0.008 (2)
C9 0.018 (2) 0.027 (3) 0.009 (2) −0.003 (2) 0.0009 (18) −0.0058 (19)
C10 0.035 (3) 0.023 (3) 0.012 (2) −0.006 (2) 0.003 (2) −0.006 (2)
C11 0.020 (2) 0.024 (3) 0.010 (2) 0.0004 (19) 0.0012 (18) −0.0057 (19)
C12 0.027 (3) 0.027 (3) 0.034 (3) 0.002 (2) 0.002 (2) −0.006 (2)
C13 0.023 (3) 0.035 (3) 0.013 (2) −0.004 (2) 0.001 (2) −0.009 (2)

Geometric parameters (Å, °)

Zn1—O1 1.997 (4) C4—C5 1.414 (8)
Zn1—O2 1.968 (4) C4—H4A 0.9500
Zn1—O1i 2.092 (3) C5—C7 1.402 (8)
Zn1—O4 2.045 (4) C5—C6 1.413 (7)
Zn1—N1 2.134 (4) C7—C8 1.369 (8)
O1—C1 1.328 (6) C7—H7 0.9500
O1—Zn1i 2.092 (3) C8—C9 1.431 (7)
O2—C11 1.277 (7) C8—H8 0.9500
O3—C11 1.250 (7) C9—C10 1.497 (7)
O4—C13 1.423 (6) C10—H10A 0.9800
O4—H4 0.8400 C10—H10B 0.9800
N1—C9 1.319 (7) C10—H10C 0.9800
N1—C6 1.366 (7) C11—C12 1.508 (8)
C1—C2 1.381 (7) C12—H12A 0.9800
C1—C6 1.435 (7) C12—H12B 0.9800
C2—C3 1.412 (7) C12—H12C 0.9800
C2—H2 0.9500 C13—H13A 0.9800
C3—C4 1.366 (9) C13—H13B 0.9800
C3—H3 0.9500 C13—H13C 0.9800
O1—Zn1—O1i 75.2 (2) C6—C5—C4 119.1 (5)
O1—Zn1—O2 142.5 (2) N1—C6—C5 122.8 (5)
O1—Zn1—O4 114.7 (2) N1—C6—C1 116.8 (4)
O1—Zn1—N1 79.8 (2) C5—C6—C1 120.4 (5)
O1i—Zn1—O2 95.8 (2) C8—C7—C5 120.2 (5)
O1i—Zn1—O4 94.5 (2) C8—C7—H7 119.9
O1i—Zn1—N1 155.0 (2) C5—C7—H7 119.9
O2—Zn1—O4 102.1 (2) C7—C8—C9 119.9 (5)
O2—Zn1—N1 104.7 (2) C7—C8—H8 120.1
O4—Zn1—N1 95.0 (2) C9—C8—H8 120.1
C1—O1—Zn1 116.2 (3) N1—C9—C8 120.7 (5)
C1—O1—Zn1i 139.0 (3) N1—C9—C10 119.2 (5)
Zn1—O1—Zn1i 104.81 (16) C8—C9—C10 120.1 (5)
C11—O2—Zn1 116.0 (3) C9—C10—H10A 109.5
C13—O4—Zn1 125.3 (3) C9—C10—H10B 109.5
C13—O4—H4 117.3 H10A—C10—H10B 109.5
Zn1—O4—H4 117.3 C9—C10—H10C 109.5
C9—N1—C6 119.7 (4) H10A—C10—H10C 109.5
C9—N1—Zn1 130.0 (4) H10B—C10—H10C 109.5
C6—N1—Zn1 110.3 (3) O3—C11—O2 123.5 (5)
O1—C1—C2 124.6 (5) O3—C11—C12 120.0 (5)
O1—C1—C6 117.0 (5) O2—C11—C12 116.5 (5)
C2—C1—C6 118.4 (5) C11—C12—H12A 109.5
C1—C2—C3 120.8 (5) C11—C12—H12B 109.5
C1—C2—H2 119.6 H12A—C12—H12B 109.5
C3—C2—H2 119.6 C11—C12—H12C 109.5
C4—C3—C2 121.2 (5) H12A—C12—H12C 109.5
C4—C3—H3 119.4 H12B—C12—H12C 109.5
C2—C3—H3 119.4 O4—C13—H13A 109.5
C3—C4—C5 120.1 (5) O4—C13—H13B 109.5
C3—C4—H4A 119.9 H13A—C13—H13B 109.5
C5—C4—H4A 119.9 O4—C13—H13C 109.5
C7—C5—C6 116.7 (5) H13A—C13—H13C 109.5
C7—C5—C4 124.2 (5) H13B—C13—H13C 109.5
O2—Zn1—O1—C1 102.0 (4) C6—C1—C2—C3 −1.3 (8)
O4—Zn1—O1—C1 −89.7 (4) C1—C2—C3—C4 −0.5 (9)
O1i—Zn1—O1—C1 −177.9 (5) C2—C3—C4—C5 0.9 (9)
N1—Zn1—O1—C1 1.1 (4) C3—C4—C5—C7 −178.6 (6)
O2—Zn1—O1—Zn1i −80.1 (3) C3—C4—C5—C6 0.5 (8)
O4—Zn1—O1—Zn1i 88.17 (19) C9—N1—C6—C5 −0.4 (8)
O1i—Zn1—O1—Zn1i 0.0 Zn1—N1—C6—C5 178.2 (4)
N1—Zn1—O1—Zn1i 179.0 (2) C9—N1—C6—C1 −178.9 (5)
O1—Zn1—O2—C11 7.8 (5) Zn1—N1—C6—C1 −0.3 (6)
O4—Zn1—O2—C11 −161.4 (4) C7—C5—C6—N1 −1.5 (8)
O1i—Zn1—O2—C11 −65.4 (4) C4—C5—C6—N1 179.3 (5)
N1—Zn1—O2—C11 100.1 (4) C7—C5—C6—C1 176.9 (5)
O2—Zn1—O4—C13 107.2 (4) C4—C5—C6—C1 −2.3 (8)
O1—Zn1—O4—C13 −65.5 (5) O1—C1—C6—N1 1.2 (7)
O1i—Zn1—O4—C13 10.3 (4) C2—C1—C6—N1 −178.8 (5)
N1—Zn1—O4—C13 −146.6 (4) O1—C1—C6—C5 −177.3 (5)
O2—Zn1—N1—C9 36.2 (5) C2—C1—C6—C5 2.7 (8)
O1—Zn1—N1—C9 178.0 (5) C6—C5—C7—C8 1.8 (8)
O4—Zn1—N1—C9 −67.7 (5) C4—C5—C7—C8 −179.1 (5)
O1i—Zn1—N1—C9 −179.6 (4) C5—C7—C8—C9 −0.3 (8)
O2—Zn1—N1—C6 −142.2 (3) C6—N1—C9—C8 2.1 (8)
O1—Zn1—N1—C6 −0.4 (3) Zn1—N1—C9—C8 −176.2 (4)
O4—Zn1—N1—C6 113.9 (3) C6—N1—C9—C10 −177.6 (5)
O1i—Zn1—N1—C6 1.9 (6) Zn1—N1—C9—C10 4.1 (8)
Zn1—O1—C1—C2 178.4 (4) C7—C8—C9—N1 −1.8 (8)
Zn1i—O1—C1—C2 1.5 (9) C7—C8—C9—C10 177.9 (5)
Zn1—O1—C1—C6 −1.6 (6) Zn1—O2—C11—O3 −20.5 (7)
Zn1i—O1—C1—C6 −178.5 (4) Zn1—O2—C11—C12 159.0 (4)
O1—C1—C2—C3 178.7 (5)

Symmetry codes: (i) −x+1, −y+1, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H4···O3ii 0.84 1.88 2.602 (6) 143

Symmetry codes: (ii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2424).

References

  1. Barbour, L. J. (2001). J. Supramol. Chem.1, 189–191.
  2. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Sattarzadeh, E., Mohammadnezhad, G., Amini, M. M. & Ng, S. W. (2009). Acta Cryst. E65, m553. [DOI] [PMC free article] [PubMed]
  4. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Silva, L. E. da, Joussef, A. C., Rebelo, R. A., Foro, S. & Schmidt, B. (2007). Acta Cryst. E63, m129–m131.
  7. Westrip, S. P. (2009). publCIF In preparation.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809014214/tk2424sup1.cif

e-65-0m554-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014214/tk2424Isup2.hkl

e-65-0m554-Isup2.hkl (140.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES