Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 25;65(Pt 5):m566. doi: 10.1107/S1600536809013920

Bis[4-methyl-2-(4-methyl­phenyldiazen­yl)phenolato-κ2 N,O]nickel(II)

Dexin Guan a, Hongjian Sun a,*
PMCID: PMC2977611  PMID: 21583797

Abstract

In the crystal structure of the title compound, [Ni(C14H13N2O)2], the NiII ion is located on an inversion center and is coordinated by two 4-methyl-2-(4-methyl­phenyl­diazen­yl)phenolate anions in a slightly distorted square-planar geometry. Within the anion, the two benzene rings are twisted from each other with a dihedral angle of 45.97 (12)°. No hydrogen bonding is found in the crystal structure.

Related literature

For general background, see: Frey (2005).graphic file with name e-65-0m566-scheme1.jpg

Experimental

Crystal data

  • [Ni(C14H13N2O)2]

  • M r = 509.24

  • Monoclinic, Inline graphic

  • a = 9.5211 (10) Å

  • b = 10.8162 (11) Å

  • c = 12.2647 (13) Å

  • β = 105.367 (2)°

  • V = 1217.9 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.83 mm−1

  • T = 293 K

  • 0.15 × 0.15 × 0.10 mm

Data collection

  • Bruker SMART APEX diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.885, T max = 0.920

  • 7063 measured reflections

  • 2775 independent reflections

  • 1890 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.099

  • S = 1.02

  • 2775 reflections

  • 212 parameters

  • All H-atom parameters refined

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809013920/xu2508sup1.cif

e-65-0m566-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013920/xu2508Isup2.hkl

e-65-0m566-Isup2.hkl (136.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Ni—O 1.8118 (16)
Ni—N1 1.8988 (18)

Acknowledgments

Financial support from the Natural Science Foundation of China (grant Nos. 20872080 and 20772072) is gratefully acknowledged.

supplementary crystallographic information

Comment

Nickel hydride complexes are one of the most valuable catalysts and intermediates. Frey (2005) has successfully synthesized a new type of nickel hydride Ni(H)(ortho-S—C6H4PPh2)(PMe3)2. In the previous work in our lab, we have reported similar reactions between nickel or cobalt hydrides and phenol derivates. So the reaction between Ni(H)(ortho-S—C6H4PPh2)(PMe3)2 and phenol derivates was carried out to explore the acidity of the hydrogen ligand. The title compound, as an unexpected compound, was synthesized.

The molecular structure is shown in Fig. 1. The NiII ion is located in an inversion center and coordinated by two 2-(4'-methylphenylazo)-4-methylphenol anions in a square-planar geometry (Table 1). No hydrogen bonding is found in the crystal structure.

Experimental

Ni(H)(ortho-S-C6H4PPh2)(PMe3)2 (1.19 g, 2.35 mmol) and 2-(4'-methylphenylazo)-4-methylphenol (0.54 g, 2.38 mmol) was mixed in -80 °C. The mixture was stirred between -20 °C to 0 °C for 18 h and a red solution was formed. Green residue was filtered off, Then the solvent was removed in vacuum. The residue was extracted with pentane, and then diethyl ether. The extractions were kept in -20°C. The title compound was obtained from the pentane extractions as green crystals for X-ray diffraction.

Refinement

The H atoms were geometrically placed and refined isotropically.

Figures

Fig. 1.

Fig. 1.

View of the title compound, showing 25% displacement ellipsoids. H atoms were omitted. Symmetry code: (A) 2 - x, 2 - y, -z.

Crystal data

[Ni(C14H13N2O)2] F(000) = 532
Mr = 509.24 Dx = 1.389 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1666 reflections
a = 9.5211 (10) Å θ = 2.6–23.4°
b = 10.8162 (11) Å µ = 0.83 mm1
c = 12.2647 (13) Å T = 293 K
β = 105.367 (2)° Block, green
V = 1217.9 (2) Å3 0.15 × 0.15 × 0.10 mm
Z = 2

Data collection

Bruker SMART APEX diffractometer 2775 independent reflections
Radiation source: fine-focus sealed tube 1890 reflections with I > 2σ(I)
graphite Rint = 0.032
ω scans θmax = 27.6°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −12→11
Tmin = 0.885, Tmax = 0.920 k = −13→13
7063 measured reflections l = −9→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099 All H-atom parameters refined
S = 1.02 w = 1/[σ2(Fo2) + (0.0451P)2 + 0.1292P] where P = (Fo2 + 2Fc2)/3
2775 reflections (Δ/σ)max < 0.001
212 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni 1.0000 1.0000 0.0000 0.04172 (15)
N1 0.96662 (19) 0.83618 (16) 0.04286 (15) 0.0412 (4)
N2 1.02859 (19) 0.77982 (17) 0.13462 (15) 0.0448 (5)
O 1.0688 (2) 1.04670 (16) 0.14634 (14) 0.0552 (5)
C7 1.1204 (2) 0.8429 (2) 0.22272 (18) 0.0428 (5)
C1 0.8685 (2) 0.75494 (19) −0.03615 (18) 0.0402 (5)
C6 0.9169 (3) 0.6442 (2) −0.0673 (2) 0.0440 (5)
C4 0.6804 (3) 0.6040 (2) −0.1919 (2) 0.0474 (6)
C5 0.8231 (3) 0.5700 (2) −0.1455 (2) 0.0480 (6)
C2 0.7255 (3) 0.7908 (2) −0.0813 (2) 0.0527 (6)
C12 1.1914 (3) 0.7700 (3) 0.3162 (2) 0.0524 (6)
C8 1.1345 (3) 0.9729 (2) 0.2279 (2) 0.0462 (6)
C3 0.6333 (3) 0.7146 (2) −0.1575 (2) 0.0559 (7)
C9 1.2225 (3) 1.0238 (3) 0.3292 (2) 0.0571 (7)
C11 1.2798 (3) 0.8206 (3) 0.4119 (2) 0.0560 (7)
C10 1.2937 (3) 0.9492 (3) 0.4156 (2) 0.0595 (7)
C13 0.5765 (5) 0.5215 (4) −0.2756 (4) 0.0741 (10)
C14 1.3546 (5) 0.7421 (5) 0.5127 (3) 0.0827 (11)
H10 1.347 (3) 0.987 (2) 0.479 (2) 0.050 (7)*
H5 0.862 (3) 0.494 (2) −0.165 (2) 0.048 (7)*
H6 1.014 (2) 0.624 (2) −0.0350 (18) 0.047 (6)*
H12 1.173 (3) 0.686 (2) 0.311 (2) 0.061 (8)*
H3 0.541 (3) 0.737 (2) −0.185 (2) 0.066 (8)*
H9 1.232 (3) 1.111 (3) 0.333 (2) 0.066 (8)*
H13B 0.594 (4) 0.440 (4) −0.253 (3) 0.127 (16)*
H13A 0.603 (5) 0.522 (4) −0.338 (4) 0.127 (19)*
H2 0.689 (3) 0.867 (3) −0.057 (2) 0.076 (8)*
H13C 0.491 (5) 0.541 (3) −0.290 (3) 0.106 (15)*
H14C 1.454 (4) 0.752 (4) 0.527 (3) 0.111 (13)*
H14A 1.318 (4) 0.761 (4) 0.576 (3) 0.119 (14)*
H14B 1.341 (5) 0.663 (5) 0.504 (4) 0.16 (2)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni 0.0496 (3) 0.0325 (2) 0.0400 (2) −0.00195 (18) 0.00673 (18) −0.00217 (18)
N1 0.0429 (10) 0.0346 (10) 0.0423 (10) −0.0008 (8) 0.0046 (8) −0.0015 (8)
N2 0.0455 (11) 0.0419 (11) 0.0439 (11) 0.0006 (8) 0.0062 (9) 0.0001 (9)
O 0.0800 (13) 0.0372 (8) 0.0422 (9) −0.0034 (8) 0.0052 (9) −0.0025 (8)
C7 0.0422 (12) 0.0466 (13) 0.0379 (12) 0.0001 (10) 0.0076 (10) −0.0020 (10)
C1 0.0418 (13) 0.0339 (11) 0.0414 (12) −0.0036 (9) 0.0047 (10) 0.0028 (9)
C6 0.0388 (13) 0.0380 (12) 0.0513 (14) 0.0008 (10) 0.0050 (10) 0.0000 (11)
C4 0.0496 (14) 0.0398 (13) 0.0466 (13) −0.0069 (10) 0.0020 (11) 0.0021 (11)
C5 0.0507 (14) 0.0354 (13) 0.0547 (15) 0.0018 (11) 0.0085 (12) −0.0051 (11)
C2 0.0449 (14) 0.0416 (14) 0.0648 (16) 0.0060 (11) 0.0029 (12) −0.0021 (12)
C12 0.0568 (16) 0.0512 (16) 0.0472 (14) 0.0059 (13) 0.0103 (12) 0.0003 (12)
C8 0.0476 (14) 0.0508 (15) 0.0414 (13) −0.0060 (10) 0.0142 (11) −0.0070 (10)
C3 0.0388 (14) 0.0512 (15) 0.0672 (17) 0.0062 (12) −0.0045 (12) 0.0028 (13)
C9 0.0657 (17) 0.0606 (18) 0.0435 (14) −0.0125 (13) 0.0119 (13) −0.0114 (12)
C11 0.0481 (14) 0.0743 (19) 0.0431 (14) 0.0056 (13) 0.0077 (11) −0.0004 (13)
C10 0.0530 (16) 0.083 (2) 0.0392 (14) −0.0108 (15) 0.0070 (12) −0.0122 (14)
C13 0.067 (2) 0.061 (2) 0.075 (2) −0.0100 (17) −0.0148 (19) −0.0089 (17)
C14 0.074 (3) 0.112 (4) 0.0518 (19) 0.013 (2) −0.0005 (17) 0.013 (2)

Geometric parameters (Å, °)

Ni—Oi 1.8118 (16) C2—C3 1.374 (3)
Ni—O 1.8118 (16) C2—H2 0.98 (3)
Ni—N1 1.8988 (18) C12—C11 1.364 (3)
Ni—N1i 1.8988 (18) C12—H12 0.92 (2)
N1—N2 1.278 (2) C8—C9 1.413 (3)
N1—C1 1.451 (3) C3—H3 0.89 (2)
N2—C7 1.377 (3) C9—C10 1.361 (4)
O—C8 1.303 (3) C9—H9 0.95 (3)
C7—C12 1.408 (3) C11—C10 1.397 (4)
C7—C8 1.412 (3) C11—C14 1.513 (4)
C1—C6 1.373 (3) C10—H10 0.91 (3)
C1—C2 1.382 (3) C13—H13B 0.92 (4)
C6—C5 1.381 (3) C13—H13A 0.87 (5)
C6—H6 0.93 (2) C13—H13C 0.81 (4)
C4—C5 1.377 (3) C14—H14C 0.92 (4)
C4—C3 1.382 (3) C14—H14A 0.95 (4)
C4—C13 1.514 (4) C14—H14B 0.86 (5)
C5—H5 0.95 (2)
Oi—Ni—O 180.000 (1) C11—C12—H12 121.2 (16)
Oi—Ni—N1 88.33 (8) C7—C12—H12 116.8 (16)
O—Ni—N1 91.67 (8) O—C8—C7 123.7 (2)
Oi—Ni—N1i 91.67 (8) O—C8—C9 119.2 (2)
O—Ni—N1i 88.33 (8) C7—C8—C9 117.0 (2)
N1—Ni—N1i 180.0 C2—C3—C4 121.8 (2)
N2—N1—C1 111.38 (17) C2—C3—H3 119.1 (17)
N2—N1—Ni 128.07 (14) C4—C3—H3 119.2 (17)
C1—N1—Ni 120.38 (13) C10—C9—C8 120.7 (3)
N1—N2—C7 120.24 (19) C10—C9—H9 122.2 (16)
C8—O—Ni 124.29 (15) C8—C9—H9 117.0 (16)
N2—C7—C12 115.5 (2) C12—C11—C10 117.3 (2)
N2—C7—C8 124.1 (2) C12—C11—C14 121.8 (3)
C12—C7—C8 120.1 (2) C10—C11—C14 120.8 (3)
C6—C1—C2 120.0 (2) C9—C10—C11 122.8 (3)
C6—C1—N1 120.67 (19) C9—C10—H10 117.0 (15)
C2—C1—N1 119.3 (2) C11—C10—H10 120.2 (14)
C1—C6—C5 119.8 (2) C4—C13—H13B 109 (2)
C1—C6—H6 117.3 (15) C4—C13—H13A 108 (3)
C5—C6—H6 122.9 (15) H13B—C13—H13A 101 (3)
C5—C4—C3 118.0 (2) C4—C13—H13C 115 (3)
C5—C4—C13 121.3 (3) H13B—C13—H13C 114 (3)
C3—C4—C13 120.8 (3) H13A—C13—H13C 108 (4)
C4—C5—C6 121.2 (2) C11—C14—H14C 109 (2)
C4—C5—H5 121.9 (15) C11—C14—H14A 111 (2)
C6—C5—H5 116.9 (15) H14C—C14—H14A 113 (3)
C3—C2—C1 119.2 (2) C11—C14—H14B 115 (3)
C3—C2—H2 120.0 (15) H14C—C14—H14B 104 (4)
C1—C2—H2 120.8 (15) H14A—C14—H14B 104 (4)
C11—C12—C7 122.0 (3)

Symmetry codes: (i) −x+2, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2508).

References

  1. Bruker (2008). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  3. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  4. Frey, M. (2005). PhD thesis, Darmstadt University of Technology, Germany.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809013920/xu2508sup1.cif

e-65-0m566-sup1.cif (15.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013920/xu2508Isup2.hkl

e-65-0m566-Isup2.hkl (136.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES