Abstract
The title compound, [Cd(C4H4O4)(H2O)2]n, has been synthesized under hydrothermal conditions. The asymmetric unit consists of one Cd2+ cation, one succinate anion and two aqua ligands. The Cd atoms present a distorted pentagonal bipyramidal coordination and are bridged into layers parallel to (201) by succinate ligands.
Related literature
For different bridging modes in succinato complexes, see: Ng (1998 ▶); Rastsvetaeva et al. (1996 ▶); Brusau et al. (2000 ▶); He et al. (2006 ▶); He et al. (2007 ▶). For geometrical comparisons with related compounds, see Huo et al. (2005 ▶); Zhuo et al. (2006 ▶).
Experimental
Crystal data
[Cd(C4H4O4)(H2O)2]
M r = 264.51
Monoclinic,
a = 7.7130 (15) Å
b = 12.231 (2) Å
c = 8.0560 (16) Å
β = 94.71 (3)°
V = 757.4 (2) Å3
Z = 4
Mo Kα radiation
μ = 2.87 mm−1
T = 293 K
0.40 × 0.30 × 0.21 mm
Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 1998 ▶) T min = 0.35, T max = 0.55
6371 measured reflections
1409 independent reflections
1335 reflections with I > 2σ(I)
R int = 0.028
Refinement
R[F 2 > 2σ(F 2)] = 0.023
wR(F 2) = 0.053
S = 1.05
1409 reflections
116 parameters
6 restraints
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.40 e Å−3
Δρmin = −0.68 e Å−3
Data collection: SMART (Bruker, 1998 ▶); cell refinement: SAINT (Bruker, 1998 ▶); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: SHELXTL (Sheldrick, 2008 ▶); software used to prepare material for publication: SHELXTL.
Supplementary Material
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011593/bg2243sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011593/bg2243Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report
Table 1. Selected bond lengths (Å).
Cd1—O4i | 2.255 (2) |
Cd1—O2 | 2.284 (2) |
Cd1—O6 | 2.302 (3) |
Cd1—O4ii | 2.316 (2) |
Cd1—O5 | 2.329 (3) |
Cd1—O1 | 2.389 (2) |
Cd1—O3i | 2.690 (2) |
Symmetry codes: (i) ; (ii)
.
supplementary crystallographic information
Comment
The succinate dianion has been used as a bridging ligand in the preparation of multinuclear metal complexes. A variety of bridging modes have been found (Ng,1998; Rastsvetaeva et al., 1996; Brusau et al., 2000; He et al., 2006; He et al., 2007). We report herein the synthesis and crystal stucture of a new succinate complex [Cd(C4H4O4)(H2O)2] (I).
The asymmetric unit consists of one Cd2+ cation, one succinate anion and two aqua ligands (Fig. 1). The Cd atom is coordinated by seven O atoms of three succinate anions and two aqua ligand, forming a distorted pentagonal bipyramidal coordination geometry (Table 1), with Cd—O bond lengths which agree well with those observed in analogous complexes (Huo et al., 2005; Zhuo et al., 2006). Cd atoms are bridged by succinate ligands into a two-dimensional layer (Fig. 2).
Experimental
Cd(NO3)2.4H2O (0.5 mmol, 0.154 g), succinic acid (0.5 mmol, 0.059 g), sodium hydroxide (1 mmol, 0.04 g) and water (12 ml) were placed in a 23-ml Teflon-lined Parr bomb. The bomb was heated at 453 K for 3 d. The colourless block-shapped crystals were filtered off and washed with water and acetone (yield 45%, based on Cd).
Refinement
Water H atoms were located in a difference Fourier map and refined with restrained O-H (0.85 (1)Å) and free Uiso(H). H atoms on C atom were positoned geometrically and refined using a riding model, with C—H = 0.97 Å.
Figures
Fig. 1.
A view of the molecular structure of (I) with the atom-numbering scheme and 30% displacement ellipsoids. Atoms with the suffix A and B are generated by the symmetry operations x + 1, -y + 3/2, z + 1/2 and -x + 2, -y + 1, -z + 2, respectively.
Fig. 2.
The 2-D layer structure of compound (I) (H atoms of methylenes are omitted for clarity).
Crystal data
[Cd(C4H4O4)(H2O)2] | F(000) = 512.0 |
Mr = 264.51 | Dx = 2.32 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 2567 reflections |
a = 7.7130 (15) Å | θ = 2.6–25.5° |
b = 12.231 (2) Å | µ = 2.87 mm−1 |
c = 8.0560 (16) Å | T = 293 K |
β = 94.71 (3)° | Block, colorless |
V = 757.4 (2) Å3 | 0.40 × 0.30 × 0.21 mm |
Z = 4 |
Data collection
Bruker SMART CD area-detector diffractometer | 1409 independent reflections |
Radiation source: fine-focus sealed tube | 1335 reflections with I > 2σ(I) |
graphite | Rint = 0.028 |
φ and ω scans | θmax = 25.5°, θmin = 3.0° |
Absorption correction: multi-scan (SADABS; Bruker, 1998) | h = −9→9 |
Tmin = 0.35, Tmax = 0.55 | k = −14→14 |
6371 measured reflections | l = −9→9 |
Refinement
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.023 | Hydrogen site location: constr |
wR(F2) = 0.053 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0207P)2 + 1.5P] where P = (Fo2 + 2Fc2)/3 |
1409 reflections | (Δ/σ)max < 0.001 |
116 parameters | Δρmax = 0.40 e Å−3 |
6 restraints | Δρmin = −0.68 e Å−3 |
Special details
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
x | y | z | Uiso*/Ueq | ||
Cd1 | 0.17614 (3) | 0.587427 (19) | 0.08353 (3) | 0.02570 (10) | |
C1 | 0.4820 (4) | 0.6353 (3) | 0.2526 (4) | 0.0274 (7) | |
C2 | 0.6501 (5) | 0.6626 (3) | 0.3501 (6) | 0.0454 (10) | |
H2A | 0.6471 | 0.6327 | 0.4613 | 0.055* | |
H2B | 0.7436 | 0.6262 | 0.2983 | 0.055* | |
C3 | 0.6922 (4) | 0.7799 (3) | 0.3648 (5) | 0.0349 (9) | |
H3A | 0.6046 | 0.8150 | 0.4262 | 0.042* | |
H3B | 0.6840 | 0.8113 | 0.2538 | 0.042* | |
C4 | 0.8675 (4) | 0.8072 (3) | 0.4482 (4) | 0.0252 (7) | |
O1 | 0.4603 (3) | 0.5387 (2) | 0.2005 (3) | 0.0367 (6) | |
O2 | 0.3664 (3) | 0.70570 (19) | 0.2216 (3) | 0.0352 (6) | |
O3 | 0.9815 (3) | 0.7385 (2) | 0.4838 (3) | 0.0399 (6) | |
O4 | 0.8946 (3) | 0.90780 (18) | 0.4832 (3) | 0.0307 (6) | |
O5 | 0.0710 (4) | 0.5424 (2) | 0.3376 (3) | 0.0402 (6) | |
H5A | −0.012 (5) | 0.499 (3) | 0.325 (6) | 0.072 (18)* | |
H5B | 0.047 (5) | 0.598 (2) | 0.392 (5) | 0.056 (15)* | |
O6 | 0.2576 (3) | 0.5909 (2) | −0.1850 (3) | 0.0332 (6) | |
H6A | 0.348 (4) | 0.553 (3) | −0.197 (5) | 0.044 (12)* | |
H6B | 0.278 (5) | 0.6562 (17) | −0.213 (5) | 0.051 (13)* |
Atomic displacement parameters (Å2)
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.01635 (14) | 0.02632 (15) | 0.03318 (16) | −0.00248 (9) | −0.00550 (10) | −0.00305 (10) |
C1 | 0.0181 (16) | 0.0294 (18) | 0.0342 (18) | −0.0041 (14) | −0.0016 (14) | −0.0046 (15) |
C2 | 0.032 (2) | 0.034 (2) | 0.065 (3) | −0.0035 (17) | −0.0250 (19) | 0.0000 (19) |
C3 | 0.0231 (18) | 0.0299 (19) | 0.049 (2) | −0.0034 (15) | −0.0132 (16) | −0.0034 (16) |
C4 | 0.0213 (16) | 0.0263 (18) | 0.0278 (18) | −0.0025 (14) | −0.0003 (13) | −0.0029 (14) |
O1 | 0.0220 (12) | 0.0292 (14) | 0.0572 (17) | 0.0006 (10) | −0.0056 (11) | −0.0134 (12) |
O2 | 0.0245 (13) | 0.0274 (13) | 0.0512 (16) | 0.0008 (10) | −0.0117 (11) | −0.0102 (11) |
O3 | 0.0264 (13) | 0.0286 (13) | 0.0619 (18) | 0.0039 (11) | −0.0132 (12) | −0.0085 (12) |
O4 | 0.0229 (12) | 0.0228 (12) | 0.0448 (15) | −0.0029 (9) | −0.0078 (11) | −0.0017 (10) |
O5 | 0.0414 (16) | 0.0419 (17) | 0.0377 (16) | 0.0015 (14) | 0.0054 (12) | −0.0026 (13) |
O6 | 0.0306 (14) | 0.0266 (14) | 0.0432 (15) | 0.0036 (11) | 0.0070 (11) | 0.0052 (11) |
Geometric parameters (Å, °)
Cd1—O4i | 2.255 (2) | C2—H2A | 0.9700 |
Cd1—O2 | 2.284 (2) | C2—H2B | 0.9700 |
Cd1—O6 | 2.302 (3) | C3—C4 | 1.498 (4) |
Cd1—O4ii | 2.316 (2) | C3—H3A | 0.9700 |
Cd1—O5 | 2.329 (3) | C3—H3B | 0.9700 |
Cd1—O1 | 2.389 (2) | C4—O3 | 1.233 (4) |
Cd1—O3i | 2.690 (2) | C4—O4 | 1.275 (4) |
C1—O2 | 1.250 (4) | O5—H5B | 0.84 (3) |
C1—O1 | 1.260 (4) | O5—H5A | 0.84 (3) |
C1—C2 | 1.498 (5) | O6—H6A | 0.85 (3) |
C2—C3 | 1.474 (5) | O6—H6B | 0.85 (3) |
O4i—Cd1—O2 | 136.02 (8) | C1—C2—H2B | 108.3 |
O4i—Cd1—O6 | 89.54 (10) | H2A—C2—H2B | 107.4 |
O2—Cd1—O6 | 103.41 (10) | C2—C3—C4 | 116.0 (3) |
O4i—Cd1—O4ii | 74.92 (9) | C2—C3—H3A | 108.3 |
O2—Cd1—O4ii | 147.52 (8) | C4—C3—H3A | 108.3 |
O6—Cd1—O4ii | 82.91 (9) | C2—C3—H3B | 108.3 |
O4i—Cd1—O5 | 85.77 (10) | C4—C3—H3B | 108.3 |
O2—Cd1—O5 | 88.74 (10) | H3A—C3—H3B | 107.4 |
O6—Cd1—O5 | 166.39 (10) | O3—C4—O4 | 120.4 (3) |
O4ii—Cd1—O5 | 83.54 (10) | O3—C4—C3 | 123.5 (3) |
O4i—Cd1—O1 | 166.71 (8) | O4—C4—C3 | 116.1 (3) |
O2—Cd1—O1 | 55.52 (8) | C1—O1—Cd1 | 89.42 (19) |
O6—Cd1—O1 | 93.60 (10) | C1—O2—Cd1 | 94.6 (2) |
O4ii—Cd1—O1 | 92.64 (8) | C4—O4—Cd1iii | 103.8 (2) |
O5—Cd1—O1 | 88.23 (10) | C4—O4—Cd1iv | 146.3 (2) |
O2—C1—O1 | 120.4 (3) | Cd1iii—O4—Cd1iv | 105.08 (9) |
O2—C1—C2 | 121.6 (3) | Cd1—O5—H5B | 112 (3) |
O1—C1—C2 | 118.0 (3) | Cd1—O5—H5A | 111 (3) |
C3—C2—C1 | 115.8 (3) | H5B—O5—H5A | 112 (3) |
C3—C2—H2A | 108.3 | Cd1—O6—H6A | 113 (3) |
C1—C2—H2A | 108.3 | Cd1—O6—H6B | 110 (3) |
C3—C2—H2B | 108.3 | H6A—O6—H6B | 108 (3) |
O2—C1—C2—C3 | −16.9 (6) | O1—C1—O2—Cd1 | 2.1 (4) |
O1—C1—C2—C3 | 162.3 (4) | C2—C1—O2—Cd1 | −178.7 (3) |
C1—C2—C3—C4 | −174.5 (3) | O4i—Cd1—O2—C1 | 170.1 (2) |
C2—C3—C4—O3 | 9.5 (6) | O6—Cd1—O2—C1 | −86.3 (2) |
C2—C3—C4—O4 | −170.0 (4) | O4ii—Cd1—O2—C1 | 11.7 (3) |
O2—C1—O1—Cd1 | −2.0 (3) | O5—Cd1—O2—C1 | 87.5 (2) |
C2—C1—O1—Cd1 | 178.7 (3) | O1—Cd1—O2—C1 | −1.2 (2) |
O4i—Cd1—O1—C1 | −151.7 (4) | O3—C4—O4—Cd1iii | 5.3 (4) |
O2—Cd1—O1—C1 | 1.2 (2) | C3—C4—O4—Cd1iii | −175.2 (3) |
O6—Cd1—O1—C1 | 105.0 (2) | O3—C4—O4—Cd1iv | 153.9 (3) |
O4ii—Cd1—O1—C1 | −172.0 (2) | C3—C4—O4—Cd1iv | −26.5 (6) |
O5—Cd1—O1—C1 | −88.5 (2) |
Symmetry codes: (i) x−1, −y+3/2, z−1/2; (ii) −x+1, y−1/2, −z+1/2; (iii) x+1, −y+3/2, z+1/2; (iv) −x+1, y+1/2, −z+1/2.
Footnotes
Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2243).
References
- Bruker (1998). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
- Brusau, E. V., Pedregosa, J. C. G., Narda, E., Echeverria, G. & Punte, G. (2000). J. Solid State Chem.153, 1–8.
- He, Y.-K., Wang, X.-F., Zhang, L.-T., Han, Z.-B. & Ng, S. W. (2007). Acta Cryst. E63, m3019.
- He, Q., Zi, J.-F. & Zhang, F.-J. (2006). Acta Cryst. E62, m1266–m1267.
- Huo, L.-H., Gao, S. & Ng, S. W. (2005). Acta Cryst. E61, m2357–m2358.
- Ng, S. W. (1998). Acta Cryst. C54, 745–750.
- Rastsvetaeva, R. K., Pushcharovsky, D. Yu., Furmanova, N. G. & Sharp, H. (1996). Z. Kristallogr.211, 808–810.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Zhuo, X., Pan, Z.-R., Wang, Z.-W., Li, Y.-Z. & Zheng, H.-G. (2006). Chin. J. Inorg. Chem.22, 1847–1851.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011593/bg2243sup1.cif
Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011593/bg2243Isup2.hkl
Additional supplementary materials: crystallographic information; 3D view; checkCIF report