Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 25;65(Pt 5):m576. doi: 10.1107/S1600536809014755

Tris(2-ethyl-1H-imidazole-κN 3)(terephthalato-κO)zinc(II)

Quan-An Xie a,b,*, Gui-Ying Dong b, Ya-Mei Yu b, Yong-Gang Wang a
PMCID: PMC2977618  PMID: 21583804

Abstract

The title compound, [Zn(C8H4O4)(C5H8N2)3], has a neutral monomeric structure in which one terephthalate dianion and three 2-ethyl-1H-imidazole ligands coordinate to the ZnII ion in a distorted tetra­hedral geometry. The methyl group of one of the ethyl groups is disordered over two positions with occupancies of 0.66 (2) and 0.34 (2). In the crystal structure, mol­ecules are linked into a three-dimensional hydrogen-bonded network by inter­molecular N—H⋯O interactions involving the uncoordinated carboxyl­ate O atoms.

Related literature

For the crystal structures of related ZnII complexes, see: Chen et al. (1994); Kimura et al. (1991); Yang et al. (2002).graphic file with name e-65-0m576-scheme1.jpg

Experimental

Crystal data

  • [Zn(C8H4O4)(C5H8N2)3]

  • M r = 517.90

  • Monoclinic, Inline graphic

  • a = 11.548 (2) Å

  • b = 11.759 (2) Å

  • c = 18.719 (4) Å

  • β = 91.79 (3)°

  • V = 2540.7 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 1.01 mm−1

  • T = 293 K

  • 0.30 × 0.25 × 0.22 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.742, T max = 0.812

  • 13021 measured reflections

  • 5719 independent reflections

  • 3534 reflections with I > 2σ(I)

  • R int = 0.086

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073

  • wR(F 2) = 0.114

  • S = 1.12

  • 5719 reflections

  • 317 parameters

  • 16 restraints

  • H-atom parameters constrained

  • Δρmax = 0.51 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983), 2826 Friedel pairs

  • Flack parameter: 0.049 (15)

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809014755/ci2775sup1.cif

e-65-0m576-sup1.cif (25.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014755/ci2775Isup2.hkl

e-65-0m576-Isup2.hkl (280KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Zn1—O1 1.947 (4)
Zn1—N3 2.018 (4)
Zn1—N5 2.023 (5)
Zn1—N1 2.044 (5)

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2⋯O4i 0.86 1.88 2.717 (7) 165
N4—H4⋯O3ii 0.86 1.94 2.787 (7) 167
N6—H6⋯O3iii 0.86 1.96 2.797 (7) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the China University of Mining and Technology (Beijing) and Hebei Polytechnic University for supporting this work.

supplementary crystallographic information

Comment

Metal complexes with imidazole can serve as biomimetic ligands for histidine residues which frequently participate in the co-ordination spheres of metalloenzyme active sites. In particular, carboxylate-histidine-zinc triad systems are regularly observed, and play important roles in the catalytic processes of more than thirty zinc enzymes (Chen et al., 1994). However, crystal structure reports of such model zinc complexes containing neutral imidazole ligands are rather rare, and so far only a few examples have been presented (Kimura et al., 1991; Chen et al., 1994). Here, we report the synthesis and crystal structure of the title complex.

The title compound is a monomeric zinc(II) complex (Fig. 1). The ZnII center is four coordinated by three monodentate 2-ethyl-1H-imidazole ligands and by a monodentate terephthalate group, forming a distorted tetrahedral N3,O geometry. The Zn—N bond lengths are in the range 2.014 (6)–2.047 (7) Å and the Zn—O distance is 1.943 (6) Å (Table 1). The most distorted bond angle is O1—Zn1—N1 at 100.5 (3)°.

The N—H···O hydrogen bonds (Table 2) formed between three uncoordinated 2-ethyl-H-imidazole N atoms and two uncoordinated carboxylate O atoms, resulted in a three-dimensional hydrogen-bonded network.

Experimental

The title compound was synthesized by a solvothermal method from Zn(NO3)2.6H2O (29.8 mg, 0.1 mmol), terephthalic acid (77.6 mg,0.4 mmol), 2-ethylimidazole (38.4 mg, 0.4 mmol) and water-ethanol mixed slovent (3 ml). The starting mixture was homogenized and transferred to a sealed Teflon-lined solvothermal bomb (bomb volume: 25 ml) and heated at 433 K for 3 d under autogenous pressure. After cooling in a water bath, colourless crystals were obtained, which were washed and rinsed with distilled water and absolute ethyl alcohol (yield: 51.8% on the basis of Zn(NO3)2.6H2O). Analysis calculated (%) for C23H28N6O4Zn: C 53.34, H 5.45, N 16.23%; found: C 53.18, H 5.43, N 16.13.

Refinement

The methyl C atom, C18, in one of the ethyl groups is disordered over two positions (C18A and C18B) with refined occupancies of 0.66 (2) and 0.34 (2). The C17—C18A and C17—C18B distances were restrained to 1.53 (1) Å. The displacement parameters of the disordered C atoms were also restrained to be approximately isotropic. The aromatic [C-H = 0.93 Å and Uiso(H) = 1.2Ueq(C)] and methylene H atoms [C-H = 0.96 Å and Uiso(H) = 1.5Ueq(C)] were included in the refinement in the riding-model approximation.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing the atomic numbering and 30% probability displacement ellipsoids. For clarity, H atoms have been omitted. Only the major disorder component is shown.

Crystal data

[Zn(C8H4O4)(C5H8N2)3] F(000) = 1080
Mr = 517.90 Dx = 1.354 Mg m3
Monoclinic, Cc Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2yc Cell parameters from 1240 reflections
a = 11.548 (2) Å θ = 4.5–25.0°
b = 11.759 (2) Å µ = 1.01 mm1
c = 18.719 (4) Å T = 293 K
β = 91.79 (3)° Block, white
V = 2540.7 (8) Å3 0.30 × 0.25 × 0.22 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 5719 independent reflections
Radiation source: fine-focus sealed tube 3534 reflections with I > 2σ(I)
graphite Rint = 0.086
φ and ω scans θmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −14→14
Tmin = 0.742, Tmax = 0.812 k = −15→15
13021 measured reflections l = −24→24

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073 H-atom parameters constrained
wR(F2) = 0.114 w = 1/[σ2(Fo2) + (0.0189P)2 + 0.8316P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max = 0.001
5719 reflections Δρmax = 0.51 e Å3
317 parameters Δρmin = −0.28 e Å3
16 restraints Absolute structure: Flack (1983), 2826 Friedel pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.049 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Zn1 0.31207 (5) 0.87464 (5) 1.00368 (4) 0.04221 (18)
O1 0.3327 (4) 1.0107 (4) 0.9463 (2) 0.0616 (12)
O2 0.1668 (4) 0.9779 (4) 0.8862 (3) 0.0651 (13)
O3 0.4207 (4) 1.5052 (4) 0.7476 (2) 0.0570 (12)
O4 0.3054 (4) 1.4345 (4) 0.6625 (2) 0.0628 (12)
N1 0.4459 (4) 0.8920 (4) 1.0769 (2) 0.0459 (13)
N2 0.6080 (5) 0.9487 (4) 1.1293 (3) 0.0647 (15)
H2 0.6768 0.9759 1.1355 0.078*
N3 0.1653 (4) 0.8651 (4) 1.0592 (2) 0.0421 (11)
N4 0.0232 (5) 0.8949 (5) 1.1303 (3) 0.0639 (15)
H4 −0.0184 0.9259 1.1622 0.077*
N5 0.3423 (4) 0.7220 (4) 0.9580 (2) 0.0436 (12)
N6 0.4022 (5) 0.5903 (4) 0.8863 (3) 0.0529 (14)
H6 0.4181 0.5548 0.8477 0.063*
C1 0.2545 (6) 1.0340 (5) 0.8977 (3) 0.0476 (15)
C2 0.2797 (5) 1.1396 (5) 0.8544 (3) 0.0392 (14)
C3 0.3797 (5) 1.2032 (5) 0.8667 (3) 0.0443 (15)
H3 0.4319 1.1816 0.9030 0.053*
C4 0.4029 (5) 1.2980 (5) 0.8259 (3) 0.0420 (14)
H4A 0.4702 1.3396 0.8351 0.050*
C5 0.3255 (5) 1.3317 (4) 0.7707 (3) 0.0341 (13)
C6 0.2258 (5) 1.2678 (5) 0.7579 (3) 0.0407 (15)
H6A 0.1738 1.2885 0.7213 0.049*
C7 0.2034 (5) 1.1723 (5) 0.8001 (3) 0.0447 (15)
H7 0.1362 1.1304 0.7913 0.054*
C8 0.3515 (5) 1.4310 (5) 0.7235 (3) 0.0427 (15)
C9 0.5509 (6) 0.9366 (5) 1.0669 (3) 0.0470 (15)
C10 0.5378 (8) 0.9101 (7) 1.1818 (4) 0.088 (3)
H10 0.5553 0.9084 1.2306 0.106*
C11 0.4387 (6) 0.8751 (6) 1.1490 (4) 0.074 (2)
H11 0.3754 0.8444 1.1717 0.088*
C12 0.6028 (5) 0.9657 (5) 0.9961 (3) 0.0558 (18)
H12A 0.6636 1.0218 1.0038 0.067*
H12B 0.5436 0.9993 0.9649 0.067*
C13 0.6528 (8) 0.8621 (7) 0.9599 (4) 0.101 (3)
H13A 0.6846 0.8842 0.9152 0.152*
H13B 0.5927 0.8070 0.9515 0.152*
H13C 0.7128 0.8297 0.9902 0.152*
C14 0.1249 (5) 0.9330 (5) 1.1079 (3) 0.0498 (16)
C15 −0.0025 (6) 0.7984 (6) 1.0934 (4) 0.066 (2)
H15 −0.0683 0.7535 1.0974 0.080*
C16 0.0867 (5) 0.7808 (5) 1.0497 (4) 0.0542 (17)
H16 0.0930 0.7203 1.0181 0.065*
C17 0.1830 (8) 1.0329 (7) 1.1407 (5) 0.110 (3)
H17A 0.1455 1.0515 1.1848 0.132* 0.661 (18)
H17B 0.2629 1.0134 1.1526 0.132* 0.661 (18)
H17C 0.2519 1.0460 1.1144 0.132* 0.339 (18)
H17D 0.2080 1.0100 1.1879 0.132* 0.339 (18)
C18A 0.1810 (13) 1.1331 (11) 1.0944 (8) 0.115 (6) 0.661 (18)
H18A 0.2203 1.1948 1.1184 0.172* 0.661 (18)
H18B 0.1022 1.1544 1.0835 0.172* 0.661 (18)
H18C 0.2192 1.1158 1.0509 0.172* 0.661 (18)
C18B 0.1283 (18) 1.1454 (12) 1.1528 (14) 0.079 (9) 0.339 (18)
H18D 0.1837 1.1955 1.1756 0.119* 0.339 (18)
H18E 0.0631 1.1362 1.1828 0.119* 0.339 (18)
H18F 0.1029 1.1772 1.1077 0.119* 0.339 (18)
C19 0.3515 (5) 0.6916 (5) 0.8896 (3) 0.0445 (15)
C20 0.4250 (6) 0.5515 (5) 0.9545 (3) 0.0547 (17)
H20 0.4601 0.4832 0.9678 0.066*
C21 0.3857 (5) 0.6335 (5) 0.9983 (3) 0.0482 (15)
H21 0.3879 0.6304 1.0480 0.058*
C22 0.3089 (7) 0.7583 (6) 0.8248 (4) 0.070 (2)
H22A 0.2804 0.7060 0.7883 0.085*
H22B 0.2450 0.8067 0.8381 0.085*
C23 0.4025 (8) 0.8302 (8) 0.7949 (5) 0.124 (4)
H23A 0.3723 0.8713 0.7541 0.187*
H23B 0.4653 0.7825 0.7808 0.187*
H23C 0.4301 0.8831 0.8306 0.187*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Zn1 0.0425 (3) 0.0409 (3) 0.0436 (4) 0.0011 (5) 0.0069 (2) 0.0037 (4)
O1 0.059 (3) 0.059 (3) 0.067 (3) 0.006 (2) 0.004 (2) 0.027 (2)
O2 0.052 (3) 0.052 (3) 0.092 (4) −0.005 (2) 0.005 (3) 0.017 (3)
O3 0.081 (3) 0.052 (3) 0.039 (3) −0.003 (3) 0.015 (2) 0.010 (2)
O4 0.066 (3) 0.078 (3) 0.044 (3) 0.007 (3) −0.005 (2) 0.020 (3)
N1 0.051 (3) 0.050 (3) 0.037 (3) −0.008 (3) 0.003 (2) 0.003 (2)
N2 0.060 (4) 0.071 (4) 0.062 (4) −0.004 (3) −0.012 (3) −0.011 (3)
N3 0.045 (3) 0.042 (3) 0.040 (3) 0.000 (3) 0.009 (2) −0.005 (3)
N4 0.063 (4) 0.065 (4) 0.064 (4) 0.009 (3) 0.021 (3) −0.012 (3)
N5 0.047 (3) 0.050 (3) 0.035 (3) 0.003 (2) 0.005 (2) 0.001 (2)
N6 0.071 (4) 0.043 (3) 0.045 (3) 0.007 (3) 0.015 (3) 0.000 (3)
C1 0.050 (4) 0.042 (4) 0.052 (4) 0.013 (3) 0.011 (3) 0.002 (3)
C2 0.044 (3) 0.035 (3) 0.038 (3) 0.005 (3) 0.004 (3) 0.002 (3)
C3 0.053 (4) 0.040 (4) 0.039 (4) 0.007 (3) −0.007 (3) 0.007 (3)
C4 0.041 (4) 0.041 (4) 0.043 (4) 0.001 (3) −0.002 (3) 0.001 (3)
C5 0.038 (3) 0.039 (3) 0.026 (3) 0.010 (3) 0.008 (2) 0.002 (3)
C6 0.037 (4) 0.051 (4) 0.033 (3) 0.009 (3) −0.006 (3) −0.002 (3)
C7 0.041 (4) 0.050 (4) 0.043 (4) 0.003 (3) 0.002 (3) −0.003 (3)
C8 0.041 (4) 0.046 (4) 0.042 (4) 0.013 (3) 0.013 (3) 0.007 (3)
C9 0.058 (4) 0.029 (3) 0.053 (4) 0.003 (3) 0.000 (3) −0.006 (3)
C10 0.095 (7) 0.127 (8) 0.042 (5) 0.006 (6) −0.003 (5) −0.008 (5)
C11 0.071 (5) 0.096 (6) 0.053 (5) −0.004 (5) 0.002 (4) 0.013 (4)
C12 0.042 (4) 0.062 (5) 0.064 (5) −0.010 (3) 0.005 (3) 0.004 (4)
C13 0.110 (7) 0.102 (7) 0.095 (7) −0.010 (6) 0.047 (5) −0.036 (6)
C14 0.049 (4) 0.049 (4) 0.052 (4) −0.005 (3) 0.004 (3) −0.010 (3)
C15 0.049 (4) 0.060 (5) 0.091 (6) −0.016 (4) 0.011 (4) −0.008 (4)
C16 0.044 (4) 0.046 (4) 0.073 (5) −0.007 (3) 0.008 (3) −0.019 (3)
C17 0.105 (8) 0.092 (7) 0.134 (8) −0.003 (6) 0.015 (6) −0.032 (6)
C18A 0.116 (9) 0.103 (9) 0.125 (10) −0.004 (7) 0.002 (7) 0.009 (7)
C18B 0.077 (11) 0.069 (12) 0.092 (12) −0.004 (8) 0.006 (8) −0.009 (8)
C19 0.051 (4) 0.042 (4) 0.041 (4) 0.000 (3) 0.009 (3) 0.002 (3)
C20 0.066 (4) 0.045 (4) 0.053 (4) 0.009 (3) 0.007 (3) 0.005 (3)
C21 0.052 (4) 0.055 (4) 0.038 (3) −0.001 (3) −0.001 (3) 0.002 (3)
C22 0.101 (6) 0.056 (5) 0.054 (5) 0.020 (4) 0.012 (4) 0.006 (4)
C23 0.119 (8) 0.167 (10) 0.089 (7) 0.057 (7) 0.028 (6) 0.054 (7)

Geometric parameters (Å, °)

Zn1—O1 1.947 (4) C10—C11 1.346 (10)
Zn1—N3 2.018 (4) C10—H10 0.93
Zn1—N5 2.023 (5) C11—H11 0.93
Zn1—N1 2.044 (5) C12—C13 1.516 (9)
O1—C1 1.291 (7) C12—H12A 0.97
O2—C1 1.223 (7) C12—H12B 0.97
O3—C8 1.257 (7) C13—H13A 0.96
O4—C8 1.245 (7) C13—H13B 0.96
N1—C9 1.339 (7) C13—H13C 0.96
N1—C11 1.370 (8) C14—C17 1.477 (9)
N2—C9 1.331 (8) C15—C16 1.351 (8)
N2—C10 1.371 (9) C15—H15 0.93
N2—H2 0.86 C16—H16 0.93
N3—C14 1.309 (7) C17—C18A 1.462 (8)
N3—C16 1.352 (7) C17—C18B 1.486 (9)
N4—C14 1.336 (7) C17—H17A 0.97
N4—C15 1.356 (8) C17—H17B 0.97
N4—H4 0.86 C17—H17C 0.96
N5—C19 1.337 (7) C17—H17D 0.96
N5—C21 1.371 (7) C18A—H18A 0.96
N6—C19 1.330 (7) C18A—H18B 0.96
N6—C20 1.373 (7) C18A—H18C 0.96
N6—H6 0.86 C18B—H18D 0.96
C1—C2 1.516 (8) C18B—H18E 0.96
C2—C7 1.379 (7) C18B—H18F 0.96
C2—C3 1.389 (8) C19—C22 1.513 (9)
C3—C4 1.382 (7) C20—C21 1.354 (7)
C3—H3 0.93 C20—H20 0.93
C4—C5 1.402 (7) C21—H21 0.93
C4—H4A 0.93 C22—C23 1.495 (11)
C5—C6 1.389 (7) C22—H22A 0.97
C5—C8 1.501 (7) C22—H22B 0.97
C6—C7 1.401 (8) C23—H23A 0.96
C6—H6A 0.93 C23—H23B 0.96
C7—H7 0.93 C23—H23C 0.96
C9—C12 1.512 (8)
O1—Zn1—N3 116.67 (18) C13—C12—H12B 109.2
O1—Zn1—N5 118.06 (18) H12A—C12—H12B 107.9
N3—Zn1—N5 109.09 (19) C12—C13—H13A 109.5
O1—Zn1—N1 100.7 (2) C12—C13—H13B 109.5
N3—Zn1—N1 106.87 (18) H13A—C13—H13B 109.5
N5—Zn1—N1 103.6 (2) C12—C13—H13C 109.5
C1—O1—Zn1 117.9 (4) H13A—C13—H13C 109.5
C9—N1—C11 106.1 (5) H13B—C13—H13C 109.5
C9—N1—Zn1 127.9 (4) N3—C14—N4 110.5 (5)
C11—N1—Zn1 125.3 (4) N3—C14—C17 127.4 (6)
C9—N2—C10 107.8 (6) N4—C14—C17 121.9 (6)
C9—N2—H2 126.1 C16—C15—N4 106.1 (6)
C10—N2—H2 126.1 C16—C15—H15 127.0
C14—N3—C16 106.6 (5) N4—C15—H15 127.0
C14—N3—Zn1 130.4 (4) C15—C16—N3 109.3 (6)
C16—N3—Zn1 123.0 (4) C15—C16—H16 125.4
C14—N4—C15 107.6 (5) N3—C16—H16 125.4
C14—N4—H4 126.2 C18A—C17—C14 113.4 (9)
C15—N4—H4 126.2 C14—C17—C18B 125.6 (11)
C19—N5—C21 106.6 (5) C18A—C17—H17A 108.9
C19—N5—Zn1 131.5 (4) C14—C17—H17A 108.9
C21—N5—Zn1 120.4 (4) C18A—C17—H17B 108.9
C19—N6—C20 109.1 (5) C14—C17—H17B 108.9
C19—N6—H6 125.4 H17A—C17—H17B 107.7
C20—N6—H6 125.4 C14—C17—H17C 106.7
O2—C1—O1 124.6 (6) C18B—C17—H17C 107.3
O2—C1—C2 121.3 (6) C14—C17—H17D 106.2
O1—C1—C2 114.1 (6) C18B—C17—H17D 103.1
C7—C2—C3 118.7 (5) H17C—C17—H17D 106.7
C7—C2—C1 119.6 (5) C17—C18A—H18A 109.5
C3—C2—C1 121.7 (5) C17—C18A—H18B 109.5
C4—C3—C2 121.2 (5) H18A—C18A—H18B 109.5
C4—C3—H3 119.4 C17—C18A—H18C 109.5
C2—C3—H3 119.4 H18A—C18A—H18C 109.5
C3—C4—C5 120.3 (5) H18B—C18A—H18C 109.5
C3—C4—H4A 119.8 C17—C18B—H18D 109.5
C5—C4—H4A 119.8 C17—C18B—H18E 109.5
C6—C5—C4 118.7 (5) H18D—C18B—H18E 109.5
C6—C5—C8 120.0 (5) C17—C18B—H18F 109.5
C4—C5—C8 121.3 (5) H18D—C18B—H18F 109.5
C5—C6—C7 120.2 (5) H18E—C18B—H18F 109.5
C5—C6—H6A 119.9 N6—C19—N5 109.4 (5)
C7—C6—H6A 119.9 N6—C19—C22 124.1 (6)
C2—C7—C6 120.9 (6) N5—C19—C22 126.5 (6)
C2—C7—H7 119.5 C21—C20—N6 105.6 (5)
C6—C7—H7 119.5 C21—C20—H20 127.2
O4—C8—O3 123.7 (6) N6—C20—H20 127.2
O4—C8—C5 118.5 (6) C20—C21—N5 109.3 (5)
O3—C8—C5 117.7 (5) C20—C21—H21 125.3
N2—C9—N1 110.3 (6) N5—C21—H21 125.3
N2—C9—C12 123.0 (6) C23—C22—C19 111.9 (7)
N1—C9—C12 126.7 (6) C23—C22—H22A 109.2
C11—C10—N2 106.8 (7) C19—C22—H22A 109.2
C11—C10—H10 126.6 C23—C22—H22B 109.2
N2—C10—H10 126.6 C19—C22—H22B 109.2
C10—C11—N1 109.1 (7) H22A—C22—H22B 107.9
C10—C11—H11 125.5 C22—C23—H23A 109.5
N1—C11—H11 125.5 C22—C23—H23B 109.5
C9—C12—C13 112.1 (5) H23A—C23—H23B 109.5
C9—C12—H12A 109.2 C22—C23—H23C 109.5
C13—C12—H12A 109.2 H23A—C23—H23C 109.5
C9—C12—H12B 109.2 H23B—C23—H23C 109.5
N3—Zn1—O1—C1 −58.2 (5) C4—C5—C8—O3 −23.6 (8)
N5—Zn1—O1—C1 74.8 (4) C10—N2—C9—N1 0.3 (7)
N1—Zn1—O1—C1 −173.4 (4) C10—N2—C9—C12 −177.4 (6)
O1—Zn1—N1—C9 −34.4 (5) C11—N1—C9—N2 −0.5 (7)
N3—Zn1—N1—C9 −156.7 (5) Zn1—N1—C9—N2 170.7 (4)
N5—Zn1—N1—C9 88.1 (5) C11—N1—C9—C12 177.1 (6)
O1—Zn1—N1—C11 135.2 (5) Zn1—N1—C9—C12 −11.7 (9)
N3—Zn1—N1—C11 12.9 (6) C9—N2—C10—C11 0.1 (8)
N5—Zn1—N1—C11 −102.3 (6) N2—C10—C11—N1 −0.3 (9)
O1—Zn1—N3—C14 −58.6 (6) C9—N1—C11—C10 0.5 (8)
N5—Zn1—N3—C14 164.5 (5) Zn1—N1—C11—C10 −171.0 (5)
N1—Zn1—N3—C14 53.0 (6) N2—C9—C12—C13 96.4 (7)
O1—Zn1—N3—C16 120.4 (5) N1—C9—C12—C13 −80.8 (8)
N5—Zn1—N3—C16 −16.6 (5) C16—N3—C14—N4 0.2 (7)
N1—Zn1—N3—C16 −128.0 (5) Zn1—N3—C14—N4 179.3 (4)
O1—Zn1—N5—C19 −16.2 (6) C16—N3—C14—C17 175.1 (7)
N3—Zn1—N5—C19 120.0 (5) Zn1—N3—C14—C17 −5.7 (10)
N1—Zn1—N5—C19 −126.4 (5) C15—N4—C14—N3 −0.4 (7)
O1—Zn1—N5—C21 147.3 (4) C15—N4—C14—C17 −175.7 (7)
N3—Zn1—N5—C21 −76.4 (4) C14—N4—C15—C16 0.5 (8)
N1—Zn1—N5—C21 37.2 (5) N4—C15—C16—N3 −0.4 (8)
Zn1—O1—C1—O2 1.8 (8) C14—N3—C16—C15 0.1 (8)
Zn1—O1—C1—C2 −178.4 (3) Zn1—N3—C16—C15 −179.1 (5)
O2—C1—C2—C7 −1.2 (8) N3—C14—C17—C18A 77.0 (12)
O1—C1—C2—C7 179.0 (5) N4—C14—C17—C18A −108.6 (11)
O2—C1—C2—C3 −179.4 (5) N3—C14—C17—C18B 135.1 (15)
O1—C1—C2—C3 0.8 (8) N4—C14—C17—C18B −50.5 (17)
C7—C2—C3—C4 0.4 (8) C20—N6—C19—N5 1.3 (7)
C1—C2—C3—C4 178.6 (5) C20—N6—C19—C22 −177.2 (6)
C2—C3—C4—C5 −0.3 (8) C21—N5—C19—N6 −2.1 (6)
C3—C4—C5—C6 −0.2 (8) Zn1—N5—C19—N6 163.1 (4)
C3—C4—C5—C8 −177.1 (5) C21—N5—C19—C22 176.4 (6)
C4—C5—C6—C7 0.5 (8) Zn1—N5—C19—C22 −18.4 (9)
C8—C5—C6—C7 177.5 (5) C19—N6—C20—C21 0.1 (7)
C3—C2—C7—C6 0.0 (8) N6—C20—C21—N5 −1.4 (7)
C1—C2—C7—C6 −178.3 (5) C19—N5—C21—C20 2.2 (7)
C5—C6—C7—C2 −0.4 (8) Zn1—N5—C21—C20 −165.0 (4)
C6—C5—C8—O4 −21.7 (8) N6—C19—C22—C23 −86.7 (9)
C4—C5—C8—O4 155.2 (5) N5—C19—C22—C23 95.0 (8)
C6—C5—C8—O3 159.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2···O4i 0.86 1.88 2.717 (7) 165
N4—H4···O3ii 0.86 1.94 2.787 (7) 167
N6—H6···O3iii 0.86 1.96 2.797 (7) 163

Symmetry codes: (i) x+1/2, −y+5/2, z+1/2; (ii) x−1/2, −y+5/2, z+1/2; (iii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI2775).

References

  1. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chen, X.-M., Xu, Z.-T. & Huanga, X.-C. (1994). J. Chem. Soc. Dalton Trans. pp. 2331–2332.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Kimura, E., Kurogi, Y., Shionoya, M. & Shiro, M. (1991). Inorg. Chem.30, 4524–4530.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Yang, J.-H., Zheng, S.-L., Tao, J., Liu, G.-F. & Chen, X.-M. (2002). Aust. J. Chem.55, 741–744.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809014755/ci2775sup1.cif

e-65-0m576-sup1.cif (25.3KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014755/ci2775Isup2.hkl

e-65-0m576-Isup2.hkl (280KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES