Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 30;65(Pt 5):m599. doi: 10.1107/S1600536809015360

1-(2-Fluoro­benzyl­ideneamino)pyridinium bis­(1,2-dicyano­ethene-1,2-dithiol­ato)nickelate(II)

Hui Zhang a,*, Quan Zhou a, Fengkai Hu a, Han Xu a, Guanru Chang a
PMCID: PMC2977634  PMID: 21583820

Abstract

In the title complex, (C12H10FN2)2[Ni(C4N2S2)2], the anion lies on an inversion center with the NiII ion coordinated by four S atoms in a slightly distorted square-planar environment. In the unique cation, the dihedral angle between the benzene and pyridine rings is 7.1 (2) Å.

Related literature

For metal–[dithiol­ene]2 complexes, see: Ni et al. (2004, 2005); Nishijo et al. (2000); Ren et al. (2004); Robertson & Cronin (2002).graphic file with name e-65-0m599-scheme1.jpg

Experimental

Crystal data

  • (C12H10FN2)2[Ni(C4N2S2)2]

  • M r = 741.51

  • Triclinic, Inline graphic

  • a = 7.9248 (13) Å

  • b = 9.1774 (15) Å

  • c = 11.1526 (18) Å

  • α = 88.326 (3)°

  • β = 77.202 (4)°

  • γ = 85.448 (4)°

  • V = 788.4 (2) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.93 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.732, T max = 0.809

  • 4282 measured reflections

  • 3030 independent reflections

  • 1785 reflections with I > 2σ(I)

  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.094

  • S = 0.76

  • 3030 reflections

  • 214 parameters

  • H-atom parameters constrained

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809015360/lh2806sup1.cif

e-65-0m599-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015360/lh2806Isup2.hkl

e-65-0m599-Isup2.hkl (148.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of High Learning Institutions of Abhui Province, China, for financial support (grant No. KJ2009B275Z).

supplementary crystallographic information

Comment

Molecular solids based on transition metal dithiolene complexes have attracted intense interest in recent years, not only owing to the fundamental research of magnetic interactions and magneto-structural correlations but also to the development of new functional molecule-based materials (Robertson & Cronin (2002). Much work has been performed on molecular solids based on M[dithiolene]2 complexes owing to their application as building blocks in molecular-based materials showing magnetic, superconducting, and optical properties (Nishijo et al., 2000; Ni et al., 2005). Herein we report the crystal structure of the title compound (I).

The molecular structure of (I) is illustrated in Fig. 1. The asymmetric unit contains one half [Ni(mnt)2]2- (mnt = maleonitriledithiolato) dianion and one o-fluorbenzylidene-1-aminopyrazine cation, the formula unit being generated by an inversion center. In the [Ni(mnt)2]2- cation the bond lengths and angles are in good agreement with related [Ni(mnt)2]2- compounds (Ni et al., 2004; Ren et al., 2004)

Experimental

Disodium maleonitriledithiolate (456 mg, 2.5 mmol) and nickel chloride hexahydrate (297 mg, 1.25 mmol) were mixed under stirring in water (20 mL) at room temperature. A solution of o-fluorbenzylidene-1-aminopyridinium bromide(665 mg, 2.5 mmol) in methanol (10 mL) was added to the mixture, and the red precipitate that was immediately formed was filtered off, and washed with methanol. The crude product was recrystallized in acetone (20 mL) to give red block crystals. Anal. Calcd. for C32 H20 F2 N8 Ni S4: C, 51.83; H, 2.72; N, 15.11%. Found: C, 51.96; H, 2.93; N, 15.03%.

Refinement

The H atoms were placed in geometrically idealized positions (C—H = 0.93 Å) and refined as riding atoms, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 30% probability level. Only the symmetry unique anion is shown. Symmetry code (A): -x, -y+1, -z.

Crystal data

(C12H10FN2)2[Ni(C4N2S2)2] V = 788.4 (2) Å3
Mr = 741.51 Z = 1
Triclinic, P1 F(000) = 378
Hall symbol: -P 1 Dx = 1.562 Mg m3
a = 7.9248 (13) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.1774 (15) Å θ = 1.9–26.0°
c = 11.1526 (18) Å µ = 0.93 mm1
α = 88.326 (3)° T = 293 K
β = 77.202 (4)° Block, red
γ = 85.448 (4)° 0.30 × 0.20 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer 3030 independent reflections
Radiation source: fine-focus sealed tube 1785 reflections with I > 2σ(I)
graphite Rint = 0.038
φ and ω scans θmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −8→9
Tmin = 0.732, Tmax = 0.809 k = −11→11
4282 measured reflections l = −13→12

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094 H-atom parameters constrained
S = 0.76 w = 1/[σ2(Fo2) + (0.0323P)2] where P = (Fo2 + 2Fc2)/3
3030 reflections (Δ/σ)max = 0.004
214 parameters Δρmax = 0.31 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
F1 0.5021 (3) 0.3555 (2) −0.1896 (2) 0.0724 (7)
N7 0.7362 (4) 0.1871 (3) 0.1593 (3) 0.0528 (8)
N8 0.7118 (5) 0.1192 (3) 0.0532 (3) 0.0646 (10)
C21 0.5600 (5) 0.2153 (4) −0.2199 (4) 0.0561 (11)
C22 0.5388 (6) 0.1628 (5) −0.3283 (4) 0.0735 (13)
H22A 0.4832 0.2200 −0.3804 0.088*
C23 0.6029 (6) 0.0220 (5) −0.3571 (4) 0.0797 (14)
H23A 0.5949 −0.0156 −0.4320 0.096*
C24 0.6779 (6) −0.0643 (5) −0.2792 (4) 0.0742 (14)
H24A 0.7179 −0.1602 −0.3001 0.089*
C25 0.6944 (5) −0.0094 (4) −0.1700 (4) 0.0609 (11)
H25A 0.7452 −0.0686 −0.1166 0.073*
C26 0.6362 (5) 0.1333 (4) −0.1381 (3) 0.0484 (10)
C27 0.6580 (5) 0.1978 (4) −0.0257 (4) 0.0531 (10)
H27A 0.6319 0.2974 −0.0126 0.064*
C28 0.8296 (6) 0.1020 (4) 0.2236 (4) 0.0616 (12)
H28A 0.8723 0.0089 0.1956 0.074*
C29 0.8626 (6) 0.1496 (4) 0.3287 (4) 0.0704 (13)
H29A 0.9291 0.0905 0.3725 0.085*
C30 0.7965 (5) 0.2868 (4) 0.3703 (4) 0.0622 (12)
H30A 0.8182 0.3215 0.4425 0.075*
C31 0.6997 (6) 0.3708 (4) 0.3049 (4) 0.0667 (13)
H31A 0.6533 0.4632 0.3326 0.080*
C32 0.6708 (6) 0.3200 (4) 0.1996 (4) 0.0700 (13)
H32A 0.6048 0.3780 0.1546 0.084*
Ni1 0.0000 0.5000 0.0000 0.0484 (2)
S1 0.17387 (15) 0.40603 (10) 0.11191 (9) 0.0589 (3)
S2 −0.08272 (14) 0.68427 (10) 0.12200 (9) 0.0585 (3)
N1 0.2744 (5) 0.4501 (4) 0.4175 (3) 0.0771 (12)
N2 −0.0466 (5) 0.8166 (4) 0.4231 (3) 0.0776 (12)
C1 −0.0194 (5) 0.7374 (4) 0.3440 (4) 0.0571 (11)
C2 0.0169 (5) 0.6389 (4) 0.2423 (3) 0.0490 (10)
C3 0.1256 (5) 0.5188 (4) 0.2397 (3) 0.0501 (10)
C4 0.2087 (6) 0.4806 (4) 0.3384 (4) 0.0553 (11)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
F1 0.0756 (18) 0.0615 (15) 0.0818 (18) 0.0122 (13) −0.0271 (14) −0.0013 (13)
N7 0.063 (2) 0.0415 (18) 0.054 (2) 0.0031 (17) −0.0156 (18) −0.0038 (16)
N8 0.088 (3) 0.050 (2) 0.062 (2) 0.0107 (19) −0.033 (2) −0.0115 (18)
C21 0.049 (3) 0.057 (3) 0.061 (3) −0.001 (2) −0.010 (2) −0.006 (2)
C22 0.076 (4) 0.084 (3) 0.067 (3) −0.005 (3) −0.031 (3) 0.004 (3)
C23 0.089 (4) 0.091 (4) 0.066 (3) −0.004 (3) −0.027 (3) −0.023 (3)
C24 0.090 (4) 0.062 (3) 0.072 (3) 0.006 (3) −0.022 (3) −0.021 (3)
C25 0.070 (3) 0.049 (2) 0.068 (3) 0.003 (2) −0.026 (2) −0.006 (2)
C26 0.048 (3) 0.050 (2) 0.048 (2) −0.006 (2) −0.010 (2) −0.0039 (19)
C27 0.053 (3) 0.044 (2) 0.061 (3) 0.003 (2) −0.011 (2) −0.007 (2)
C28 0.078 (3) 0.046 (2) 0.062 (3) 0.010 (2) −0.024 (2) −0.001 (2)
C29 0.091 (4) 0.058 (3) 0.068 (3) 0.013 (3) −0.036 (3) −0.005 (2)
C30 0.072 (3) 0.064 (3) 0.053 (3) −0.001 (2) −0.020 (2) −0.009 (2)
C31 0.089 (4) 0.050 (3) 0.060 (3) 0.014 (2) −0.019 (3) −0.016 (2)
C32 0.095 (4) 0.053 (3) 0.066 (3) 0.026 (2) −0.035 (3) −0.012 (2)
Ni1 0.0527 (5) 0.0408 (4) 0.0520 (5) 0.0016 (3) −0.0130 (4) −0.0090 (3)
S1 0.0704 (8) 0.0504 (6) 0.0575 (7) 0.0119 (5) −0.0214 (6) −0.0151 (5)
S2 0.0655 (8) 0.0496 (6) 0.0631 (7) 0.0100 (5) −0.0230 (6) −0.0163 (5)
N1 0.100 (3) 0.068 (2) 0.068 (3) 0.008 (2) −0.032 (2) −0.010 (2)
N2 0.109 (3) 0.061 (2) 0.066 (3) 0.007 (2) −0.028 (2) −0.0186 (19)
C1 0.064 (3) 0.051 (3) 0.058 (3) −0.002 (2) −0.018 (2) 0.000 (2)
C2 0.050 (3) 0.039 (2) 0.056 (3) −0.0034 (19) −0.008 (2) −0.0112 (19)
C3 0.057 (3) 0.043 (2) 0.051 (3) 0.000 (2) −0.013 (2) −0.0091 (19)
C4 0.068 (3) 0.042 (2) 0.055 (3) 0.001 (2) −0.011 (2) −0.011 (2)

Geometric parameters (Å, °)

F1—C21 1.358 (4) C29—C30 1.378 (5)
N7—C28 1.335 (4) C29—H29A 0.9300
N7—C32 1.337 (4) C30—C31 1.355 (5)
N7—N8 1.410 (4) C30—H30A 0.9300
N8—C27 1.249 (4) C31—C32 1.348 (5)
C21—C22 1.364 (5) C31—H31A 0.9300
C21—C26 1.377 (5) C32—H32A 0.9300
C22—C23 1.371 (5) Ni1—S2i 2.1689 (10)
C22—H22A 0.9300 Ni1—S2 2.1689 (9)
C23—C24 1.360 (5) Ni1—S1i 2.1703 (10)
C23—H23A 0.9300 Ni1—S1 2.1703 (10)
C24—C25 1.369 (4) S1—C3 1.741 (3)
C24—H24A 0.9300 S2—C2 1.726 (4)
C25—C26 1.382 (5) N1—C4 1.138 (4)
C25—H25A 0.9300 N2—C1 1.132 (4)
C26—C27 1.451 (4) C1—C2 1.436 (5)
C27—H27A 0.9300 C2—C3 1.341 (5)
C28—C29 1.348 (5) C3—C4 1.424 (5)
C28—H28A 0.9300
C28—N7—C32 120.4 (3) C28—C29—C30 119.2 (4)
C28—N7—N8 113.1 (3) C28—C29—H29A 120.4
C32—N7—N8 126.4 (3) C30—C29—H29A 120.4
C27—N8—N7 118.0 (3) C31—C30—C29 119.3 (4)
F1—C21—C22 118.7 (4) C31—C30—H30A 120.3
F1—C21—C26 117.7 (3) C29—C30—H30A 120.3
C22—C21—C26 123.5 (4) C32—C31—C30 119.8 (4)
C21—C22—C23 117.0 (4) C32—C31—H31A 120.1
C21—C22—H22A 121.5 C30—C31—H31A 120.1
C23—C22—H22A 121.5 N7—C32—C31 120.6 (4)
C24—C23—C22 121.9 (4) N7—C32—H32A 119.7
C24—C23—H23A 119.1 C31—C32—H32A 119.7
C22—C23—H23A 119.1 S2i—Ni1—S2 180.0
C23—C24—C25 119.7 (4) S2i—Ni1—S1i 92.10 (4)
C23—C24—H24A 120.1 S2—Ni1—S1i 87.90 (4)
C25—C24—H24A 120.1 S2i—Ni1—S1 87.90 (4)
C24—C25—C26 120.7 (4) S2—Ni1—S1 92.10 (4)
C24—C25—H25A 119.7 S1i—Ni1—S1 180.00 (4)
C26—C25—H25A 119.7 C3—S1—Ni1 102.69 (14)
C21—C26—C25 117.1 (4) C2—S2—Ni1 102.72 (13)
C21—C26—C27 120.4 (4) N2—C1—C2 178.9 (5)
C25—C26—C27 122.5 (4) C3—C2—C1 121.6 (4)
N8—C27—C26 119.8 (3) C3—C2—S2 121.5 (3)
N8—C27—H27A 120.1 C1—C2—S2 116.9 (3)
C26—C27—H27A 120.1 C2—C3—C4 121.9 (3)
N7—C28—C29 120.7 (4) C2—C3—S1 120.3 (3)
N7—C28—H28A 119.7 C4—C3—S1 117.7 (3)
C29—C28—H28A 119.7 N1—C4—C3 179.7 (5)

Symmetry codes: (i) −x, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2806).

References

  1. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Ni, C. L., Dang, D. B. & Song, Y. (2004). Chem. Phys. Lett.396, 353–358.
  3. Ni, Z. P., Ren, X. M. & Ma, J. (2005). J. Am. Chem. Soc.127, 14330–14338. [DOI] [PubMed]
  4. Nishijo, J., Ogura, E., Yamaura, J. & Miyazaki, A. (2000). Solid State Commun.116, 661–664.
  5. Ren, X. M., Okudera, H. & Kremer, R. K. (2004). Inorg. Chem.43, 2569–2576. [DOI] [PubMed]
  6. Robertson, N. & Cronin, L. (2002). Coord. Chem. Rev.227, 93–127.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809015360/lh2806sup1.cif

e-65-0m599-sup1.cif (16.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809015360/lh2806Isup2.hkl

e-65-0m599-Isup2.hkl (148.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES