Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 2;65(Pt 5):o940. doi: 10.1107/S1600536809011611

(2R)-2-Benzene­sulfonamido-2-phenyl­ethanoic acid

Muhammad Nadeem Arshad a, M Nawaz Tahir b,*, Islam Ullah Khan a, Muhammad Shafiq a, Sarfraz Ahmad c
PMCID: PMC2977641  PMID: 21583984

Abstract

In the title compound, C14H13NO4S, the dihedral angle between the aromatic ring planes is 45.52 (18)°. In the crystal structure, inter­molecular N—H⋯O and O—H⋯O hydrogen bonds lead to chains of mol­ecules propagating in [100] in which the the ring motifs R 2 1(8), R 2 2(8) and R 3 3(11) are apparent. These polymeric chains are linked through C—H⋯O inter­actions.

Related literature

For related structures, see: Chaudhuri (1984); Shan & Huang (1999). For background, see: Arshad et al. (2008); Cama et al. (2003); Dankwardt et al. (2002); Zhi-jian et al. (2006). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-65-0o940-scheme1.jpg

Experimental

Crystal data

  • C14H13NO4S

  • M r = 291.31

  • Orthorhombic, Inline graphic

  • a = 5.6022 (5) Å

  • b = 12.5026 (9) Å

  • c = 19.7886 (15) Å

  • V = 1386.03 (19) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.25 mm−1

  • T = 296 K

  • 0.22 × 0.18 × 0.15 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.944, T max = 0.966

  • 8476 measured reflections

  • 2818 independent reflections

  • 1679 reflections with I > 2σ(I)

  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.091

  • S = 1.01

  • 2818 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.28 e Å−3

  • Absolute structure: Flack (1983), 1092 Friedal Pairs

  • Flack parameter: 0.02 (10)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011611/hb2938sup1.cif

e-65-0o940-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011611/hb2938Isup2.hkl

e-65-0o940-Isup2.hkl (135.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O3i 0.86 2.55 3.155 (4) 128
O3—H3O⋯O4ii 0.82 1.83 2.646 (3) 176
C2—H2⋯O1iii 0.93 2.56 3.340 (5) 142
C3—H3⋯O2iv 0.93 2.54 3.225 (5) 131
C7—H7⋯O1iii 0.98 2.55 3.432 (4) 150

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

MNA greatfully acknowledges the Higher Education Commission, Islamabad, Pakistan, for providing him with a Scholaship under the Indigenous PhD Program (PIN 042–120607-PS2-183).

supplementary crystallographic information

Comment

Amino acid derived sulfonamides have been synthesized as ligands (Zhi-jian et al., 2006) which showed potent procollagen C-proteinase (PCP) inhibition (Dankwardt et al., 2002) and arginase inhibition (Cama et al., 2003). The title compound (I), (Fig 1), has been prepared as an intermediate for the synthesis of our ongoing studies of thiazine (Arshad et al., 2008) related heterocycles.

The crystal structure of (II) R-(-)-N-benzenesulfonylglutamic acid (Shan & Huang, 1999) and (III) N-Benzenesulfonyl-DL-alanine (Chaudhuri, 1984) have been published. These structures have a common group with (I) except the benzene ring of phenyl glycine.

The title compound has a chairal center at C7 with slightly distorted tetrahedral geometry with H7 at the apical position. The coordination around the S-atom is distorted tetrahedral. The molecules of the compound are stabilized due to strong intermolecular H-bonding (Table 1). Three ring motifs R21(8), R22(8) and R33(11) (Bernstein et al., 1995) are formed due to two H-bonds of C—H···O type, H-bonding of types C—H···O and N—H···O, and two O—H···O and N—H···O, respectively (Fig 2). The ring motifs are connected to each other in such a way that a rod-shaped attachement of molecules exist along the a axis. These polymeric chains are linked through the remaing H-bonding of C—H···O type.

Experimental

Phenyl glycine (1 g, 6.6 mmol) was dissolved in distilled water (10 ml) in a round bottom flask (25 ml). The pH of the solution was maintained at 8–9 using 1M, Na2CO3 solution. Benzene sulfonyl chloride (1.16 g, 6.6 mmol) was then added to the solution and stirred at room temperature until all the benzene sulfonyl chloride was consumed. On completion of the reaction the pH was adjusted 1–2, using 1 N HCl. The precipitate obtained was filtered, washed with distilled water, dried and recrystalized in dichloromethane and methanol to yield colourless prisms of (I).

Refinement

The H-atoms were positioned geometrically, with O—H = 0.82 Å N—H = 0.86 Å and C—H = 0.93–0.98 Å for aromatic, C-H = 0.98 Å and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Figures

Fig. 1.

Fig. 1.

View of (I) with displacement ellipsoids drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radius.

Fig. 2.

Fig. 2.

The partial packing of (I) showing that molecules form ring motifs through intermolecular H-bonding. The H-atoms not involved in H-bonding and the benzene ring of phenyl glycine are omited for clarity.

Crystal data

C14H13NO4S F(000) = 608
Mr = 291.31 Dx = 1.396 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 2818 reflections
a = 5.6022 (5) Å θ = 2.6–26.7°
b = 12.5026 (9) Å µ = 0.25 mm1
c = 19.7886 (15) Å T = 296 K
V = 1386.03 (19) Å3 Prism, colorless
Z = 4 0.22 × 0.18 × 0.15 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2818 independent reflections
Radiation source: fine-focus sealed tube 1679 reflections with I > 2σ(I)
graphite Rint = 0.050
Detector resolution: 7.80 pixels mm-1 θmax = 26.7°, θmin = 2.6°
ω scans h = −7→3
Absorption correction: multi-scan (SADABS; Bruker, 2005) k = −15→15
Tmin = 0.944, Tmax = 0.966 l = −25→25
8476 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051 H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0304P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
2818 reflections Δρmax = 0.23 e Å3
182 parameters Δρmin = −0.28 e Å3
0 restraints Absolute structure: Flack (1983), 1092 Friedal Pairs
Primary atom site location: structure-invariant direct methods Flack parameter: 0.02 (10)

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.8906 (2) 0.51683 (6) 0.15187 (4) 0.0387 (3)
O1 1.1438 (4) 0.50754 (15) 0.15986 (10) 0.0489 (9)
O2 0.7303 (5) 0.44742 (17) 0.18723 (11) 0.0554 (9)
O3 0.2940 (5) 0.62039 (15) 0.01637 (12) 0.0456 (10)
O4 0.6710 (5) 0.68015 (15) 0.01169 (12) 0.0496 (9)
N1 0.8409 (5) 0.49873 (16) 0.07161 (11) 0.0338 (9)
C1 0.8088 (7) 0.6505 (2) 0.17079 (15) 0.0363 (13)
C2 0.5942 (8) 0.6698 (3) 0.20125 (16) 0.0533 (14)
C3 0.5343 (9) 0.7746 (4) 0.21780 (18) 0.0723 (19)
C4 0.6886 (11) 0.8565 (3) 0.2012 (2) 0.075 (2)
C5 0.8993 (9) 0.8359 (3) 0.16954 (19) 0.0640 (18)
C6 0.9639 (7) 0.7318 (2) 0.15472 (16) 0.0521 (14)
C7 0.6001 (7) 0.49830 (19) 0.04431 (13) 0.0316 (12)
C8 0.5281 (8) 0.6104 (2) 0.02287 (14) 0.0340 (13)
C9 0.5829 (7) 0.4265 (2) −0.01808 (14) 0.0318 (13)
C10 0.3966 (8) 0.3565 (2) −0.02540 (17) 0.0507 (13)
C11 0.3774 (10) 0.2936 (3) −0.0832 (2) 0.0690 (18)
C12 0.5456 (10) 0.3020 (3) −0.1324 (2) 0.072 (2)
C13 0.7293 (9) 0.3721 (3) −0.1256 (2) 0.080 (2)
C14 0.7496 (7) 0.4351 (3) −0.06873 (18) 0.0583 (16)
H1 0.95974 0.48921 0.04478 0.0406*
H2 0.49001 0.61383 0.21076 0.0640*
H3 0.39147 0.78931 0.23985 0.0865*
H3O 0.26138 0.68249 0.00676 0.0547*
H4 0.64818 0.92669 0.21182 0.0899*
H5 1.00004 0.89197 0.15781 0.0768*
H6 1.10972 0.71706 0.13426 0.0624*
H7 0.48902 0.47247 0.07892 0.0379*
H10 0.28216 0.35094 0.00847 0.0608*
H11 0.25062 0.24614 −0.08804 0.0827*
H12 0.53489 0.25964 −0.17091 0.0872*
H13 0.84273 0.37763 −0.15968 0.0956*
H14 0.87550 0.48313 −0.06466 0.0702*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0371 (7) 0.0395 (4) 0.0395 (4) 0.0025 (5) −0.0015 (5) 0.0072 (4)
O1 0.0308 (18) 0.0569 (13) 0.0590 (14) 0.0051 (14) −0.0105 (13) 0.0060 (12)
O2 0.055 (2) 0.0573 (14) 0.0538 (14) −0.0093 (13) 0.0066 (13) 0.0230 (11)
O3 0.037 (2) 0.0322 (13) 0.0677 (16) 0.0072 (13) 0.0039 (16) 0.0136 (12)
O4 0.048 (2) 0.0318 (11) 0.0690 (16) −0.0128 (14) −0.0048 (14) 0.0143 (10)
N1 0.030 (2) 0.0351 (13) 0.0364 (13) 0.0025 (15) 0.0059 (13) −0.0056 (11)
C1 0.031 (3) 0.0481 (19) 0.0297 (18) −0.0040 (18) 0.0001 (17) −0.0046 (14)
C2 0.045 (3) 0.067 (2) 0.048 (2) 0.001 (3) 0.000 (2) −0.0200 (17)
C3 0.049 (4) 0.096 (3) 0.072 (3) 0.016 (3) −0.006 (2) −0.039 (3)
C4 0.085 (5) 0.059 (3) 0.082 (3) 0.015 (3) −0.011 (3) −0.033 (2)
C5 0.070 (4) 0.046 (2) 0.076 (3) −0.010 (2) −0.004 (3) −0.0124 (19)
C6 0.057 (3) 0.0494 (19) 0.050 (2) 0.001 (2) 0.009 (2) −0.0060 (19)
C7 0.032 (3) 0.0251 (15) 0.0378 (16) 0.0002 (19) 0.0039 (17) 0.0037 (12)
C8 0.041 (3) 0.0298 (18) 0.0311 (17) 0.002 (2) 0.003 (2) −0.0001 (14)
C9 0.030 (3) 0.0242 (14) 0.0412 (18) 0.0008 (17) 0.0001 (18) 0.0012 (13)
C10 0.057 (3) 0.0360 (17) 0.059 (2) −0.006 (2) 0.003 (2) −0.0045 (16)
C11 0.082 (4) 0.045 (2) 0.080 (3) −0.014 (2) −0.017 (3) −0.012 (2)
C12 0.093 (5) 0.062 (3) 0.062 (3) −0.005 (3) −0.011 (3) −0.027 (2)
C13 0.078 (5) 0.103 (3) 0.059 (3) −0.017 (3) 0.020 (3) −0.029 (2)
C14 0.059 (4) 0.068 (2) 0.048 (2) −0.022 (2) 0.013 (2) −0.017 (2)

Geometric parameters (Å, °)

S1—O1 1.432 (3) C9—C14 1.374 (5)
S1—O2 1.432 (3) C9—C10 1.370 (5)
S1—N1 1.628 (2) C10—C11 1.392 (5)
S1—C1 1.773 (3) C11—C12 1.359 (7)
O3—C8 1.324 (5) C12—C13 1.358 (7)
O4—C8 1.204 (4) C13—C14 1.378 (5)
O3—H3O 0.8200 C2—H2 0.9300
N1—C7 1.453 (5) C3—H3 0.9300
N1—H1 0.8600 C4—H4 0.9300
C1—C2 1.366 (6) C5—H5 0.9300
C1—C6 1.375 (4) C6—H6 0.9300
C2—C3 1.392 (6) C7—H7 0.9800
C3—C4 1.380 (7) C10—H10 0.9300
C4—C5 1.361 (7) C11—H11 0.9300
C5—C6 1.382 (5) C12—H12 0.9300
C7—C8 1.519 (4) C13—H13 0.9300
C7—C9 1.530 (4) C14—H14 0.9300
O1—S1—O2 121.22 (14) C10—C11—C12 119.4 (4)
O1—S1—N1 105.42 (14) C11—C12—C13 120.3 (4)
O1—S1—C1 108.01 (15) C12—C13—C14 120.8 (4)
O2—S1—N1 106.58 (14) C9—C14—C13 119.7 (4)
O2—S1—C1 107.82 (16) C1—C2—H2 121.00
N1—S1—C1 107.03 (13) C3—C2—H2 121.00
C8—O3—H3O 109.00 C2—C3—H3 120.00
S1—N1—C7 121.5 (2) C4—C3—H3 120.00
S1—N1—H1 119.00 C3—C4—H4 120.00
C7—N1—H1 119.00 C5—C4—H4 120.00
C2—C1—C6 121.9 (3) C4—C5—H5 120.00
S1—C1—C2 119.2 (3) C6—C5—H5 120.00
S1—C1—C6 119.0 (3) C1—C6—H6 121.00
C1—C2—C3 118.8 (4) C5—C6—H6 121.00
C2—C3—C4 119.5 (4) N1—C7—H7 109.00
C3—C4—C5 120.8 (4) C8—C7—H7 109.00
C4—C5—C6 120.2 (4) C9—C7—H7 109.00
C1—C6—C5 118.8 (4) C9—C10—H10 120.00
C8—C7—C9 107.4 (2) C11—C10—H10 120.00
N1—C7—C9 111.2 (3) C10—C11—H11 120.00
N1—C7—C8 110.3 (3) C12—C11—H11 120.00
O3—C8—O4 124.9 (3) C11—C12—H12 120.00
O3—C8—C7 112.2 (3) C13—C12—H12 120.00
O4—C8—C7 122.9 (4) C12—C13—H13 120.00
C7—C9—C10 120.6 (3) C14—C13—H13 120.00
C7—C9—C14 120.0 (3) C9—C14—H14 120.00
C10—C9—C14 119.4 (3) C13—C14—H14 120.00
C9—C10—C11 120.4 (4)
O1—S1—N1—C7 177.57 (18) C4—C5—C6—C1 1.8 (6)
O2—S1—N1—C7 47.6 (2) N1—C7—C8—O3 −161.7 (2)
C1—S1—N1—C7 −67.6 (2) N1—C7—C8—O4 20.1 (4)
O1—S1—C1—C2 −145.8 (3) C9—C7—C8—O3 77.0 (3)
O1—S1—C1—C6 33.9 (3) C9—C7—C8—O4 −101.2 (4)
O2—S1—C1—C2 −13.2 (3) N1—C7—C9—C10 134.8 (3)
O2—S1—C1—C6 166.5 (3) N1—C7—C9—C14 −48.0 (4)
N1—S1—C1—C2 101.2 (3) C8—C7—C9—C10 −104.5 (3)
N1—S1—C1—C6 −79.2 (3) C8—C7—C9—C14 72.7 (4)
S1—N1—C7—C8 90.6 (2) C7—C9—C10—C11 178.0 (3)
S1—N1—C7—C9 −150.35 (18) C14—C9—C10—C11 0.8 (5)
S1—C1—C2—C3 178.1 (3) C7—C9—C14—C13 −178.3 (3)
C6—C1—C2—C3 −1.5 (5) C10—C9—C14—C13 −1.0 (5)
S1—C1—C6—C5 180.0 (3) C9—C10—C11—C12 0.1 (6)
C2—C1—C6—C5 −0.4 (5) C10—C11—C12—C13 −0.8 (7)
C1—C2—C3—C4 2.1 (6) C11—C12—C13—C14 0.5 (7)
C2—C3—C4—C5 −0.7 (6) C12—C13—C14—C9 0.4 (6)
C3—C4—C5—C6 −1.3 (6)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1···O3i 0.86 2.55 3.155 (4) 128
O3—H3O···O4ii 0.82 1.83 2.646 (3) 176
C2—H2···O1iii 0.93 2.56 3.340 (5) 142
C3—H3···O2iv 0.93 2.54 3.225 (5) 131
C7—H7···O1iii 0.98 2.55 3.432 (4) 150

Symmetry codes: (i) x+1, y, z; (ii) x−1/2, −y+3/2, −z; (iii) x−1, y, z; (iv) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2938).

References

  1. Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045. [DOI] [PMC free article] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  3. Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cama, E., Shin, H. & Christianson, D. W. (2003). J. Am. Chem. Soc 125, 13052–13057. [DOI] [PubMed]
  6. Chaudhuri, S. (1984). J. Chem. Soc. Dalton Trans pp. 779–783.
  7. Dankwardt, S. M., Abbot, S. C., Broka, C. A., Martin, R. L., Chan, C. S., Springman, E. B., Van Wart, H. E. & Walker, K. A. M. (2002). Bioorg. Med. Chem. Lett 12, 1233–235. [DOI] [PubMed]
  8. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  9. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  10. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  11. Shan, Y. & Huang, S. D. (1999). Z. Kristallogr 214, 379–380.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Zhi-jian, H., Chao-shan, D., Li, Q., Ming, N., Yi-feng, Z. & Rui, W. (2006). Lett. Org. Chem 3, 143–148.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011611/hb2938sup1.cif

e-65-0o940-sup1.cif (18KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011611/hb2938Isup2.hkl

e-65-0o940-Isup2.hkl (135.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES