Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 2;65(Pt 5):o944. doi: 10.1107/S1600536809011751

(E)-2,3-Bis(4-methoxy­phen­yl)acrylic acid

Banfeng Ruan a, Ying Yang a, Zhenwei Zhu a, Pengcheng Lv a, Hailiang Zhu a,*
PMCID: PMC2977645  PMID: 21583988

Abstract

In the title mol­ecule, C17H16O4, the angle between the aromatic ring planes is 69.1 (6)°. The crystal structure is stabilized by inter­molecular O—H⋯O hydrogen bonds; mol­ecules related by a centre of symmetry are linked to form inversion dimers.

Related literature

For the biological properties and synthesis of resveratrol (trans-3,4′,5-trihydroxy­stilbene) and its derivatives, see: Huang, Ruan et al. (2007); Huang et al. (2008); Jang et al. (1997); Ruan et al. (2006); Schulze et al. (2005); Shi et al. (2005). For related crystal structures, see: Huang, Li et al. (2007); Stomberg et al. (2001).graphic file with name e-65-0o944-scheme1.jpg

Experimental

Crystal data

  • C17H16O4

  • M r = 284.30

  • Triclinic, Inline graphic

  • a = 5.8690 (12) Å

  • b = 9.1480 (18) Å

  • c = 13.992 (3) Å

  • α = 83.65 (3)°

  • β = 85.43 (3)°

  • γ = 80.92 (3)°

  • V = 735.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.30 × 0.20 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.973, T max = 0.991

  • 3196 measured reflections

  • 2895 independent reflections

  • 1779 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.151

  • S = 1.08

  • 2895 reflections

  • 194 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011751/wn2320sup1.cif

e-65-0o944-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011751/wn2320Isup2.hkl

e-65-0o944-Isup2.hkl (142.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2i 0.82 1.80 2.608 (2) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

This work was financed by a grant (Project 30772627) from the National Natural Science Foundation of China.

supplementary crystallographic information

Comment

Resveratrol (trans-3, 4',5-trihydroxystilbene) and its derivatives have attracted much attention since it was first isolated in 1939, because of their physiological properties and potential therapeutic values (Schulze et al., 2005; Jang et al., 1997). In our laboratory, we have synthesized two series of resveratrol derivatives (Ruan et al., 2006; Huang et al., 2007). As part of an extensive structure-activity relationship (SAR) study on resveratrol derivatives, another series of analogues of resveratrol has been synthesized. One of them, namely the title compound, was obtained as single crystals and its crystal structure determined to establish its configuration.

The crystal structure demonstrated that it had the E configuration (Fig. 1). All bond lengths are within normal ranges and very similar to those in related crystal structures (Stomberg et al., 2001). The torsion angles C5—C8—C10—C11 and C9—C8—C10—C11 are 5.9 (4)° and -176.6 (2)°, respectively. The angle between the aromatic ring planes is 69.1 (6)°. In the crystal structure, molecules related by a centre of symmetry are linked to form dimers via intermolecular O—H—O hydrogen bonds (Table 1 and Fig. 2).

Experimental

2-(4-Methoxyphenyl)acetic acid (1.66 g, 0.01 mol), 4-methoxybenzaldehyde (1.36 g, 0.01 mol) and acetic anhydride (15 ml) were added to a three-necked flask in an icewater bath with stirring. Triethylamine (5 ml) was added dropwise into this solution and the mixture was allowed to react at 100°C for 12 h. After cooling to room temperature, the mixture was slowly poured into 50 ml 10% NaOH solution, yielding a white precipitate. This was collected by vacuum filtration, washed with a large amount of water and dried in air. Colorless single crystals were obtained after a week upon evaporation of a solution of the reaction product in a mixture of ethyl acetate (10 ml) and petroleum ether (5 ml).

Refinement

All hydrogen atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H = 0.93 Å (Csp2), 0.96 Å (methyl) and O—H = 0.82 Å. Uiso(H) = 1.2Ueq(Csp2), 1.5Ueq(methyl C and hydroxyl O).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom-numbering scheme. All H atoms have been omitted.

Fig. 2.

Fig. 2.

A view of the hydrogen-bonded dimer of the title compound. Dashed lines indicate hydrogen bonds. [Symmetry code: (A) -x + 3, -y + 2, -z + 1]

Crystal data

C17H16O4 Z = 2
Mr = 284.30 F(000) = 300
Triclinic, P1 Dx = 1.283 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 5.8690 (12) Å Cell parameters from 1625 reflections
b = 9.1480 (18) Å θ = 2.2–24.8°
c = 13.992 (3) Å µ = 0.09 mm1
α = 83.65 (3)° T = 298 K
β = 85.43 (3)° Block, colorless
γ = 80.92 (3)° 0.30 × 0.20 × 0.10 mm
V = 735.8 (3) Å3

Data collection

Enraf–Nonius CAD-4 diffractometer 2895 independent reflections
Radiation source: fine-focus sealed tube 1779 reflections with I > 2σ(I)
graphite Rint = 0.027
ω/2θ scans θmax = 26.0°, θmin = 1.5°
Absorption correction: ψ scan (North et al., 1968) h = 0→7
Tmin = 0.973, Tmax = 0.991 k = −11→11
3196 measured reflections l = −17→17

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.056 H-atom parameters constrained
wR(F2) = 0.151 w = 1/[σ2(Fo2) + (0.0675P)2 + 0.024P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
2895 reflections Δρmax = 0.18 e Å3
194 parameters Δρmin = −0.17 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.044 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.7983 (6) 1.3447 (4) −0.0150 (2) 0.0938 (11)
H1A 0.6774 1.2848 −0.0132 0.141*
H1B 0.8108 1.3993 −0.0774 0.141*
H1C 0.7629 1.4130 0.0333 0.141*
C2 1.0269 (4) 1.1661 (3) 0.08912 (15) 0.0505 (6)
C3 0.8532 (4) 1.1641 (3) 0.16030 (17) 0.0565 (6)
H3A 0.7103 1.2225 0.1513 0.068*
C4 0.8905 (4) 1.0754 (3) 0.24524 (17) 0.0548 (6)
H4 0.7705 1.0752 0.2929 0.066*
C5 1.0983 (4) 0.9870 (2) 0.26254 (15) 0.0423 (5)
C6 1.2741 (4) 0.9919 (3) 0.19039 (16) 0.0553 (6)
H6 1.4182 0.9357 0.2001 0.066*
C7 1.2382 (4) 1.0786 (3) 0.10484 (17) 0.0621 (7)
H7 1.3573 1.0786 0.0568 0.074*
C8 1.1324 (4) 0.8926 (2) 0.35563 (15) 0.0462 (6)
C9 1.2916 (4) 0.9385 (3) 0.41980 (16) 0.0495 (6)
C10 1.0275 (4) 0.7750 (2) 0.38730 (16) 0.0500 (6)
H10 1.0582 0.7349 0.4498 0.060*
C11 0.8736 (4) 0.6996 (2) 0.34031 (15) 0.0466 (6)
C12 0.7562 (4) 0.5977 (3) 0.39652 (17) 0.0563 (7)
H12 0.7770 0.5821 0.4623 0.068*
C13 0.6106 (4) 0.5188 (3) 0.35884 (17) 0.0577 (7)
H13 0.5354 0.4505 0.3985 0.069*
C14 0.5767 (4) 0.5414 (2) 0.26176 (17) 0.0495 (6)
C15 0.6987 (4) 0.6386 (3) 0.20313 (16) 0.0550 (6)
H15 0.6826 0.6504 0.1370 0.066*
C16 0.8418 (4) 0.7169 (2) 0.24152 (16) 0.0521 (6)
H16 0.9198 0.7831 0.2013 0.063*
C17 0.2995 (5) 0.3745 (3) 0.2726 (2) 0.0746 (8)
H17A 0.3998 0.2948 0.3053 0.112*
H17B 0.2067 0.3345 0.2315 0.112*
H17C 0.2009 0.4283 0.3192 0.112*
O1 1.0108 (3) 1.2517 (2) 0.00292 (12) 0.0753 (6)
O2 1.3849 (3) 1.04878 (19) 0.39719 (11) 0.0674 (6)
O3 1.3251 (3) 0.85636 (19) 0.50110 (11) 0.0691 (6)
H3 1.4025 0.8958 0.5341 0.104*
O4 0.4348 (3) 0.47241 (18) 0.21611 (12) 0.0641 (5)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.091 (2) 0.104 (2) 0.074 (2) 0.007 (2) −0.0214 (18) 0.0273 (18)
C2 0.0525 (15) 0.0561 (14) 0.0426 (12) −0.0126 (12) −0.0038 (11) 0.0029 (10)
C3 0.0391 (13) 0.0660 (16) 0.0582 (14) 0.0010 (12) −0.0025 (11) 0.0085 (12)
C4 0.0350 (12) 0.0696 (16) 0.0543 (14) −0.0040 (11) 0.0048 (10) 0.0067 (12)
C5 0.0397 (12) 0.0455 (12) 0.0429 (12) −0.0120 (10) −0.0034 (9) −0.0004 (9)
C6 0.0366 (13) 0.0690 (16) 0.0543 (14) 0.0024 (11) 0.0015 (11) 0.0018 (12)
C7 0.0468 (15) 0.0817 (18) 0.0506 (14) −0.0023 (13) 0.0095 (12) 0.0054 (13)
C8 0.0419 (13) 0.0483 (13) 0.0475 (12) −0.0076 (10) −0.0032 (10) 0.0010 (10)
C9 0.0472 (13) 0.0552 (14) 0.0451 (13) −0.0108 (11) −0.0061 (11) 0.0061 (11)
C10 0.0515 (14) 0.0544 (14) 0.0432 (12) −0.0101 (11) −0.0037 (11) 0.0034 (10)
C11 0.0437 (13) 0.0481 (13) 0.0465 (13) −0.0074 (10) −0.0032 (10) 0.0030 (10)
C12 0.0595 (16) 0.0638 (16) 0.0461 (13) −0.0183 (13) −0.0028 (11) 0.0053 (11)
C13 0.0527 (15) 0.0620 (15) 0.0595 (15) −0.0223 (12) 0.0017 (12) 0.0050 (12)
C14 0.0434 (13) 0.0456 (13) 0.0588 (14) −0.0050 (11) −0.0071 (11) −0.0009 (11)
C15 0.0662 (16) 0.0519 (14) 0.0475 (13) −0.0145 (12) −0.0108 (12) 0.0059 (11)
C16 0.0544 (14) 0.0522 (14) 0.0502 (14) −0.0178 (12) −0.0027 (11) 0.0064 (11)
C17 0.0668 (18) 0.0648 (17) 0.097 (2) −0.0284 (15) −0.0050 (16) −0.0028 (15)
O1 0.0737 (13) 0.0920 (14) 0.0513 (10) −0.0045 (11) −0.0040 (9) 0.0201 (9)
O2 0.0759 (12) 0.0728 (12) 0.0594 (11) −0.0376 (10) −0.0217 (9) 0.0176 (9)
O3 0.0865 (14) 0.0735 (12) 0.0535 (10) −0.0355 (10) −0.0255 (9) 0.0150 (9)
O4 0.0639 (11) 0.0610 (11) 0.0720 (11) −0.0240 (9) −0.0171 (9) 0.0030 (9)

Geometric parameters (Å, °)

C1—O1 1.418 (3) C9—O3 1.303 (2)
C1—H1A 0.9600 C10—C11 1.455 (3)
C1—H1B 0.9600 C10—H10 0.9300
C1—H1C 0.9600 C11—C12 1.384 (3)
C2—O1 1.364 (3) C11—C16 1.398 (3)
C2—C3 1.368 (3) C12—C13 1.371 (3)
C2—C7 1.385 (3) C12—H12 0.9300
C3—C4 1.375 (3) C13—C14 1.377 (3)
C3—H3A 0.9300 C13—H13 0.9300
C4—C5 1.376 (3) C14—O4 1.356 (3)
C4—H4 0.9300 C14—C15 1.386 (3)
C5—C6 1.387 (3) C15—C16 1.362 (3)
C5—C8 1.490 (3) C15—H15 0.9300
C6—C7 1.372 (3) C16—H16 0.9300
C6—H6 0.9300 C17—O4 1.423 (3)
C7—H7 0.9300 C17—H17A 0.9600
C8—C10 1.339 (3) C17—H17B 0.9600
C8—C9 1.482 (3) C17—H17C 0.9600
C9—O2 1.222 (3) O3—H3 0.8200
O1—C1—H1A 109.5 C8—C10—C11 130.8 (2)
O1—C1—H1B 109.5 C8—C10—H10 114.6
H1A—C1—H1B 109.5 C11—C10—H10 114.6
O1—C1—H1C 109.5 C12—C11—C16 116.9 (2)
H1A—C1—H1C 109.5 C12—C11—C10 117.9 (2)
H1B—C1—H1C 109.5 C16—C11—C10 125.1 (2)
O1—C2—C3 124.8 (2) C13—C12—C11 122.4 (2)
O1—C2—C7 116.4 (2) C13—C12—H12 118.8
C3—C2—C7 118.8 (2) C11—C12—H12 118.8
C2—C3—C4 119.8 (2) C12—C13—C14 119.5 (2)
C2—C3—H3A 120.1 C12—C13—H13 120.3
C4—C3—H3A 120.1 C14—C13—H13 120.3
C3—C4—C5 122.6 (2) O4—C14—C13 125.2 (2)
C3—C4—H4 118.7 O4—C14—C15 115.5 (2)
C5—C4—H4 118.7 C13—C14—C15 119.3 (2)
C4—C5—C6 117.04 (19) C16—C15—C14 120.6 (2)
C4—C5—C8 121.03 (19) C16—C15—H15 119.7
C6—C5—C8 121.9 (2) C14—C15—H15 119.7
C7—C6—C5 121.0 (2) C15—C16—C11 121.2 (2)
C7—C6—H6 119.5 C15—C16—H16 119.4
C5—C6—H6 119.5 C11—C16—H16 119.4
C6—C7—C2 120.8 (2) O4—C17—H17A 109.5
C6—C7—H7 119.6 O4—C17—H17B 109.5
C2—C7—H7 119.6 H17A—C17—H17B 109.5
C10—C8—C9 117.8 (2) O4—C17—H17C 109.5
C10—C8—C5 126.2 (2) H17A—C17—H17C 109.5
C9—C8—C5 115.95 (18) H17B—C17—H17C 109.5
O2—C9—O3 122.1 (2) C2—O1—C1 118.0 (2)
O2—C9—C8 121.2 (2) C9—O3—H3 109.5
O3—C9—C8 116.7 (2) C14—O4—C17 118.3 (2)
O1—C2—C3—C4 −178.7 (2) C9—C8—C10—C11 −176.6 (2)
C7—C2—C3—C4 −0.3 (4) C5—C8—C10—C11 5.9 (4)
C2—C3—C4—C5 0.1 (4) C8—C10—C11—C12 −168.2 (2)
C3—C4—C5—C6 0.9 (4) C8—C10—C11—C16 14.8 (4)
C3—C4—C5—C8 179.8 (2) C16—C11—C12—C13 −1.5 (4)
C4—C5—C6—C7 −1.7 (4) C10—C11—C12—C13 −178.8 (2)
C8—C5—C6—C7 179.4 (2) C11—C12—C13—C14 −0.5 (4)
C5—C6—C7—C2 1.5 (4) C12—C13—C14—O4 −178.9 (2)
O1—C2—C7—C6 178.1 (2) C12—C13—C14—C15 2.9 (4)
C3—C2—C7—C6 −0.4 (4) O4—C14—C15—C16 178.3 (2)
C4—C5—C8—C10 66.9 (3) C13—C14—C15—C16 −3.3 (4)
C6—C5—C8—C10 −114.2 (3) C14—C15—C16—C11 1.3 (4)
C4—C5—C8—C9 −110.7 (2) C12—C11—C16—C15 1.1 (3)
C6—C5—C8—C9 68.2 (3) C10—C11—C16—C15 178.2 (2)
C10—C8—C9—O2 −176.7 (2) C3—C2—O1—C1 −0.5 (4)
C5—C8—C9—O2 1.1 (3) C7—C2—O1—C1 −178.9 (2)
C10—C8—C9—O3 2.9 (3) C13—C14—O4—C17 3.6 (3)
C5—C8—C9—O3 −179.4 (2) C15—C14—O4—C17 −178.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O3—H3···O2i 0.82 1.80 2.608 (2) 169

Symmetry codes: (i) −x+3, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2320).

References

  1. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  2. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  3. Huang, X.-F., Li, H.-Q., Shi, L., Li, H.-Q. & Zhu, H.-L. (2007). J. Chem. Crystallogr.37, 739–742.
  4. Huang, X.-F., Li, H.-Q., Shi, L., Xue, J.-Y., Ruan, B.-F. & Zhu, H.-L. (2008). Chem. Biodiver.5, 636–642. [DOI] [PubMed]
  5. Huang, X.-F., Ruan, B.-F., Wang, X.-T., Xu, C., Ge, H.-M., Zhu, H.-L. & Tan, R.-X. (2007). Eur. J. Med. Chem.42, 263–267. [DOI] [PubMed]
  6. Jang, M., Cai, L., Udeani, G. O., Slowing, K. V., Thomas, C. F., Beecher, C. W. W., Fong, H. H. S., Farnsworth, N. R., Kinghorn, A. D., Mehta, R. G., Moon, R. C. & Pezztuo, J. M. (1997). Science, 275, 218–220. [DOI] [PubMed]
  7. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  8. Ruan, B.-F., Huang, X.-F., Ding, H., Xu, C., Ge, H.-M., Zhu, H.-L. & Tan, R.-X. (2006). Chem. Biodiver.3, 975–981. [DOI] [PubMed]
  9. Schulze, K., Schreiber, L. & Szankowski, I. (2005). J. Agric. Food Chem.53, 356–362. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shi, L., Huang, X.-F., Shi, L., Zhu, Z.-W., Li, H.-Q., Xue, J.-Y., Zhu, H.-L. & Liu, C.-H. (2008). Aust. J. Chem.61, 472–475.
  12. Stomberg, R., Li, S.-M., Lundquist, K. & Norinder, U. (2001). J. Chem. Crystallogr.31, 321–328.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011751/wn2320sup1.cif

e-65-0o944-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011751/wn2320Isup2.hkl

e-65-0o944-Isup2.hkl (142.1KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES