Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 2;65(Pt 5):o956. doi: 10.1107/S160053680901109X

(1R,2R)-N,N′-Diisobutyl-N,N′-dimethyl­cyclo­hexane-1,2-diamine

Prisca K Eckert a, Viktoria H Gessner a, Carsten Strohmann a,*
PMCID: PMC2977656  PMID: 21583999

Abstract

The title compound, C16H34N2, is a chiral diamine with fixed R configuration at both stereogenic carbon centres of the cyclo­hexane backbone. Due to their different substituents, the two N atoms also become stereogenic. In the crystal structure, the configuration at one of the two nitro­gen centres is fixed, with the free electron pair pointing inward and the isobutyl group in a trans position towards the cyclo­hexane backbone resulting in an R configuration. The isobutyl group at the second N atom, however, is disordered with 75% S configuration and 25% R configuration. In both cases, the isobutyl group is arranged in a trans position towards the cyclo­hexane backbone.

Related literature

The synthesis of the title compound is described by Kizirian et al. (2003). For the crystal structure of the related mol­ecule (1R,2R)-N,N′-dimethyl­cyclo­hexane-1,2-diamine, see Strohmann et al. (2008b ). Crystal structures of (1R,2R)-N,N′-tetra­methyl­cyclo­hexane-1,2-diamine coordinated to lithium organyls are described by Strohmann & Gessner (2007a ) and Strohmann & Gessner (2008). Other related diamines coordinated to lithium organyls are specified by Strohmann & Gessner (2007b ) and Strohmann et al. (2008a ). The use of chiral nitrogen ligands to enhance the stereoselectivity of deprotonation or addition reactions is discussed by Kizirian (2008) and Stead et al. (2008).graphic file with name e-65-0o956-scheme1.jpg

Experimental

Crystal data

  • C16H34N2

  • M r = 254.45

  • Orthorhombic, Inline graphic

  • a = 10.4693 (15) Å

  • b = 10.8013 (16) Å

  • c = 15.077 (2) Å

  • V = 1705.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.06 mm−1

  • T = 173 K

  • 0.40 × 0.40 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 1999) T min = 0.977, T max = 0.989

  • 20171 measured reflections

  • 3004 independent reflections

  • 2730 reflections with I > 2σ(I)

  • R int = 0.051

Refinement

  • R[F 2 > 2σ(F 2)] = 0.056

  • wR(F 2) = 0.149

  • S = 1.06

  • 3004 reflections

  • 202 parameters

  • 6 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: not determined in the present model. Absolute configuration: known from starting material

Data collection: SMART (Bruker, 2001); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901109X/fi2074sup1.cif

e-65-0o956-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901109X/fi2074Isup2.hkl

e-65-0o956-Isup2.hkl (144.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Fonds der Chemischen Industrie (FCI) and the Deutsche Forschungsgemeinschaft (DFG) for financial support.

supplementary crystallographic information

Comment

In preparative chemistry, chiral nitrogen ligands such as (1R,2R)-N,N,N',N'-tetramethylcyclohexane-1,2-diamine [(R,R)-TMCDA] and its derivatives are often used to enhance the stereoselectivity of deprotonation or addition reactions by coordinating to organolithium reagents (Kizirian, 2008). In the case of the cyclohexanediamine ligands, derivatives with three different substituents at the nitrogen centres revealed to be more efficient than their symmetric analogues (Kizirian et al., 2003; Stead et al., 2008).

The title compound represents the crystal structure of such an uncoordinated (R,R)-TMCDA derivative (for related crystal structures, see: Strohmann & Gessner, 2007a,b; Strohmann & Gessner, 2008; Strohmann et al.et al., 2008b; Strohmann et al., 2008a). (1R,2R)-N,N'-diisobutyl-N, N'-dimethylcyclohexane-1,2-diamine (1) (Fig. 1), crystallizes at -78 °C in the orthorhombic crystal system, space group P212121. The asymmetric unit contains one molecule of the chiral diamine. The configuration at one of the two nitrogen centres is fixed with the free electron pair pointing inward and the isobutyl group arranged in a trans-position towards the cyclohexane backbone. The second nitrogen centre, however, can be described by a model that has the free electron pair pointing outwards in 75% of all molecules and inwards in the others.

Experimental

The title compound (100 mg, 0.39 mmol) was diluted in n-pentane (2 ml). After cooling to -78 °C, clear crystals suitable for single-crystal x-ray studies were obtained. For synthesis of the title compound, see Kizirian et al. (2003).

Refinement

H atoms were refined using a riding model in their ideal geometric positions with Uiso(H) = 1.5Ueq(C) for methyl H atoms and Uiso(H) = 1.2Ueq(C) for all other H atoms. H14 was located from the Fourier map and refined and its coordinates were refined freely yielding a C—H distance of 1.03 (3) Å. The Friedel pairs were not merged and the Flack parameter (Flack, 1983) yielded an indeterminate value with large uncertainty (1(4)). The following distances were restrained using DFIX: C13b—N2 and N2—C13a at 1.43 Å, C14—C16b, C14—16a, C14—C15a and C14—C15b at 1.52 Å. For the description of the disorder, a splitting model was used which had the free electron pair at the nitrogen centre pointing outwards in 75% of all molecules and inwards in the others. Absolute structure: not determined in the present model. Absolute configuration: known from starting material.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with thermal ellipsoids drawn at the 50% probability level.

Crystal data

C16H34N2 F(000) = 576
Mr = 254.45 Dx = 0.991 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P2ac 2ab Cell parameters from 999 reflections
a = 10.4693 (15) Å θ = 2.3–25°
b = 10.8013 (16) Å µ = 0.06 mm1
c = 15.077 (2) Å T = 173 K
V = 1705.0 (4) Å3 Plates, colourless
Z = 4 0.40 × 0.40 × 0.20 mm

Data collection

Bruker SMART APEX CCD diffractometer 3004 independent reflections
Radiation source: fine-focus sealed tube 2730 reflections with I > 2σ(I)
graphite Rint = 0.051
ω scans θmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 1999) h = −12→12
Tmin = 0.977, Tmax = 0.989 k = −12→12
20171 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.149 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0787P)2 + 0.3166P] where P = (Fo2 + 2Fc2)/3
3004 reflections (Δ/σ)max < 0.001
202 parameters Δρmax = 0.20 e Å3
6 restraints Δρmin = −0.13 e Å3

Special details

Geometry. All e.s.d.s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.s are taken into account individually in the estimation of e.s.d.s in distances, angles and torsion angles; correlations between e.s.d.s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.s is used for estimating e.s.d.s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.7243 (2) 0.2944 (2) 0.79640 (18) 0.0615 (6)
H1A 0.6695 0.3257 0.7487 0.092*
H1B 0.8141 0.3069 0.7804 0.092*
H1C 0.7055 0.3390 0.8514 0.092*
C2 0.5745 (2) 0.1385 (2) 0.84275 (17) 0.0589 (6)
H2A 0.5630 0.1850 0.8988 0.071*
H2B 0.5683 0.0493 0.8570 0.071*
C3 0.4646 (2) 0.1725 (2) 0.77945 (15) 0.0546 (6)
H3 0.4648 0.2643 0.7704 0.065*
C4 0.3389 (2) 0.1358 (3) 0.8223 (2) 0.0727 (8)
H4A 0.2682 0.1572 0.7825 0.109*
H4B 0.3288 0.1802 0.8785 0.109*
H4C 0.3385 0.0464 0.8334 0.109*
C5 0.4814 (3) 0.1104 (3) 0.69055 (19) 0.0778 (8)
H5A 0.4885 0.0207 0.6990 0.117*
H5B 0.5592 0.1415 0.6621 0.117*
H5C 0.4075 0.1286 0.6529 0.117*
C6 0.7989 (2) 0.0998 (2) 0.86174 (14) 0.0489 (5)
H6 0.7655 0.0145 0.8733 0.059*
C7 0.8261 (2) 0.1571 (2) 0.95317 (15) 0.0559 (6)
H7A 0.8633 0.2406 0.9452 0.067*
H7B 0.7449 0.1662 0.9861 0.067*
C8 0.9177 (2) 0.0778 (3) 1.00701 (16) 0.0629 (6)
H8A 0.9356 0.1187 1.0644 0.075*
H8B 0.8778 −0.0035 1.0194 0.075*
C9 1.0415 (3) 0.0585 (3) 0.95720 (17) 0.0649 (7)
H9A 1.0974 0.0020 0.9913 0.078*
H9B 1.0862 0.1388 0.9509 0.078*
C10 1.0166 (2) 0.0039 (2) 0.86573 (17) 0.0597 (6)
H10A 0.9798 −0.0800 0.8726 0.072*
H10B 1.0989 −0.0045 0.8339 0.072*
C11 0.9259 (2) 0.0829 (2) 0.81027 (15) 0.0498 (5)
H11 0.9656 0.1667 0.8048 0.060*
C12 0.8408 (3) −0.0772 (2) 0.71239 (16) 0.0619 (6)
H12A 0.7509 −0.0585 0.7245 0.093*
H12B 0.8714 −0.1392 0.7548 0.093*
H12C 0.8492 −0.1097 0.6520 0.093*
C14 0.9642 (3) 0.0817 (2) 0.56237 (16) 0.0668 (7)
H14 0.931 (3) −0.003 (3) 0.5418 (19) 0.075 (8)*
C13A 0.8956 (3) 0.1169 (3) 0.64982 (18) 0.0542 (7) 0.75
H13C 0.9256 0.1998 0.6686 0.065* 0.75
H13D 0.8028 0.1231 0.6380 0.065* 0.75
C15A 1.1073 (3) 0.0796 (6) 0.5758 (4) 0.1065 (18) 0.75
H15D 1.1369 0.1625 0.5924 0.160* 0.75
H15E 1.1492 0.0541 0.5206 0.160* 0.75
H15F 1.1287 0.0208 0.6230 0.160* 0.75
C16A 0.9211 (5) 0.1727 (3) 0.4920 (3) 0.0825 (12) 0.75
H16D 0.8284 0.1663 0.4842 0.124* 0.75
H16E 0.9637 0.1535 0.4357 0.124* 0.75
H16F 0.9432 0.2570 0.5104 0.124* 0.75
C13B 1.0029 (8) 0.0830 (10) 0.6582 (5) 0.062 (3) 0.25
H13A 1.0842 0.0369 0.6637 0.074* 0.25
H13B 1.0204 0.1699 0.6751 0.074* 0.25
C15B 1.0898 (9) 0.1100 (18) 0.5153 (9) 0.102 (5) 0.25
H15A 1.0741 0.1202 0.4517 0.153* 0.25
H15B 1.1497 0.0416 0.5247 0.153* 0.25
H15C 1.1263 0.1865 0.5394 0.153* 0.25
C16B 0.8646 (9) 0.1787 (9) 0.5399 (8) 0.079 (4) 0.25
H16A 0.9004 0.2614 0.5497 0.118* 0.25
H16B 0.7896 0.1673 0.5779 0.118* 0.25
H16C 0.8394 0.1701 0.4776 0.118* 0.25
N1 0.70037 (17) 0.16326 (17) 0.80918 (12) 0.0488 (4)
N2 0.9148 (2) 0.03281 (19) 0.72094 (12) 0.0610 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0625 (14) 0.0513 (13) 0.0708 (16) 0.0042 (11) 0.0025 (13) 0.0042 (12)
C2 0.0647 (14) 0.0613 (14) 0.0507 (13) −0.0004 (11) 0.0043 (11) −0.0009 (11)
C3 0.0584 (13) 0.0525 (12) 0.0528 (13) 0.0063 (11) −0.0044 (11) −0.0018 (11)
C4 0.0608 (14) 0.0777 (17) 0.0795 (19) 0.0068 (13) 0.0026 (14) −0.0061 (15)
C5 0.0804 (18) 0.096 (2) 0.0568 (15) −0.0007 (16) −0.0078 (15) −0.0057 (15)
C6 0.0569 (12) 0.0472 (12) 0.0425 (11) −0.0058 (10) 0.0003 (10) 0.0022 (9)
C7 0.0600 (13) 0.0661 (14) 0.0417 (12) −0.0017 (12) 0.0012 (10) −0.0021 (11)
C8 0.0668 (15) 0.0772 (16) 0.0447 (13) −0.0073 (14) −0.0073 (12) 0.0019 (12)
C9 0.0615 (14) 0.0754 (17) 0.0577 (14) −0.0009 (13) −0.0100 (12) 0.0024 (13)
C10 0.0534 (13) 0.0625 (15) 0.0633 (15) 0.0003 (11) −0.0009 (12) −0.0041 (12)
C11 0.0545 (12) 0.0490 (11) 0.0458 (12) −0.0074 (10) 0.0008 (10) −0.0032 (10)
C12 0.0734 (16) 0.0575 (14) 0.0548 (14) −0.0028 (12) −0.0042 (12) −0.0110 (12)
C14 0.093 (2) 0.0611 (15) 0.0467 (13) −0.0051 (14) 0.0091 (13) −0.0048 (12)
C13A 0.0574 (18) 0.0569 (17) 0.0483 (18) −0.0011 (14) 0.0007 (14) −0.0032 (14)
C15A 0.093 (4) 0.144 (5) 0.083 (3) 0.033 (3) 0.031 (3) 0.022 (4)
C16A 0.125 (4) 0.077 (2) 0.045 (2) −0.008 (3) 0.001 (2) −0.0032 (19)
C13B 0.040 (5) 0.080 (7) 0.065 (6) −0.012 (4) 0.009 (4) −0.019 (5)
C15B 0.074 (8) 0.159 (16) 0.072 (9) −0.006 (9) −0.008 (7) −0.035 (10)
C16B 0.081 (8) 0.112 (10) 0.044 (6) −0.024 (7) −0.002 (6) 0.001 (7)
N1 0.0529 (10) 0.0485 (10) 0.0449 (10) −0.0022 (8) −0.0001 (8) 0.0034 (8)
N2 0.0701 (13) 0.0672 (12) 0.0457 (11) −0.0163 (10) 0.0073 (10) −0.0078 (9)

Geometric parameters (Å, °)

C1—N1 1.451 (3) C10—H10B 0.99
C1—H1A 0.98 C11—N2 1.456 (3)
C1—H1B 0.98 C11—H11 1
C1—H1C 0.98 C12—N2 1.425 (3)
C2—N1 1.437 (3) C12—H12A 0.98
C2—C3 1.539 (3) C12—H12B 0.98
C2—H2A 0.99 C12—H12C 0.98
C2—H2B 0.99 C14—C13B 1.500 (9)
C3—C5 1.509 (4) C14—C15A 1.512 (3)
C3—C4 1.519 (3) C14—C16A 1.516 (3)
C3—H3 1 C14—C16B 1.517 (3)
C4—H4A 0.98 C14—C15B 1.525 (3)
C4—H4B 0.98 C14—C13A 1.549 (4)
C4—H4C 0.98 C14—H14 1.03 (3)
C5—H5A 0.98 C13A—N2 1.4196 (18)
C5—H5B 0.98 C13A—H13C 0.99
C5—H5C 0.98 C13A—H13D 0.99
C6—N1 1.470 (3) C15A—H15D 0.98
C6—C7 1.538 (3) C15A—H15E 0.98
C6—C11 1.550 (3) C15A—H15F 0.98
C6—H6 1 C16A—H16D 0.98
C7—C8 1.521 (3) C16A—H16E 0.98
C7—H7A 0.99 C16A—H16F 0.98
C7—H7B 0.99 C13B—N2 1.428 (2)
C8—C9 1.512 (4) C13B—H13A 0.99
C8—H8A 0.99 C13B—H13B 0.99
C8—H8B 0.99 C15B—H15A 0.98
C9—C10 1.522 (4) C15B—H15B 0.98
C9—H9A 0.99 C15B—H15C 0.98
C9—H9B 0.99 C16B—H16A 0.98
C10—C11 1.527 (3) C16B—H16B 0.98
C10—H10A 0.99 C16B—H16C 0.98
N1—C1—H1A 109.5 C10—C11—H11 107
N1—C1—H1B 109.5 C6—C11—H11 107
H1A—C1—H1B 109.5 N2—C12—H12A 109.5
N1—C1—H1C 109.5 N2—C12—H12B 109.5
H1A—C1—H1C 109.5 H12A—C12—H12B 109.5
H1B—C1—H1C 109.5 N2—C12—H12C 109.5
N1—C2—C3 115.0 (2) H12A—C12—H12C 109.5
N1—C2—H2A 108.5 H12B—C12—H12C 109.5
C3—C2—H2A 108.5 C15A—C14—C16A 113.5 (4)
N1—C2—H2B 108.5 C13B—C14—C16B 113.2 (7)
C3—C2—H2B 108.5 C13B—C14—C15B 102.3 (6)
H2A—C2—H2B 107.5 C16B—C14—C15B 110.5 (9)
C5—C3—C4 111.3 (2) C15A—C14—C13A 110.4 (3)
C5—C3—C2 110.9 (2) C16A—C14—C13A 107.4 (3)
C4—C3—C2 108.8 (2) C13B—C14—H14 113.1 (16)
C5—C3—H3 108.6 C15A—C14—H14 111.5 (17)
C4—C3—H3 108.6 C16A—C14—H14 105.3 (16)
C2—C3—H3 108.6 C16B—C14—H14 108.2 (17)
C3—C4—H4A 109.5 C15B—C14—H14 109.5 (18)
C3—C4—H4B 109.5 C13A—C14—H14 108.5 (17)
H4A—C4—H4B 109.5 N2—C13A—C14 114.8 (2)
C3—C4—H4C 109.5 N2—C13A—H13C 108.6
H4A—C4—H4C 109.5 C14—C13A—H13C 108.6
H4B—C4—H4C 109.5 N2—C13A—H13D 108.6
C3—C5—H5A 109.5 C14—C13A—H13D 108.6
C3—C5—H5B 109.5 H13C—C13A—H13D 107.5
H5A—C5—H5B 109.5 C14—C15A—H15D 109.5
C3—C5—H5C 109.5 C14—C15A—H15E 109.5
H5A—C5—H5C 109.5 H15D—C15A—H15E 109.5
H5B—C5—H5C 109.5 C14—C15A—H15F 109.5
N1—C6—C7 115.18 (19) H15D—C15A—H15F 109.5
N1—C6—C11 112.73 (17) H15E—C15A—H15F 109.5
C7—C6—C11 109.68 (18) C14—C16A—H16D 109.5
N1—C6—H6 106.2 C14—C16A—H16E 109.5
C7—C6—H6 106.2 H16D—C16A—H16E 109.5
C11—C6—H6 106.2 C14—C16A—H16F 109.5
C8—C7—C6 111.6 (2) H16D—C16A—H16F 109.5
C8—C7—H7A 109.3 H16E—C16A—H16F 109.5
C6—C7—H7A 109.3 N2—C13B—C14 117.4 (6)
C8—C7—H7B 109.3 N2—C13B—H13A 108
C6—C7—H7B 109.3 C14—C13B—H13A 108
H7A—C7—H7B 108 N2—C13B—H13B 108
C9—C8—C7 110.6 (2) C14—C13B—H13B 108
C9—C8—H8A 109.5 H13A—C13B—H13B 107.2
C7—C8—H8A 109.5 C14—C15B—H15A 109.5
C9—C8—H8B 109.5 C14—C15B—H15B 109.5
C7—C8—H8B 109.5 H15A—C15B—H15B 109.5
H8A—C8—H8B 108.1 C14—C15B—H15C 109.5
C8—C9—C10 110.9 (2) H15A—C15B—H15C 109.5
C8—C9—H9A 109.5 H15B—C15B—H15C 109.5
C10—C9—H9A 109.5 C14—C16B—H16A 109.5
C8—C9—H9B 109.5 C14—C16B—H16B 109.5
C10—C9—H9B 109.5 H16A—C16B—H16B 109.5
H9A—C9—H9B 108 C14—C16B—H16C 109.5
C9—C10—C11 112.7 (2) H16A—C16B—H16C 109.5
C9—C10—H10A 109.1 H16B—C16B—H16C 109.5
C11—C10—H10A 109.1 C2—N1—C1 112.73 (19)
C9—C10—H10B 109.1 C2—N1—C6 111.51 (17)
C11—C10—H10B 109.1 C1—N1—C6 113.93 (18)
H10A—C10—H10B 107.8 C13A—N2—C12 112.9 (2)
N2—C11—C10 110.38 (19) C12—N2—C13B 127.4 (5)
N2—C11—C6 116.00 (19) C13A—N2—C11 118.2 (2)
C10—C11—C6 108.98 (18) C12—N2—C11 115.92 (18)
N2—C11—H11 107 C13B—N2—C11 114.9 (4)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2074).

References

  1. Bruker (1999). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Bruker (2001). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Kizirian, J.-C. (2008). Chem. Rev.108, 140–205. [DOI] [PubMed]
  6. Kizirian, J.-C., Caille, J.-C. & Alexakis, A. (2003). Tetrahedron Lett.44, 8893–8895.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Stead, D., O’Brien, P. & Sanderson, A. (2008). Org. Lett.10, 1409–1412. [DOI] [PubMed]
  9. Strohmann, C. & Gessner, V. H. (2007a). J. Am. Chem. Soc.129, 8952–8953. [DOI] [PubMed]
  10. Strohmann, C. & Gessner, V. H. (2007b). Angew. Chem. Int. Ed.119, 8429–8432.
  11. Strohmann, C. & Gessner, V. H. (2008). J. Am. Chem. Soc.130, 11719–11725. [DOI] [PubMed]
  12. Strohmann, C., Gessner, V. H. & Damme, A. (2008a). Chem. Commun. pp. 3381–3383. [DOI] [PubMed]
  13. Strohmann, C., Gessner, V. H., Damme, A., Koller, S. & Däschlein, C. (2008b). Acta Cryst. E64, o687. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901109X/fi2074sup1.cif

e-65-0o956-sup1.cif (20.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901109X/fi2074Isup2.hkl

e-65-0o956-Isup2.hkl (144.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES