Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 2;65(Pt 5):o958. doi: 10.1107/S1600536809011519

2-(Benzo[d]thia­zol-2-ylsulfan­yl)-N-(6-methyl-2-pyrid­yl)acetamide

Bing Zhao a,*, Hui Wang b, Qiang Li c, Yan Gao c, Dong Liang c
PMCID: PMC2977658  PMID: 21584001

Abstract

In the title compound, C15H13N3OS2, the pyridine ring and the benzo[d]thia­zole unit subtend a dihedral angle of 57.7 (2)°. The length of the Csp 2—S bond [1.7462 (17) Å] is significantly shorter than that of the Csp 3—S bond [1.8133 (18) Å]. The crystal structure is stabilized by intra­molecular N—H⋯N and inter­molecular C—H⋯O and C—H⋯N hydrogen-bond inter­actions. Furthermore, C—H⋯π inter­actions stabilize the crystal packing.

Related literature

For biologically active compounds containing the acylamide system, see: Bennasar et al. (2006); Ladziata et al. (2006). For bond-length data, see: Gao et al. (2007).graphic file with name e-65-0o958-scheme1.jpg

Experimental

Crystal data

  • C15H13N3OS2

  • M r = 315.40

  • Triclinic, Inline graphic

  • a = 8.1919 (16) Å

  • b = 9.0818 (18) Å

  • c = 11.107 (2) Å

  • α = 74.78 (3)°

  • β = 89.55 (3)°

  • γ = 69.34 (3)°

  • V = 742.8 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.36 mm−1

  • T = 113 K

  • 0.16 × 0.14 × 0.10 mm

Data collection

  • Rigaku Saturn diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.945, T max = 0.965

  • 9391 measured reflections

  • 3526 independent reflections

  • 2615 reflections with I > 2σ(I)

  • R int = 0.048

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037

  • wR(F 2) = 0.092

  • S = 0.99

  • 3526 reflections

  • 195 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.38 e Å−3

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 1999); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011519/at2753sup1.cif

e-65-0o958-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011519/at2753Isup2.hkl

e-65-0o958-Isup2.hkl (172.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯N3 0.867 (18) 2.142 (18) 2.949 (2) 154.6 (16)
C2—H2⋯O1 0.95 2.30 2.890 (2) 119
C8—H8A⋯O1i 0.99 2.31 3.239 (2) 156
C8—H8B⋯N3 0.99 2.47 2.905 (2) 106
C12—H12⋯N1ii 0.95 2.57 3.498 (2) 166
C8—H8BCg2iii 0.99 2.68 3.494 (2) 140

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic. Cg2 is the centroid of the N1/C1–C5 ring.

Acknowledgments

The project was supported by the Initial Fund for Young Teachers of Qiqihar University (000203).

supplementary crystallographic information

Comment

The acylamide compound is an important class of medical intermediate. Recently, many biological compounds containing acylamide have been reported (Ladziata et al., 2006; Bennasar et al., 2006). Now, we have synthesized the title compound, (I), from the benzo[d]thiazole-2-thiol with 6-methylpyridine carbamic chloride. Here, we report its crystal structure.

The molecular structure of (I) and the atom-numbering scheme are shown in Fig. 1. The molecule contains a pyridine ring and a benzo[d]thiazole ring. The dihedral angle between the benzene ring and benzo[d]thiazole ring is 57.7 (2)°. The methyl carbon attached to the pyridine ring is coplanar to the pyridine ring with an r.m.s deviation of 0.0064 (3) Å. The C1—N1—C7—C8 torsion angle of 178.66 (15)° indicates that the acylamide group are nearly coplanar with the pyridine ring plane. As a result of π-π conjugation, the Csp2—S bond [S1—C9 = 1.7462 (17) Å] is significantly shorter than the Csp3—S bond [S1—C8 = 1.8133 (18) Å]. These values compare with the values of 1.772 (3) and 1.801 (2) Å reported in the literature (Gao et al., 2007). The crystal structure is stabilized by the intramolecular N—H···N and intermolecular C—H···O and C—H···N hydrogen bond interactions. Furthermore, C—H···π interactions stabilize the crystal packing (Table 1).

Experimental

The title compound was synthesized by the reaction of from the benzo[d]thiazole-2-thiol with 6-methylpyridine carbamic chloride in the refluxing ethanol. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform/acetone.

Refinement

The H atom attached to N atom was located in a different density map and the atomic coordinates allowed to refine freely. Other H atoms were positioned geometrically and refined as riding (C—H = 0.95–0.99 Å) and allowed to ride on their parent atoms, with Uiso(H) =1.2Ueq(parent) or 1.5Ueq(parent).

Figures

Fig. 1.

Fig. 1.

View of the molecule of (I) showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 35% probability level.

Crystal data

C15H13N3OS2 Z = 2
Mr = 315.40 F(000) = 328
Triclinic, P1 Dx = 1.410 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.1919 (16) Å Cell parameters from 2582 reflections
b = 9.0818 (18) Å θ = 1.9–27.9°
c = 11.107 (2) Å µ = 0.36 mm1
α = 74.78 (3)° T = 113 K
β = 89.55 (3)° Prism, colourless
γ = 69.34 (3)° 0.16 × 0.14 × 0.10 mm
V = 742.8 (3) Å3

Data collection

Rigaku Saturn diffractometer 3526 independent reflections
Radiation source: rotating anode 2615 reflections with I > 2σ(I)
confocal Rint = 0.048
ω scans θmax = 27.9°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −10→10
Tmin = 0.945, Tmax = 0.965 k = −11→11
9391 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092 H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0398P)2] where P = (Fo2 + 2Fc2)/3
3526 reflections (Δ/σ)max = 0.001
195 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.08893 (5) 1.05001 (5) 0.25028 (4) 0.02336 (13)
S2 0.20597 (5) 1.15671 (5) 0.45732 (4) 0.02242 (13)
N1 0.74042 (17) 0.74849 (16) 0.19582 (13) 0.0200 (3)
N2 0.45173 (18) 0.88209 (17) 0.12486 (14) 0.0210 (3)
N3 0.37052 (17) 1.13818 (15) 0.25715 (13) 0.0192 (3)
O1 0.24938 (15) 0.82797 (14) 0.02096 (13) 0.0320 (3)
C1 0.6056 (2) 0.74785 (18) 0.12785 (15) 0.0189 (4)
C2 0.6186 (2) 0.62959 (19) 0.06672 (16) 0.0217 (4)
H2 0.5203 0.6332 0.0196 0.026*
C3 0.7803 (2) 0.50655 (19) 0.07723 (16) 0.0233 (4)
H3 0.7949 0.4229 0.0371 0.028*
C4 0.9210 (2) 0.50511 (19) 0.14621 (16) 0.0217 (4)
H4 1.0329 0.4214 0.1533 0.026*
C5 0.8961 (2) 0.62787 (19) 0.20491 (16) 0.0204 (4)
C6 1.0426 (2) 0.6313 (2) 0.28327 (18) 0.0300 (4)
H6A 1.0281 0.7452 0.2761 0.045*
H6B 1.1550 0.5765 0.2538 0.045*
H6C 1.0403 0.5745 0.3711 0.045*
C7 0.2879 (2) 0.9140 (2) 0.07486 (16) 0.0217 (4)
C8 0.1511 (2) 1.06990 (19) 0.09143 (16) 0.0222 (4)
H8A 0.0453 1.1009 0.0339 0.027*
H8B 0.1975 1.1594 0.0676 0.027*
C9 0.2379 (2) 1.11504 (18) 0.31235 (16) 0.0193 (4)
C10 0.4590 (2) 1.19559 (18) 0.32980 (15) 0.0184 (4)
C11 0.3900 (2) 1.21228 (18) 0.44347 (16) 0.0194 (4)
C12 0.4660 (2) 1.26537 (19) 0.52672 (16) 0.0239 (4)
H12 0.4194 1.2750 0.6041 0.029*
C13 0.6122 (2) 1.3037 (2) 0.49261 (17) 0.0257 (4)
H13 0.6667 1.3405 0.5476 0.031*
C14 0.6811 (2) 1.2894 (2) 0.37940 (17) 0.0255 (4)
H14 0.7806 1.3181 0.3583 0.031*
C15 0.6076 (2) 1.23436 (19) 0.29716 (16) 0.0225 (4)
H15 0.6563 1.2231 0.2207 0.027*
H2A 0.463 (2) 0.951 (2) 0.1624 (17) 0.027 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0181 (2) 0.0224 (2) 0.0319 (3) −0.00785 (18) 0.00497 (18) −0.0107 (2)
S2 0.0215 (3) 0.0227 (2) 0.0215 (2) −0.00602 (18) 0.00643 (18) −0.00652 (18)
N1 0.0180 (7) 0.0194 (7) 0.0224 (8) −0.0055 (6) 0.0019 (6) −0.0072 (6)
N2 0.0166 (8) 0.0207 (7) 0.0274 (8) −0.0035 (6) −0.0001 (6) −0.0139 (7)
N3 0.0175 (8) 0.0178 (7) 0.0215 (7) −0.0049 (6) 0.0015 (6) −0.0062 (6)
O1 0.0229 (7) 0.0330 (7) 0.0440 (8) −0.0057 (5) −0.0046 (6) −0.0229 (7)
C1 0.0186 (9) 0.0183 (8) 0.0186 (8) −0.0054 (7) 0.0036 (7) −0.0052 (7)
C2 0.0220 (9) 0.0220 (8) 0.0237 (9) −0.0086 (7) 0.0046 (7) −0.0095 (7)
C3 0.0281 (10) 0.0191 (8) 0.0246 (9) −0.0088 (7) 0.0078 (8) −0.0094 (7)
C4 0.0206 (9) 0.0156 (8) 0.0250 (9) −0.0032 (7) 0.0070 (7) −0.0042 (7)
C5 0.0187 (9) 0.0191 (8) 0.0207 (9) −0.0056 (7) 0.0046 (7) −0.0030 (7)
C6 0.0215 (10) 0.0271 (9) 0.0374 (11) −0.0034 (8) −0.0007 (8) −0.0097 (9)
C7 0.0178 (9) 0.0236 (8) 0.0230 (9) −0.0056 (7) 0.0016 (7) −0.0082 (8)
C8 0.0179 (9) 0.0229 (9) 0.0252 (9) −0.0046 (7) −0.0016 (7) −0.0096 (8)
C9 0.0185 (9) 0.0137 (7) 0.0211 (9) −0.0005 (6) 0.0015 (7) −0.0047 (7)
C10 0.0198 (9) 0.0142 (7) 0.0188 (8) −0.0036 (6) −0.0017 (7) −0.0041 (7)
C11 0.0194 (9) 0.0147 (8) 0.0199 (9) −0.0023 (6) 0.0010 (7) −0.0033 (7)
C12 0.0284 (10) 0.0212 (8) 0.0178 (9) −0.0029 (7) −0.0002 (7) −0.0068 (7)
C13 0.0289 (10) 0.0201 (8) 0.0270 (10) −0.0068 (7) −0.0042 (8) −0.0076 (8)
C14 0.0255 (10) 0.0233 (9) 0.0284 (10) −0.0115 (8) −0.0009 (8) −0.0046 (8)
C15 0.0216 (9) 0.0241 (9) 0.0208 (9) −0.0081 (7) 0.0043 (7) −0.0049 (7)

Geometric parameters (Å, °)

S1—C9 1.7462 (17) C4—H4 0.9500
S1—C8 1.8133 (18) C5—C6 1.502 (2)
S2—C11 1.7444 (17) C6—H6A 0.9800
S2—C9 1.7459 (17) C6—H6B 0.9800
N1—C5 1.340 (2) C6—H6C 0.9800
N1—C1 1.345 (2) C7—C8 1.519 (2)
N2—C7 1.359 (2) C8—H8A 0.9900
N2—C1 1.404 (2) C8—H8B 0.9900
N2—H2A 0.863 (17) C10—C11 1.402 (2)
N3—C9 1.297 (2) C10—C15 1.402 (2)
N3—C10 1.395 (2) C11—C12 1.389 (2)
O1—C7 1.2212 (19) C12—C13 1.385 (2)
C1—C2 1.388 (2) C12—H12 0.9500
C2—C3 1.381 (2) C13—C14 1.393 (3)
C2—H2 0.9500 C13—H13 0.9500
C3—C4 1.383 (2) C14—C15 1.381 (2)
C3—H3 0.9500 C14—H14 0.9500
C4—C5 1.389 (2) C15—H15 0.9500
C9—S1—C8 100.19 (8) O1—C7—C8 121.40 (15)
C11—S2—C9 88.51 (8) N2—C7—C8 113.96 (14)
C5—N1—C1 117.98 (13) C7—C8—S1 113.25 (12)
C7—N2—C1 128.33 (14) C7—C8—H8A 108.9
C7—N2—H2A 116.3 (12) S1—C8—H8A 108.9
C1—N2—H2A 115.3 (12) C7—C8—H8B 108.9
C9—N3—C10 110.02 (14) S1—C8—H8B 108.9
N1—C1—C2 123.80 (15) H8A—C8—H8B 107.7
N1—C1—N2 111.89 (13) N3—C9—S2 116.86 (12)
C2—C1—N2 124.31 (15) N3—C9—S1 124.62 (13)
C3—C2—C1 117.24 (15) S2—C9—S1 118.51 (10)
C3—C2—H2 121.4 N3—C10—C11 115.18 (15)
C1—C2—H2 121.4 N3—C10—C15 124.86 (16)
C2—C3—C4 119.97 (15) C11—C10—C15 119.96 (15)
C2—C3—H3 120.0 C12—C11—C10 121.74 (16)
C4—C3—H3 120.0 C12—C11—S2 128.85 (14)
C3—C4—C5 119.00 (16) C10—C11—S2 109.42 (12)
C3—C4—H4 120.5 C13—C12—C11 117.45 (17)
C5—C4—H4 120.5 C13—C12—H12 121.3
N1—C5—C4 122.01 (15) C11—C12—H12 121.3
N1—C5—C6 116.40 (14) C12—C13—C14 121.46 (16)
C4—C5—C6 121.59 (15) C12—C13—H13 119.3
C5—C6—H6A 109.5 C14—C13—H13 119.3
C5—C6—H6B 109.5 C15—C14—C13 121.31 (17)
H6A—C6—H6B 109.5 C15—C14—H14 119.3
C5—C6—H6C 109.5 C13—C14—H14 119.3
H6A—C6—H6C 109.5 C14—C15—C10 118.07 (16)
H6B—C6—H6C 109.5 C14—C15—H15 121.0
O1—C7—N2 124.63 (16) C10—C15—H15 121.0
C5—N1—C1—C2 0.0 (3) C11—S2—C9—N3 0.20 (13)
C5—N1—C1—N2 −179.13 (14) C11—S2—C9—S1 −178.48 (10)
C7—N2—C1—N1 −173.97 (16) C8—S1—C9—N3 −10.77 (15)
C7—N2—C1—C2 6.9 (3) C8—S1—C9—S2 167.80 (9)
N1—C1—C2—C3 −0.1 (3) C9—N3—C10—C11 1.10 (19)
N2—C1—C2—C3 178.95 (16) C9—N3—C10—C15 −179.48 (14)
C1—C2—C3—C4 −0.2 (2) N3—C10—C11—C12 178.84 (14)
C2—C3—C4—C5 0.5 (2) C15—C10—C11—C12 −0.6 (2)
C1—N1—C5—C4 0.3 (2) N3—C10—C11—S2 −0.95 (17)
C1—N1—C5—C6 −179.05 (15) C15—C10—C11—S2 179.60 (12)
C3—C4—C5—N1 −0.6 (3) C9—S2—C11—C12 −179.36 (15)
C3—C4—C5—C6 178.74 (16) C9—S2—C11—C10 0.42 (12)
C1—N2—C7—O1 −1.3 (3) C10—C11—C12—C13 0.8 (2)
C1—N2—C7—C8 178.66 (15) S2—C11—C12—C13 −179.40 (12)
O1—C7—C8—S1 105.85 (18) C11—C12—C13—C14 −0.1 (2)
N2—C7—C8—S1 −74.11 (17) C12—C13—C14—C15 −0.8 (3)
C9—S1—C8—C7 91.58 (12) C13—C14—C15—C10 1.1 (2)
C10—N3—C9—S2 −0.76 (17) N3—C10—C15—C14 −179.76 (14)
C10—N3—C9—S1 177.84 (11) C11—C10—C15—C14 −0.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N2—H2A···N3 0.867 (18) 2.142 (18) 2.949 (2) 154.6 (16)
C2—H2···O1 0.95 2.30 2.890 (2) 119
C8—H8A···O1i 0.99 2.31 3.239 (2) 156
C8—H8B···N3 0.99 2.47 2.905 (2) 106
C12—H12···N1ii 0.95 2.57 3.498 (2) 166
C8—H8B···Cg2iii 0.99 2.68 3.494 (2) 140

Symmetry codes: (i) −x, −y+2, −z; (ii) −x+1, −y+2, −z+1; (iii) −x+1, −y+2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2753).

References

  1. Bennasar, M. L., Roca, T., Monerris, M. & Garcia-Diaz, D. (2006). J. Org. Chem.71, 7028–7034. [DOI] [PubMed]
  2. Gao, Y., Liang, D., Gao, L.-X., Fang, G.-J. & Wang, W. (2007). Acta Cryst. E63, o4854.
  3. Ladziata, U., Willging, J. & Zhdankin, V. V. (2006). Org. Lett.8, 167–170. [DOI] [PubMed]
  4. Molecular Structure Corporation & Rigaku (1999). CrystalClear MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809011519/at2753sup1.cif

e-65-0o958-sup1.cif (18.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011519/at2753Isup2.hkl

e-65-0o958-Isup2.hkl (172.9KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES