Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 8;65(Pt 5):o963. doi: 10.1107/S160053680901157X

4-Amino-5-(2-hydroxy­benzyl­idene­amino)benzene-1,2-dicarbonitrile

Yan Cheng a, Jing Gao a,*
PMCID: PMC2977663  PMID: 21584006

Abstract

A new tetra­dentate unsymmetrical Schiff base, C15H10N4O, has been synthesized from 4,5-dicyano-o-phenyl­enediamine and o-vanillin in refluxing ethanol. The dihedral angle between the two benzene rings is 39.0 (1)°. There are intra­molecular O—H⋯N and weak inter­molecular N—H⋯O and N—H⋯N inter­actions.

Related literature

For the biological activity of Schiff bases, see: Boskovic et al. (2003); Koizumi et al. (2005); Oshiob et al. (2005). For related structures, see: Kannappan et al. (2005); Zhang et al. (2003).graphic file with name e-65-0o963-scheme1.jpg

Experimental

Crystal data

  • C15H10N4O

  • M r = 262.27

  • Monoclinic, Inline graphic

  • a = 14.0158 (15) Å

  • b = 12.3650 (13) Å

  • c = 7.3557 (8) Å

  • β = 99.904 (2)°

  • V = 1255.8 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 273 K

  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001) T min = 0.989, T max = 0.993

  • 7234 measured reflections

  • 2838 independent reflections

  • 1770 reflections with I > 2σ(I)

  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.170

  • S = 1.00

  • 2838 reflections

  • 187 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901157X/fl2237sup1.cif

e-65-0o963-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901157X/fl2237Isup2.hkl

e-65-0o963-Isup2.hkl (139.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H1B⋯N2i 0.930 (18) 2.205 (17) 3.126 (3) 171 (2)
N3—H1C⋯O1ii 0.930 (19) 2.69 (2) 3.206 (3) 115.5 (17)
O1—H1A⋯N4 0.82 1.91 2.639 (2) 147

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors acknowledge financial support from Mudanjiang Medical University.

supplementary crystallographic information

Comment

During the past decades, Schiff bases have been intensively investigated not only because of their strong coordination capability but also due to their diverse biological activities, such as antibacterial, antitumor, etc. (Koizumi et al., 2005; Boskovic et al., 2003; Oshiob et al., 2005). The halide groups in schiff base ligands could effectively optimize the properties of the coordination complexes.

X-ray diffraction analysis indicates that (I) is an unsymmetrical Schiff base ligand (fig. 1). The imide bond length 1.283 (2)(2) Å for C(1)–N(4) is slightly longer than that of 4-Bromo-2-(2-pyridylmethyliminomethyl)phenol (1.269 (4) Å) (Zhang et al., 2003). It is noteworthy that there exists relatively weak intermolecular interactions involving the NH moieties and one intramolecular interaction with OH as the donor (Table 1), which are similar to those of its derivative 4-Bromo-2-(2-pyridylmethyliminomethyl)phenol (Zhang et al., 2003).

Experimental

(I) was prepared according to the method reported in the literature (Kannappan et al., 2005). 4,5-dicyano-o-phenylenediamine (2.16 g, 0.02 mol) was added to a stirred ethanol solution of O-vanillin (3.04 g, 0.02 mol (10 ml). The reaction mixture was stirred about 3 h and then the mixture was allowed to stand at room temperature for about two days. Yellow cystals suitable for X-ray diffraction analysis were then collected with a yield of 60%.

Refinement

The H atoms of the amino group were located from difference density maps and were refined with distance restraints of d(N–H) = 0.93 (2) Å. H atoms bound to C and O atoms were visible in difference maps and were placed using the HFIX commands in SHELXL97. All H atoms were allowed for as riding atoms (C–H 0.97 Å, O–H 0.86 Å) with the constraint Uiso(H) = 1.5Ueq(methyl carrier), 1.5Ueq(O) and 1.2Ueq(carrier) for all other H atoms.

Figures

Fig. 1.

Fig. 1.

A view of the structure of (I), showing the atmoic numbering scheme and 30% probability displacement ellipsoids.

Crystal data

C15H10N4O F(000) = 544
Mr = 262.27 Dx = 1.387 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 1728 reflections
a = 14.0158 (15) Å θ = 2.2–26.3°
b = 12.3650 (13) Å µ = 0.09 mm1
c = 7.3557 (8) Å T = 273 K
β = 99.904 (2)° Block, yellow
V = 1255.8 (2) Å3 0.12 × 0.10 × 0.08 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 2838 independent reflections
Radiation source: fine-focus sealed tube 1770 reflections with I > 2σ(I)
graphite Rint = 0.027
φ and ω scans θmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Bruker, 2001) h = −18→15
Tmin = 0.989, Tmax = 0.993 k = −16→11
7234 measured reflections l = −9→9

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170 H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.105P)2] where P = (Fo2 + 2Fc2)/3
2838 reflections (Δ/σ)max = 0.001
187 parameters Δρmax = 0.14 e Å3
2 restraints Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.91817 (12) 0.53191 (15) 0.1796 (2) 0.0451 (5)
H1 0.9143 0.4649 0.1213 0.054*
C2 0.75504 (12) 0.55664 (15) 0.0486 (2) 0.0447 (5)
C3 0.72462 (12) 0.45035 (16) 0.0422 (3) 0.0467 (5)
H3 0.7640 0.3982 0.1084 0.056*
C4 1.01931 (14) 0.66149 (16) 0.3888 (3) 0.0495 (5)
C5 0.60770 (13) 0.60523 (16) −0.1573 (3) 0.0513 (5)
H5 0.5687 0.6568 −0.2258 0.062*
C6 0.48595 (14) 0.46643 (17) −0.2707 (3) 0.0517 (5)
C7 1.00930 (12) 0.56357 (15) 0.2900 (2) 0.0433 (5)
C8 0.57855 (12) 0.49920 (16) −0.1632 (3) 0.0478 (5)
C9 0.63646 (13) 0.41989 (15) −0.0612 (3) 0.0487 (5)
C10 0.69528 (13) 0.63652 (15) −0.0496 (3) 0.0491 (5)
C11 0.60376 (14) 0.30994 (18) −0.0585 (3) 0.0585 (6)
C12 1.09021 (14) 0.49709 (18) 0.2966 (3) 0.0551 (5)
H12 1.0840 0.4315 0.2338 0.066*
C13 1.10904 (16) 0.69001 (19) 0.4891 (3) 0.0629 (6)
H13 1.1160 0.7542 0.5559 0.075*
C14 1.18721 (16) 0.6233 (2) 0.4895 (3) 0.0685 (7)
H14 1.2472 0.6437 0.5554 0.082*
C15 1.17898 (14) 0.5268 (2) 0.3944 (3) 0.0671 (7)
H15 1.2327 0.4824 0.3962 0.080*
N1 0.57748 (15) 0.22349 (18) −0.0536 (3) 0.0888 (7)
N2 0.41430 (13) 0.43718 (16) −0.3475 (3) 0.0680 (6)
N3 0.72491 (14) 0.74135 (15) −0.0435 (3) 0.0700 (6)
N4 0.84233 (10) 0.59191 (12) 0.1583 (2) 0.0462 (4)
O1 0.94357 (11) 0.72904 (11) 0.3901 (2) 0.0692 (5)
H1A 0.8950 0.7034 0.3268 0.104*
H1B 0.6802 (13) 0.7949 (13) −0.087 (3) 0.080*
H1C 0.7813 (10) 0.7570 (18) 0.039 (3) 0.080*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0428 (10) 0.0454 (10) 0.0451 (10) −0.0030 (8) 0.0018 (8) 0.0023 (8)
C2 0.0359 (9) 0.0493 (11) 0.0464 (10) −0.0008 (8) 0.0002 (8) −0.0008 (8)
C3 0.0373 (10) 0.0505 (11) 0.0491 (11) 0.0030 (8) −0.0015 (8) 0.0021 (8)
C4 0.0475 (11) 0.0520 (11) 0.0461 (11) −0.0053 (9) 0.0000 (8) 0.0062 (9)
C5 0.0389 (10) 0.0566 (12) 0.0540 (12) 0.0045 (9) −0.0047 (8) 0.0050 (9)
C6 0.0411 (11) 0.0574 (12) 0.0544 (12) 0.0012 (9) 0.0019 (9) −0.0047 (9)
C7 0.0367 (10) 0.0496 (11) 0.0412 (10) −0.0016 (8) −0.0003 (7) 0.0078 (8)
C8 0.0355 (10) 0.0589 (12) 0.0464 (11) 0.0001 (8) −0.0006 (8) −0.0024 (8)
C9 0.0391 (10) 0.0527 (12) 0.0522 (11) −0.0018 (8) 0.0019 (8) −0.0026 (8)
C10 0.0408 (10) 0.0495 (11) 0.0539 (11) 0.0007 (8) −0.0004 (8) 0.0031 (9)
C11 0.0426 (11) 0.0556 (13) 0.0708 (15) −0.0043 (10) −0.0088 (10) −0.0018 (10)
C12 0.0479 (11) 0.0643 (13) 0.0514 (12) 0.0038 (9) 0.0036 (9) 0.0068 (9)
C13 0.0586 (13) 0.0691 (14) 0.0556 (13) −0.0205 (11) −0.0052 (10) 0.0022 (10)
C14 0.0441 (12) 0.0998 (19) 0.0557 (13) −0.0192 (12) −0.0083 (10) 0.0163 (13)
C15 0.0405 (11) 0.0969 (19) 0.0615 (14) 0.0076 (11) 0.0022 (10) 0.0150 (12)
N1 0.0665 (13) 0.0643 (14) 0.124 (2) −0.0132 (11) −0.0155 (12) 0.0018 (12)
N2 0.0467 (10) 0.0788 (14) 0.0724 (13) −0.0042 (9) −0.0071 (9) −0.0107 (10)
N3 0.0556 (11) 0.0517 (11) 0.0917 (15) −0.0012 (9) −0.0185 (10) 0.0126 (10)
N4 0.0375 (8) 0.0481 (9) 0.0490 (9) 0.0002 (7) −0.0036 (7) 0.0033 (7)
O1 0.0627 (10) 0.0562 (9) 0.0816 (11) 0.0064 (7) −0.0076 (8) −0.0126 (8)

Geometric parameters (Å, °)

C1—N4 1.283 (2) C7—C12 1.395 (3)
C1—C7 1.445 (2) C8—C9 1.405 (3)
C1—H1 0.9300 C9—C11 1.436 (3)
C2—C3 1.380 (3) C10—N3 1.360 (3)
C2—C10 1.411 (3) C11—N1 1.133 (3)
C2—N4 1.414 (2) C12—C15 1.376 (3)
C3—C9 1.387 (2) C12—H12 0.9300
C3—H3 0.9300 C13—C14 1.371 (3)
C4—O1 1.352 (2) C13—H13 0.9300
C4—C13 1.390 (3) C14—C15 1.378 (3)
C4—C7 1.407 (3) C14—H14 0.9300
C5—C8 1.372 (3) C15—H15 0.9300
C5—C10 1.396 (3) N3—H1B 0.930 (18)
C5—H5 0.9300 N3—H1C 0.930 (19)
C6—N2 1.124 (2) O1—H1A 0.8200
C6—C8 1.456 (2)
N4—C1—C7 123.06 (17) C3—C9—C11 120.39 (17)
N4—C1—H1 118.5 C8—C9—C11 120.79 (16)
C7—C1—H1 118.5 N3—C10—C5 121.11 (18)
C3—C2—C10 119.77 (16) N3—C10—C2 119.97 (17)
C3—C2—N4 123.04 (16) C5—C10—C2 118.88 (17)
C10—C2—N4 117.10 (16) N1—C11—C9 178.9 (3)
C2—C3—C9 121.21 (17) C15—C12—C7 121.2 (2)
C2—C3—H3 119.4 C15—C12—H12 119.4
C9—C3—H3 119.4 C7—C12—H12 119.4
O1—C4—C13 118.65 (19) C14—C13—C4 119.9 (2)
O1—C4—C7 121.79 (16) C14—C13—H13 120.1
C13—C4—C7 119.57 (19) C4—C13—H13 120.1
C8—C5—C10 120.72 (18) C13—C14—C15 121.5 (2)
C8—C5—H5 119.6 C13—C14—H14 119.2
C10—C5—H5 119.6 C15—C14—H14 119.2
N2—C6—C8 176.6 (2) C12—C15—C14 119.1 (2)
C12—C7—C4 118.76 (17) C12—C15—H15 120.5
C12—C7—C1 119.65 (18) C14—C15—H15 120.5
C4—C7—C1 121.57 (17) C10—N3—H1B 118.9 (14)
C5—C8—C9 120.58 (16) C10—N3—H1C 116.1 (14)
C5—C8—C6 121.05 (17) H1B—N3—H1C 122 (2)
C9—C8—C6 118.34 (17) C1—N4—C2 120.57 (16)
C3—C9—C8 118.78 (17) C4—O1—H1A 109.5

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H1B···N2i 0.93 (2) 2.21 (2) 3.126 (3) 171 (2)
N3—H1C···O1ii 0.93 (2) 2.69 (2) 3.206 (3) 116 (2)
O1—H1A···N4 0.82 1.91 2.639 (2) 147

Symmetry codes: (i) −x+1, y+1/2, −z−1/2; (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2237).

References

  1. Boskovic, C., Bircher, R., Tregenna-Piggott, P. L. W., Gudel, H. U., Paulsen, C., Wernsdorfer, W., Barra, A. L., Khatsko, E., Neels, A. & Stoeckli-Evans, H. (2003). J. Am. Chem. Soc.125, 14046–14058. [DOI] [PubMed]
  2. Bruker (2001). SAINT-Plus and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Kannappan, R., Tanase, S., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 383–388.
  5. Koizumi, S., Nihei, M., Nakano, M. & Oshio, H. (2005). Inorg. Chem.44, 1208–1210. [DOI] [PubMed]
  6. Oshiob, H., Nihei, M., Koizumi, S., Shiga, T., Nojiri, H., Nakano, M., Shirakawa, N. & Akatsu, M. (2005). J. Am. Chem. Soc.127, 4568–4569. [DOI] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Zhang, Y., Khoo, L. E. & Ng, S. W. (2003). Acta Cryst. E59, o1496–o1497.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901157X/fl2237sup1.cif

e-65-0o963-sup1.cif (15.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901157X/fl2237Isup2.hkl

e-65-0o963-Isup2.hkl (139.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES