Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 8;65(Pt 5):o965. doi: 10.1107/S1600536809012112

N-(2,3-Dimethyl­phen­yl)benzamide

B Thimme Gowda a,*, Miroslav Tokarčík b, Jozef Kožíšek b, B P Sowmya a, Hartmut Fuess c
PMCID: PMC2977665  PMID: 21584008

Abstract

The conformation of the N—H bond in the structure of the title compound, C15H15NO, is anti to the ortho and meta-methyl substituents in the aniline benzene ring, in contrast to the syn conformation observed with respect to the ortho and meta-chloro substituents in N-(2,3-dichloro­phen­yl)benzamide. Furthermore, the conformations of N—H and C=O bonds in the amide group are anti to each other, similar to those observed in other benzanilides. The dihedral angle between the benzoyl and aniline rings is 84.1 (2)°. The amide group is twisted by 23.0 (3)° out of the plane of the benzoyl ring. The structure exhibits positional disorder over the aniline ring, with site occupancies of 0.80 (1) and 0.20 (1) for the major and minor components, respectively. In the crystal, mol­ecules are connected through N—H⋯O hydrogen bonds into chains running along the b axis. An intra­molecular C—H⋯O close contact occurs.

Related literature

For related structures, see Azumaya et al. (1994); Gowda et al. (2003, 2007, 2008a ,b ).graphic file with name e-65-0o965-scheme1.jpg

Experimental

Crystal data

  • C15H15NO

  • M r = 225.28

  • Orthorhombic, Inline graphic

  • a = 8.4656 (2) Å

  • b = 9.4848 (2) Å

  • c = 31.0957 (9) Å

  • V = 2496.81 (11) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.52 × 0.16 × 0.05 mm

Data collection

  • Oxford Diffraction Xcalibur System diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) T min = 0.963, T max = 0.996

  • 48994 measured reflections

  • 2409 independent reflections

  • 1572 reflections with I > 2σ(I)

  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.146

  • S = 1.05

  • 2409 reflections

  • 222 parameters

  • 14 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.10 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2002); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2009) and WinGX (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809012112/dn2440sup1.cif

e-65-0o965-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012112/dn2440Isup2.hkl

e-65-0o965-Isup2.hkl (116KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O1i 0.883 (16) 2.028 (17) 2.907 (2) 173 (2)
C14—H14C⋯N1 0.96 2.39 2.852 (4) 109

Symmetry code: (i) Inline graphic.

Acknowledgments

MT and JK thank the Grant Agency of the Slovak Republic (grant No. VEGA 1/0817/08) and the Structural Funds, Interreg IIIA, for financial support in purchasing the diffractometer.

supplementary crystallographic information

Comment

As part of our continuing efforts to explore the effect of substituents on the solid state geometries of benzanilides (Gowda et al., 2003, 2007, 2008a,b), in the present work, the structure of N-(2,3-dimethylphenyl)benzamide (N23DMPBA) has been determined. The conformation of the N—H bond in N23DMPBA is anti to both the ortho and meta-methyl substituents in the aniline benzene ring (Fig. 1), in contrast to the syn conformations observed with respect to both the ortho and meta-chloro substituents in N-(2,3-dichlorophenyl)benzamide (N23DCPBA)(Gowda et al., 2007), while the conformations of the N—H and C=O bonds in the amide group of N23DMPBA are anti to each other, similar to that observed in N23DCPBA, N-(2,6-dimethylphenyl)benzamide (Azumaya et al., 1994; Gowda et al., 2008b), N-(3,4-dimethylphenyl)benzamide (Gowda et al., 2008a) and other benzanilides (Gowda et al., 2003). In the crystal structure, the N—H···O hydrogen bonds link the molecules into chains running along the b axis (Table 1 & Fig. 2), while the structure is stabilized by C—H···N intramolecular hydrogen bond with atom C14 as donor and atom N1 as acceptor. The atoms of anilino ring (including the methyl groups) are positionally disordered (Fig. 3) with site occupancy factor 0.80 for major component (atoms C8 to C15) and 0.20 for minor component (C8d to C15d). The disordered orientations of anilino ring are essentially planar, forming a dihedral angle of 1.5 (7)°. The dihedral angle between the benzoyl and anilino ring (major) is 84.1 (2)°. The amido group is twisted by 23.0 (3)° out of the plane of benzoyl ring.

Experimental

The title compound was prepared according to the literature method (Gowda et al., 2003). The purity of the compound was checked by determining its melting point. It was characterized by recording its infrared and NMR spectra. Single crystals of the title compound were obtained from an ethanol solution and used for X-ray diffraction studies at room temperature.

Refinement

During the refinement of (I) the atoms of anilino ring revealed unusual anisotropic displacement parameters, so we introduced two sets of split sites for this part of molecule. The positions of methyl groups were carefully localized (Fig.3). Final cycles of refinement were done with fixed site occupancy factors (0.80 and 1/5) and the following restraints: The major component of the disorder (atoms C8 to C15) was refined free, except for DELU restraint imposed on the atoms C8, C10. The minor component was subject to restraint on the geometry of the ring (rigid planar hexagon) and restraint on the anisotropic displacement parameters - using DELU instruction for ring atoms. As to the hydrogen atoms, the amido H atom was seen in difference maps and its positional parameters were refined with the restraint on N—H distance, set at 0.86 (2) Å. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with C—H distances in the range 0.93–0.96 Å and with displacement parameters Uiso(H) set at 1.2 Ueq(C-aromatic,N) or 1.5 Ueq(C-methyl).

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I) showing the atom labelling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. For the sake of clarity, only the major component is represented.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I). Molecular chains running along the b axis are generated by N—H···O(i) hydrogen bonds (shown as dashed lines). Symmetry code (i): -x + 1/2,y + 1/2,z. H atoms not involved in intermolecular bonding have been omitted.

Fig. 3.

Fig. 3.

The disorder of the anilino ring in (I). The major component (C8 to C15) has site occupancy factor 0.80. The minor component atoms (C8d to C15d) with site occupancy factor 0.20 has their bonds shown as dashed lines.

Crystal data

C15H15NO F(000) = 960
Mr = 225.28 Dx = 1.199 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 12625 reflections
a = 8.4656 (2) Å θ = 3.1–29.2°
b = 9.4848 (2) Å µ = 0.08 mm1
c = 31.0957 (9) Å T = 295 K
V = 2496.81 (11) Å3 Rod, colourless
Z = 8 0.52 × 0.16 × 0.05 mm

Data collection

Oxford Diffraction Xcalibur System diffractometer 2409 independent reflections
graphite 1572 reflections with I > 2σ(I)
Detector resolution: 10.434 pixels mm-1 Rint = 0.052
ω scans with κ offsets θmax = 25.9°, θmin = 3.3°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008) h = −10→10
Tmin = 0.963, Tmax = 0.996 k = −11→11
48994 measured reflections l = −38→38

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0655P)2 + 0.6303P] where P = (Fo2 + 2Fc2)/3
2409 reflections (Δ/σ)max < 0.001
222 parameters Δρmax = 0.10 e Å3
14 restraints Δρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.2585 (2) 0.60702 (17) 0.37113 (6) 0.0562 (5)
H1N 0.273 (3) 0.6973 (18) 0.3654 (7) 0.067*
O1 0.1702 (2) 0.39655 (14) 0.34744 (5) 0.0676 (5)
C1 0.1605 (2) 0.52512 (19) 0.34747 (6) 0.0496 (5)
C2 0.0397 (2) 0.59716 (19) 0.32076 (6) 0.0461 (5)
C3 −0.0200 (2) 0.5254 (2) 0.28599 (7) 0.0549 (5)
H3 0.0147 0.4342 0.2804 0.066*
C4 −0.1302 (3) 0.5859 (2) 0.25935 (7) 0.0635 (6)
H4 −0.1678 0.5369 0.2356 0.076*
C5 −0.1844 (3) 0.7196 (2) 0.26811 (8) 0.0701 (7)
H5 −0.2597 0.7609 0.2504 0.084*
C6 −0.1277 (3) 0.7913 (2) 0.30275 (8) 0.0729 (7)
H6 −0.1657 0.8812 0.3087 0.087*
C7 −0.0153 (3) 0.7326 (2) 0.32897 (7) 0.0581 (6)
H7 0.0242 0.7833 0.3522 0.07*
C8 0.3938 (5) 0.5547 (4) 0.39290 (14) 0.0517 (10) 0.8
C9 0.3754 (4) 0.4635 (4) 0.42634 (13) 0.0567 (8) 0.8
C10 0.5108 (6) 0.4031 (5) 0.44545 (16) 0.0718 (10) 0.8
C11 0.6555 (6) 0.4480 (7) 0.4303 (2) 0.0842 (13) 0.8
H11 0.7458 0.4096 0.4427 0.101* 0.8
C12 0.6745 (5) 0.5444 (5) 0.39867 (14) 0.0910 (11) 0.8
H12 0.7754 0.5718 0.3903 0.109* 0.8
C13 0.5457 (5) 0.6012 (5) 0.37902 (16) 0.0713 (12) 0.8
H13 0.5563 0.668 0.3573 0.086* 0.8
C14 0.2156 (5) 0.4279 (4) 0.44389 (12) 0.0748 (10) 0.8
H14A 0.2122 0.4502 0.474 0.112* 0.8
H14B 0.1955 0.3292 0.4399 0.112* 0.8
H14C 0.1367 0.4817 0.429 0.112* 0.8
C15 0.4970 (6) 0.2939 (4) 0.48009 (12) 0.1080 (14) 0.8
H15A 0.4326 0.2174 0.4701 0.162* 0.8
H15B 0.4493 0.3352 0.5051 0.162* 0.8
H15C 0.6002 0.2593 0.4873 0.162* 0.8
C8D 0.3513 (13) 0.5282 (12) 0.4010 (3) 0.051 (4) 0.2
C9D 0.5124 (14) 0.5487 (12) 0.3951 (3) 0.053 (3) 0.2
C10D 0.6201 (10) 0.4779 (17) 0.4211 (5) 0.082 (5) 0.2
C11D 0.5667 (12) 0.3865 (16) 0.4528 (5) 0.078 (5) 0.2
H11D 0.6387 0.3392 0.4702 0.094* 0.2
C12D 0.4055 (14) 0.3660 (9) 0.4587 (3) 0.067 (3) 0.2
H12D 0.3698 0.3048 0.4799 0.081* 0.2
C13D 0.2978 (10) 0.4368 (12) 0.4328 (3) 0.048 (3) 0.2
H13D 0.19 0.423 0.4367 0.057* 0.2
C14D 0.5865 (19) 0.648 (2) 0.3617 (7) 0.090 (6) 0.2
H14D 0.5112 0.6671 0.3393 0.135* 0.2
H14E 0.6786 0.6049 0.3496 0.135* 0.2
H14F 0.6157 0.7352 0.3754 0.135* 0.2
C15D 0.7999 (14) 0.4840 (15) 0.4207 (5) 0.081 (4) 0.2
H15D 0.8375 0.4718 0.3918 0.121* 0.2
H15E 0.8414 0.4102 0.4386 0.121* 0.2
H15F 0.8343 0.5737 0.4315 0.121* 0.2

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0656 (11) 0.0354 (8) 0.0678 (11) −0.0015 (8) −0.0083 (9) 0.0018 (8)
O1 0.0834 (11) 0.0337 (8) 0.0856 (11) 0.0058 (7) −0.0171 (9) −0.0005 (7)
C1 0.0582 (12) 0.0324 (10) 0.0582 (12) 0.0000 (9) 0.0030 (10) 0.0016 (9)
C2 0.0481 (11) 0.0361 (10) 0.0540 (11) −0.0031 (8) 0.0055 (9) 0.0046 (9)
C3 0.0558 (12) 0.0377 (10) 0.0711 (14) −0.0031 (9) −0.0009 (11) −0.0025 (10)
C4 0.0614 (14) 0.0581 (13) 0.0710 (15) −0.0079 (11) −0.0129 (11) −0.0011 (11)
C5 0.0702 (15) 0.0527 (13) 0.0874 (17) −0.0020 (11) −0.0219 (13) 0.0114 (13)
C6 0.0815 (16) 0.0444 (12) 0.0928 (18) 0.0126 (12) −0.0174 (14) 0.0009 (12)
C7 0.0700 (14) 0.0386 (11) 0.0659 (13) 0.0030 (10) −0.0054 (11) −0.0014 (10)
C8 0.053 (3) 0.0387 (15) 0.063 (2) 0.0004 (17) −0.0032 (18) −0.0055 (14)
C9 0.067 (2) 0.0446 (18) 0.059 (2) −0.0009 (18) −0.005 (2) −0.0083 (15)
C10 0.076 (3) 0.064 (2) 0.076 (3) 0.003 (2) −0.015 (2) −0.0052 (19)
C11 0.081 (3) 0.088 (3) 0.083 (3) 0.015 (3) −0.023 (3) −0.006 (2)
C12 0.060 (2) 0.101 (3) 0.112 (3) −0.012 (2) 0.003 (2) −0.009 (2)
C13 0.057 (3) 0.070 (3) 0.088 (4) −0.014 (2) −0.003 (3) −0.006 (2)
C14 0.094 (3) 0.066 (2) 0.064 (2) −0.009 (2) 0.008 (2) 0.0078 (17)
C15 0.150 (4) 0.085 (3) 0.088 (3) 0.019 (3) −0.035 (2) 0.018 (2)
C8D 0.050 (7) 0.067 (10) 0.037 (7) −0.007 (7) −0.002 (6) 0.006 (6)
C9D 0.053 (7) 0.053 (9) 0.052 (8) −0.020 (6) 0.018 (5) −0.025 (5)
C10D 0.052 (8) 0.085 (16) 0.108 (17) −0.008 (7) −0.015 (7) −0.031 (9)
C11D 0.061 (7) 0.090 (12) 0.083 (12) 0.029 (9) −0.026 (9) −0.020 (7)
C12D 0.082 (8) 0.061 (7) 0.059 (7) 0.005 (6) −0.019 (6) 0.013 (5)
C13D 0.037 (7) 0.052 (8) 0.054 (9) −0.001 (7) 0.002 (7) 0.012 (5)
C14D 0.051 (9) 0.083 (12) 0.135 (16) −0.009 (7) 0.029 (9) 0.033 (10)
C15D 0.046 (7) 0.101 (10) 0.096 (10) −0.004 (6) −0.009 (7) 0.022 (8)

Geometric parameters (Å, °)

N1—C1 1.354 (3) C12—H12 0.93
N1—C8 1.419 (4) C13—H13 0.93
N1—C8D 1.428 (4) C14—H14A 0.96
N1—H1N 0.883 (16) C14—H14B 0.96
O1—C1 1.222 (2) C14—H14C 0.96
C1—C2 1.484 (3) C15—H15A 0.96
C2—C3 1.374 (3) C15—H15B 0.96
C2—C7 1.390 (3) C15—H15C 0.96
C3—C4 1.373 (3) C8D—C9D 1.39
C3—H3 0.93 C8D—C13D 1.39
C4—C5 1.376 (3) C9D—C10D 1.39
C4—H4 0.93 C9D—C14D 1.538 (16)
C5—C6 1.361 (3) C10D—C11D 1.39
C5—H5 0.93 C10D—C15D 1.523 (15)
C6—C7 1.372 (3) C11D—C12D 1.39
C6—H6 0.93 C11D—H11D 0.93
C7—H7 0.93 C12D—C13D 1.39
C8—C9 1.361 (4) C12D—H12D 0.93
C8—C13 1.426 (6) C13D—H13D 0.93
C9—C10 1.412 (6) C14D—H14D 0.96
C9—C14 1.497 (5) C14D—H14E 0.96
C10—C11 1.379 (7) C14D—H14F 0.96
C10—C15 1.499 (5) C15D—H15D 0.96
C11—C12 1.353 (6) C15D—H15E 0.96
C11—H11 0.93 C15D—H15F 0.96
C12—C13 1.361 (6)
C1—N1—C8 123.6 (2) C10—C11—H11 117.9
C1—N1—C8D 113.0 (6) C11—C12—C13 119.9 (4)
C1—N1—H1N 122.1 (14) C11—C12—H12 120
C8—N1—H1N 108.8 (15) C13—C12—H12 120
C8D—N1—H1N 124.2 (15) C12—C13—C8 117.6 (4)
O1—C1—N1 122.11 (19) C12—C13—H13 121.2
O1—C1—C2 120.35 (18) C8—C13—H13 121.2
N1—C1—C2 117.54 (16) C9D—C8D—C13D 120
C3—C2—C7 118.64 (19) C9D—C8D—N1 112.4 (8)
C3—C2—C1 117.75 (17) C13D—C8D—N1 127.6 (8)
C7—C2—C1 123.60 (18) C10D—C9D—C8D 120
C4—C3—C2 121.16 (19) C10D—C9D—C14D 114.9 (11)
C4—C3—H3 119.4 C8D—C9D—C14D 125.1 (11)
C2—C3—H3 119.4 C9D—C10D—C11D 120
C3—C4—C5 119.5 (2) C9D—C10D—C15D 129.3 (10)
C3—C4—H4 120.3 C11D—C10D—C15D 110.7 (10)
C5—C4—H4 120.3 C12D—C11D—C10D 120
C6—C5—C4 120.0 (2) C12D—C11D—H11D 120
C6—C5—H5 120 C10D—C11D—H11D 120
C4—C5—H5 120 C11D—C12D—C13D 120
C5—C6—C7 120.8 (2) C11D—C12D—H12D 120
C5—C6—H6 119.6 C13D—C12D—H12D 120
C7—C6—H6 119.6 C12D—C13D—C8D 120
C6—C7—C2 119.9 (2) C12D—C13D—H13D 120
C6—C7—H7 120.1 C8D—C13D—H13D 120
C2—C7—H7 120.1 C9D—C14D—H14D 109.5
C9—C8—N1 119.6 (4) C9D—C14D—H14E 109.5
C9—C8—C13 122.0 (3) H14D—C14D—H14E 109.5
N1—C8—C13 118.3 (3) C9D—C14D—H14F 109.5
C8—C9—C10 119.1 (4) H14D—C14D—H14F 109.5
C8—C9—C14 121.6 (4) H14E—C14D—H14F 109.5
C10—C9—C14 119.2 (4) C10D—C15D—H15D 109.5
C11—C10—C9 116.9 (4) C10D—C15D—H15E 109.5
C11—C10—C15 121.8 (5) H15D—C15D—H15E 109.5
C9—C10—C15 121.3 (4) C10D—C15D—H15F 109.5
C12—C11—C10 124.2 (4) H15D—C15D—H15F 109.5
C12—C11—H11 117.9 H15E—C15D—H15F 109.5
C8—N1—C1—O1 9.3 (4) C8—C9—C10—C15 −175.3 (4)
C8D—N1—C1—O1 −10.7 (6) C14—C9—C10—C15 5.9 (7)
C8—N1—C1—C2 −170.1 (3) C9—C10—C11—C12 −0.4 (8)
C8D—N1—C1—C2 169.9 (6) C15—C10—C11—C12 178.8 (6)
O1—C1—C2—C3 −22.5 (3) C10—C11—C12—C13 −1.4 (9)
N1—C1—C2—C3 156.95 (19) C11—C12—C13—C8 −0.4 (8)
O1—C1—C2—C7 157.7 (2) C9—C8—C13—C12 4.0 (6)
N1—C1—C2—C7 −22.8 (3) N1—C8—C13—C12 −176.6 (4)
C7—C2—C3—C4 0.9 (3) C1—N1—C8D—C9D 122.9 (7)
C1—C2—C3—C4 −178.90 (19) C8—N1—C8D—C9D −2.8 (14)
C2—C3—C4—C5 −1.5 (3) C1—N1—C8D—C13D −55.9 (9)
C3—C4—C5—C6 0.6 (4) C8—N1—C8D—C13D 178 (3)
C4—C5—C6—C7 0.8 (4) C13D—C8D—C9D—C10D 0
C5—C6—C7—C2 −1.3 (4) N1—C8D—C9D—C10D −178.9 (12)
C3—C2—C7—C6 0.5 (3) C13D—C8D—C9D—C14D −179.0 (17)
C1—C2—C7—C6 −179.7 (2) N1—C8D—C9D—C14D 2.1 (18)
C1—N1—C8—C9 −66.2 (4) C8D—C9D—C10D—C11D 0
C8D—N1—C8—C9 −2.2 (18) C14D—C9D—C10D—C11D 179.1 (15)
C1—N1—C8—C13 114.4 (4) C8D—C9D—C10D—C15D −179.8 (18)
C8D—N1—C8—C13 178 (2) C14D—C9D—C10D—C15D −0.7 (19)
N1—C8—C9—C10 174.8 (4) C9D—C10D—C11D—C12D 0
C13—C8—C9—C10 −5.8 (6) C15D—C10D—C11D—C12D 179.8 (15)
N1—C8—C9—C14 −6.4 (6) C10D—C11D—C12D—C13D 0
C13—C8—C9—C14 173.0 (4) C11D—C12D—C13D—C8D 0
C8—C9—C10—C11 3.9 (6) C9D—C8D—C13D—C12D 0
C14—C9—C10—C11 −174.9 (4) N1—C8D—C13D—C12D 178.7 (14)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O1i 0.88 (2) 2.03 (2) 2.907 (2) 173 (2)
C14—H14C···N1 0.96 2.39 2.852 (4) 109

Symmetry codes: (i) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2440).

References

  1. Azumaya, I., Yamaguchi, K., Kagechika, H., Saito, S., Itai, A. & Shudo, K. (1994). Yakugaku Zasshi, 114, 414–430. [DOI] [PubMed]
  2. Brandenburg, K. (2002). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  4. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  5. Gowda, B. T., Jyothi, K., Paulus, H. & Fuess, H. (2003). Z. Naturforsch. Teil A, 58, 225–230.
  6. Gowda, B. T., Sowmya, B. P., Tokarčík, M., Kožíšek, J. & Fuess, H. (2007). Acta Cryst. E63, o3326. [DOI] [PMC free article] [PubMed]
  7. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008a). Acta Cryst. E64, o340. [DOI] [PMC free article] [PubMed]
  8. Gowda, B. T., Tokarčík, M., Kožíšek, J., Sowmya, B. P. & Fuess, H. (2008b). Acta Cryst. E64, o1299. [DOI] [PMC free article] [PubMed]
  9. Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809012112/dn2440sup1.cif

e-65-0o965-sup1.cif (20.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012112/dn2440Isup2.hkl

e-65-0o965-Isup2.hkl (116KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES