Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 8;65(Pt 5):o968. doi: 10.1107/S1600536809011921

Ethyl 2-(4-hydr­oxy-1-methyl-2-oxo-1,2-dihydro­quinolin-3-yl)acetate

Igor V Ukrainets a,*, Svetlana V Shishkina b, Oleg V Shishkin b, Alexandra A Davidenko a, Andrei A Tkach a
PMCID: PMC2977667  PMID: 21584010

Abstract

In the title compound, C14H15NO4, the bicyclic fragment and the ester group form a dihedral angle of 86.7 (2)°. Inter­molecular O—H⋯O and C—H⋯O hydrogen bonding connects mol­ecules into a helix along the crystallographic b axis.

Related literature

For esters of 4-hydr­oxy-2-oxo-1,2-dihydro­quinolin-3-acetic acids as non-steroidal anti-inflammatory drugs, see: Ukrainets et al. (2001). For their use in the synthesis of natural alkaloids, see: Ramesh & Shanmugam (1985); Geismann & Cho (1959) and in highly active anti­thyroid substances, see: Ukrainets et al. (1997). For van der Waals radii, see: Zefirov (1997). For related structures, see: Jurd et al. (1983); Ukrainets et al. (2000). For bond-length data, see: Bürgi & Dunitz (1994).graphic file with name e-65-0o968-scheme1.jpg

Experimental

Crystal data

  • C14H15NO4

  • M r = 261.27

  • Monoclinic, Inline graphic

  • a = 21.608 (2) Å

  • b = 9.2155 (9) Å

  • c = 14.6795 (12) Å

  • β = 119.632 (9)°

  • V = 2540.8 (4) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.30 × 0.30 × 0.20 mm

Data collection

  • Oxford Diffraction Xcalibur3 diffractometer

  • Absorption correction: none

  • 13114 measured reflections

  • 2862 independent reflections

  • 2376 reflections with I > 2σ(I)

  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.060

  • wR(F 2) = 0.171

  • S = 1.19

  • 2862 reflections

  • 232 parameters

  • All H-atom parameters refined

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.19 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2005); cell refinement: CrysAlis RED (Oxford Diffraction, 2005); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: XP (Siemens, 1998); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011921/kp2212sup1.cif

e-65-0o968-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011921/kp2212Isup2.hkl

e-65-0o968-Isup2.hkl (140.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2O⋯O1i 0.95 (3) 1.71 (3) 2.649 (2) 169 (2)
C10—H10a⋯O1i 0.94 (2) 2.34 (3) 3.235 (2) 159 (2)

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

Comment

Esters of 4-hydroxy-2-oxo-1,2-dihydroquinolin-3-acetic acids can be considered as non-steroid anti-inflammatory drugs (Ukrainets et al., 2001). However they are of great interest for synthesis of natural alkaloids (Ramesh & Shanmugam, 1985; Geismann & Cho, 1959) and highly active antithyroid substances (Ukrainets et al., 1997). In the present paper, we report the crystal structure of the (4-hydroxy-1-methyl-2-oxo-1,2-dihydro- quinolin-3-yl)-acetic acid ethyl ester (I) (Fig. 1). The bicyclic fragment and the C14, O1, C10 and O2 atoms are coplanar within 0.02 Å. The planar ester group at the C10 atom has orthogonal orientation with respect to the plane of quinolone bicycle (the C7—C8—C10—C11 torsion angle is 90.8 (2) %A) whereas the C8—C10—C11—O3 torsion angle is 7.3 (3) %A). The C9—O1 bond (1.250 (2) Å) is elongated as compared with its mean value (1.210 Å; Bürgi & Dunitz, 1994) owing to the formation of the intermolecular hydrogen bond O2—H2O···O1' (Table 1). The presence of hydrogen bond affects the orientation of the hydrogen atom of hydroxy group despite of strong repulsion with hydrogen atom of neighbouring methylene group: distance H10a···H2O is 2.09 Å [the van der Waals radii sum is 2.34 Å (Zefirov, 1997)]. It should be noted that the C7—O2 bond length (1.341 (2) Å) is close to its mean value 1.333 Å observed in earlier investigated compounds (Jurd et al., 1983; Ukrainets et al., 2000). In the crystal the molecules form the infinite helix along the [0 1 0] direction (Fig. 2) via the O2—H2O···O1 intermolecular hydrogen bond between hydroxyl group of one molecule and carbonyl group of quinolone fragment of neighbouring molecule. The C10—H10a···O1' intermolecular hydrogen bond (Table 1) occurs as well.

Experimental

(4-Hydroxy-1-methyl-2-oxo-1,2-dihydroquinolin-3-yl)-acetic acid is synthesized from the methyl N-methyl anthranilate using the known method (Geismann & Cho, 1959) and then is esterified by ethanol (Ukrainets et al., 2001). Yield 96%. M.p. 454–457 K.

Refinement

All hydrogen atoms were located from electron density difference maps and were refined isotropically.

Figures

Fig. 1.

Fig. 1.

View of the title compound with atomic numbering. All atoms are shown with displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

The packing of the molecules in a crystal. The hydrogen bonds are shown by dashed lines.

Crystal data

C14H15NO4 Dx = 1.366 Mg m3
Mr = 261.27 Melting point: 455 K
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 21.608 (2) Å Cell parameters from 8736 reflections
b = 9.2155 (9) Å θ = 4–32°
c = 14.6795 (12) Å µ = 0.10 mm1
β = 119.632 (9)° T = 293 K
V = 2540.8 (4) Å3 Block, colourless
Z = 8 0.30 × 0.30 × 0.20 mm
F(000) = 1104

Data collection

Oxford Diffraction Xcalibur3 diffractometer 2376 reflections with I > 2σ(I)
Radiation source: Enhance (Mo) X-ray Source Rint = 0.030
graphite θmax = 27.5°, θmin = 3.2°
Detector resolution: 16.1827 pixels mm-1 h = −28→28
ω scans k = −11→11
13114 measured reflections l = −19→19
2862 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060 Hydrogen site location: difference Fourier map
wR(F2) = 0.171 All H-atom parameters refined
S = 1.19 w = 1/[σ2(Fo2) + (0.0943P)2] where P = (Fo2 + 2Fc2)/3
2862 reflections (Δ/σ)max < 0.001
232 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.19 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.12615 (8) 0.48562 (16) 0.00279 (10) 0.0447 (4)
O1 0.23317 (6) 0.38519 (13) 0.11389 (9) 0.0511 (4)
O2 0.14804 (7) 0.78108 (14) 0.22763 (10) 0.0528 (4)
H2O 0.1932 (14) 0.807 (3) 0.284 (2) 0.086 (8)*
O3 0.21567 (7) 0.39416 (16) 0.34316 (11) 0.0651 (4)
O4 0.32312 (6) 0.48690 (14) 0.45168 (9) 0.0525 (4)
C1 0.07158 (8) 0.58298 (18) −0.01697 (12) 0.0434 (4)
C2 0.00694 (10) 0.5816 (2) −0.11336 (15) 0.0566 (5)
H2 0.0020 (13) 0.511 (3) −0.161 (2) 0.077 (7)*
C3 −0.04624 (10) 0.6786 (3) −0.13061 (17) 0.0652 (6)
H3 −0.0931 (15) 0.677 (3) −0.195 (2) 0.102 (9)*
C4 −0.03752 (10) 0.7799 (3) −0.05606 (18) 0.0638 (6)
H4 −0.0737 (14) 0.850 (3) −0.064 (2) 0.087 (7)*
C5 0.02492 (9) 0.7826 (2) 0.03876 (16) 0.0541 (5)
H5 0.0334 (10) 0.852 (2) 0.0948 (15) 0.054 (5)*
C6 0.07974 (8) 0.68292 (17) 0.05940 (13) 0.0419 (4)
C7 0.14509 (8) 0.68166 (17) 0.15888 (12) 0.0393 (4)
C8 0.19716 (8) 0.58370 (17) 0.17776 (12) 0.0390 (4)
C9 0.18749 (9) 0.47940 (18) 0.09900 (12) 0.0407 (4)
C10 0.26583 (8) 0.57643 (19) 0.28059 (12) 0.0413 (4)
H10B 0.3055 (9) 0.5445 (19) 0.2663 (13) 0.042 (4)*
H10A 0.2774 (9) 0.668 (2) 0.3117 (14) 0.044 (5)*
C11 0.26352 (8) 0.47532 (18) 0.35929 (13) 0.0416 (4)
C12 0.32854 (11) 0.3976 (2) 0.53692 (15) 0.0564 (5)
H12B 0.2882 (13) 0.416 (3) 0.5450 (19) 0.082 (7)*
H12A 0.3291 (12) 0.291 (3) 0.5182 (18) 0.084 (7)*
C13 0.39738 (15) 0.4393 (3) 0.63283 (17) 0.0757 (7)
H13C 0.3974 (17) 0.546 (4) 0.658 (2) 0.132 (12)*
H13B 0.4378 (17) 0.416 (4) 0.623 (3) 0.119 (11)*
H13A 0.4017 (15) 0.380 (3) 0.688 (2) 0.105 (9)*
C14 0.11943 (14) 0.3847 (3) −0.07860 (17) 0.0627 (5)
H14C 0.1113 (13) 0.444 (3) −0.1404 (19) 0.084 (7)*
H14B 0.1627 (16) 0.332 (3) −0.050 (2) 0.105 (10)*
H14A 0.0770 (14) 0.324 (3) −0.0999 (19) 0.080 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0472 (8) 0.0479 (8) 0.0323 (7) −0.0083 (6) 0.0145 (6) 0.0011 (6)
O1 0.0542 (7) 0.0477 (7) 0.0450 (7) 0.0045 (5) 0.0196 (6) 0.0028 (5)
O2 0.0436 (7) 0.0519 (7) 0.0528 (7) −0.0003 (5) 0.0160 (6) −0.0072 (6)
O3 0.0505 (8) 0.0751 (10) 0.0550 (8) −0.0127 (6) 0.0149 (6) 0.0126 (7)
O4 0.0458 (7) 0.0627 (8) 0.0352 (6) 0.0027 (5) 0.0095 (5) 0.0072 (5)
C1 0.0368 (8) 0.0472 (9) 0.0359 (8) −0.0093 (7) 0.0101 (7) 0.0112 (7)
C2 0.0476 (10) 0.0667 (13) 0.0378 (9) −0.0157 (9) 0.0075 (8) 0.0124 (9)
C3 0.0387 (10) 0.0794 (15) 0.0531 (11) −0.0089 (9) 0.0040 (8) 0.0275 (11)
C4 0.0373 (10) 0.0654 (13) 0.0707 (13) 0.0015 (9) 0.0129 (9) 0.0215 (11)
C5 0.0400 (9) 0.0511 (11) 0.0597 (11) −0.0004 (8) 0.0159 (8) 0.0127 (9)
C6 0.0345 (8) 0.0410 (9) 0.0417 (8) −0.0051 (6) 0.0123 (7) 0.0121 (7)
C7 0.0356 (8) 0.0383 (8) 0.0380 (8) −0.0068 (6) 0.0137 (6) 0.0032 (6)
C8 0.0356 (8) 0.0384 (8) 0.0337 (8) −0.0037 (6) 0.0100 (6) 0.0046 (6)
C9 0.0420 (9) 0.0398 (8) 0.0356 (8) −0.0045 (6) 0.0156 (7) 0.0050 (6)
C10 0.0340 (8) 0.0394 (9) 0.0380 (9) −0.0014 (6) 0.0084 (7) −0.0008 (6)
C11 0.0365 (8) 0.0442 (9) 0.0372 (8) 0.0059 (6) 0.0128 (7) −0.0017 (6)
C12 0.0600 (12) 0.0693 (14) 0.0412 (10) 0.0198 (9) 0.0259 (9) 0.0129 (9)
C13 0.0800 (17) 0.0909 (19) 0.0360 (10) 0.0189 (14) 0.0134 (10) 0.0088 (11)
C14 0.0691 (14) 0.0706 (14) 0.0398 (10) −0.0091 (11) 0.0204 (10) −0.0092 (10)

Geometric parameters (Å, °)

N1—C9 1.380 (2) C5—H5 0.98 (2)
N1—C1 1.393 (2) C6—C7 1.445 (2)
N1—C14 1.463 (3) C7—C8 1.360 (2)
O1—C9 1.250 (2) C8—C9 1.437 (2)
O2—C7 1.341 (2) C8—C10 1.507 (2)
O2—H2O 0.95 (3) C10—C11 1.504 (2)
O3—C11 1.201 (2) C10—H10B 1.021 (18)
O4—C11 1.335 (2) C10—H10A 0.935 (19)
O4—C12 1.453 (2) C12—C13 1.507 (3)
C1—C6 1.393 (2) C12—H12B 0.95 (2)
C1—C2 1.414 (2) C12—H12A 1.02 (3)
C2—C3 1.377 (3) C13—H13C 1.05 (4)
C2—H2 0.92 (3) C13—H13B 0.98 (3)
C3—C4 1.378 (3) C13—H13A 0.94 (3)
C3—H3 0.99 (3) C14—H14C 1.00 (3)
C4—C5 1.379 (3) C14—H14B 0.95 (3)
C4—H4 0.97 (3) C14—H14A 0.98 (3)
C5—C6 1.409 (2)
C9—N1—C1 121.71 (14) O1—C9—C8 122.39 (14)
C9—N1—C14 117.82 (16) N1—C9—C8 118.67 (14)
C1—N1—C14 120.46 (16) C11—C10—C8 114.00 (13)
C7—O2—H2O 118.5 (15) C11—C10—H10B 109.2 (10)
C11—O4—C12 117.13 (15) C8—C10—H10B 108.6 (10)
C6—C1—N1 120.06 (14) C11—C10—H10A 106.7 (11)
C6—C1—C2 118.72 (17) C8—C10—H10A 110.0 (10)
N1—C1—C2 121.21 (17) H10B—C10—H10A 108.2 (14)
C3—C2—C1 120.0 (2) O3—C11—O4 123.65 (16)
C3—C2—H2 123.1 (16) O3—C11—C10 125.92 (15)
C1—C2—H2 116.8 (16) O4—C11—C10 110.43 (14)
C2—C3—C4 121.30 (18) O4—C12—C13 106.40 (19)
C2—C3—H3 122.3 (17) O4—C12—H12B 108.5 (15)
C4—C3—H3 116.4 (16) C13—C12—H12B 112.4 (14)
C3—C4—C5 119.7 (2) O4—C12—H12A 108.7 (14)
C3—C4—H4 124.4 (15) C13—C12—H12A 111.0 (13)
C5—C4—H4 115.9 (16) H12B—C12—H12A 110 (2)
C4—C5—C6 120.3 (2) C12—C13—H13C 113.3 (18)
C4—C5—H5 122.7 (11) C12—C13—H13B 110 (2)
C6—C5—H5 117.1 (11) H13C—C13—H13B 114 (3)
C1—C6—C5 119.99 (15) C12—C13—H13A 106.8 (18)
C1—C6—C7 118.66 (14) H13C—C13—H13A 105 (3)
C5—C6—C7 121.36 (17) H13B—C13—H13A 107 (3)
O2—C7—C8 124.99 (14) N1—C14—H14C 107.4 (15)
O2—C7—C6 114.46 (14) N1—C14—H14B 106.9 (18)
C8—C7—C6 120.53 (15) H14C—C14—H14B 112 (2)
C7—C8—C9 120.23 (14) N1—C14—H14A 108.7 (15)
C7—C8—C10 122.64 (15) H14C—C14—H14A 107.6 (19)
C9—C8—C10 117.11 (14) H14B—C14—H14A 114 (2)
O1—C9—N1 118.92 (15)
C9—N1—C1—C6 3.6 (2) O2—C7—C8—C9 178.40 (14)
C14—N1—C1—C6 −177.17 (16) C6—C7—C8—C9 −0.4 (2)
C9—N1—C1—C2 −175.56 (14) O2—C7—C8—C10 −0.3 (2)
C14—N1—C1—C2 3.7 (2) C6—C7—C8—C10 −179.14 (14)
C6—C1—C2—C3 0.5 (2) C1—N1—C9—O1 176.58 (14)
N1—C1—C2—C3 179.68 (15) C14—N1—C9—O1 −2.7 (2)
C1—C2—C3—C4 1.1 (3) C1—N1—C9—C8 −4.7 (2)
C2—C3—C4—C5 −1.5 (3) C14—N1—C9—C8 176.02 (16)
C3—C4—C5—C6 0.2 (3) C7—C8—C9—O1 −178.23 (15)
N1—C1—C6—C5 179.10 (14) C10—C8—C9—O1 0.5 (2)
C2—C1—C6—C5 −1.7 (2) C7—C8—C9—N1 3.1 (2)
N1—C1—C6—C7 −0.8 (2) C10—C8—C9—N1 −178.10 (13)
C2—C1—C6—C7 178.41 (14) C7—C8—C10—C11 90.75 (19)
C4—C5—C6—C1 1.4 (3) C9—C8—C10—C11 −87.98 (19)
C4—C5—C6—C7 −178.75 (16) C12—O4—C11—O3 −1.4 (2)
C1—C6—C7—O2 −179.69 (13) C12—O4—C11—C10 178.93 (15)
C5—C6—C7—O2 0.4 (2) C8—C10—C11—O3 7.3 (3)
C1—C6—C7—C8 −0.7 (2) C8—C10—C11—O4 −173.09 (13)
C5—C6—C7—C8 179.38 (15) C11—O4—C12—C13 −175.83 (16)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2O···O1i 0.95 (3) 1.71 (3) 2.649 (2) 169 (2)
C10—H10a···O1i 0.94 (2) 2.34 (3) 3.235 (2) 159 (2)

Symmetry codes: (i) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2212).

References

  1. Bürgi, H.-B. & Dunitz, J. D. (1994). Structure Correlation, Vol. 2, pp. 767-784. Weinheim: VCH.
  2. Geismann, T. A. & Cho, A. K. (1959). J. Org. Chem.24, 41–43.
  3. Jurd, L., Benson, M. & Wong, R. Y. (1983). Aust. J. Chem.36, 759–764.
  4. Oxford Diffraction (2005). CrysAlis CCD and CrysAlis RED Oxford Diffraction, Abingdon, England.
  5. Ramesh, M. & Shanmugam, P. (1985). Indian J. Chem. Sect. B, 24, 602–604.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Siemens (1998). XP Siemens Analytical X-ray Division, Inc., Karlsruhe, Germany.
  8. Ukrainets, I. V., Kamenetskaya, O. L., Taran, S. G., Petukhova, I. Yu. & Voronina, L. N. (2001). Khim. Geterotsikl. Soedin. pp. 104–107.
  9. Ukrainets, I. V., Taran, S. G., Kamenetskaya, O. L., Gorokhova, O. V., Sidorenko, L. V. & Turov, A. V. (2000). Khim. Geterotsikl. Soedin. pp. 1532–1535.
  10. Ukrainets, I. V., Taran, S. G., Kodolova, O. L., Gorokhova, O. V. & Kravchenko, V. N. (1997). Khim. Geterotsikl. Soedin. pp. 1100–1104.
  11. Zefirov, Yu. V. (1997). Kristallografiya, 42, 936–958.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011921/kp2212sup1.cif

e-65-0o968-sup1.cif (18.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011921/kp2212Isup2.hkl

e-65-0o968-Isup2.hkl (140.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES