Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 8;65(Pt 5):o976. doi: 10.1107/S1600536809012434

5-(4-Meth­ylphenyl)-1,3,4-thia­diazol-2-amine

Jian-Ning Guan a, Rong Wan a,*, Yao Wang a, Feng Han a, Cheng-Zhen Xu a
PMCID: PMC2977673  PMID: 21584016

Abstract

The title compound, C9H9N3S, was synthesized by the reaction of 4-methyl-benzoic acid and thio­semicarbazide. The thia­diazol ring adopts a planar conformation and makes a dihedral angle of 31.19 (18)° with the phenyl ring. In the crystal, mol­ecules are linked by N—H⋯N hydrogen bonds.

Related literature

For applications of thia­diazole ligands, see: Nakagawa et al. (1996); Wang et al. (1999); Han et al. (2007). For bond-length data, see: Allen et al. (1987).graphic file with name e-65-0o976-scheme1.jpg

Experimental

Crystal data

  • C9H9N3S

  • M r = 191.25

  • Monoclinic, Inline graphic

  • a = 12.284 (3) Å

  • b = 7.3730 (15) Å

  • c = 11.263 (2) Å

  • β = 109.09 (3)°

  • V = 964.0 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.29 mm−1

  • T = 293 K

  • 0.30 × 0.10 × 0.10 mm

Data collection

  • Nonius CAD4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968) T min = 0.918, T max = 0.972

  • 1963 measured reflections

  • 1875 independent reflections

  • 1351 reflections with I > 2σ(I)

  • R int = 0.067

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.181

  • S = 1.01

  • 1875 reflections

  • 118 parameters

  • H-atom parameters constrained

  • Δρmax = 0.26 e Å−3

  • Δρmin = −0.43 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1989); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo,1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809012434/at2758sup1.cif

e-65-0o976-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012434/at2758Isup2.hkl

e-65-0o976-Isup2.hkl (92.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯N2i 0.86 2.13 2.970 (5) 166
N3—H3B⋯N1ii 0.86 2.18 3.025 (4) 166

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Professor Hua-Qin Wang of the Analysis Centre, Nanjing University, for collecting the crystallographic data.

supplementary crystallographic information

Comment

1,3,4-Thiadiazole derivatives represent an interesting class of compounds possessing broad spectrum biological activities (Nakagawa et al., 1996; Wang et al., 1999). These compounds are known to exhibit diverse biological effects, such as insecticidal, fungicidal activities (Wang et al., 1999). We are focusing our synthetic and structural studies on thiadiazole derivatives and we have recently published the structure of 5-m-tolyl-[1,3,4]thiadiazol-2-ylamine (Han et al., 2007). We report here the crystal structure of the title compound, (I).

In (I) (Fig. 1), the bond lengths and angles are within normal ranges (Allen et al., 1987). The thiadiazole and the phenyl ring make a dihedral angle of 31.19 (18)°. The molecules link by N—H···N hydrogen bonds to stabilize the crystal structure (Fig. 2).

Experimental

4-Methyl-benzoic acid (5 mmol) and thiosemicarbazide (5 mmol) were added in toluene (50 ml), which is heated under reflux for 4 h. The reaction mixture was left to cool to room temperature, poured into ice water, filtered, and the filter cake was crystallized from acetone to give pure compound (I). Crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of an acetone solution.

Refinement

All H atoms were placed geometrically with C—H = 0.93–0.96 Å and N—H = 0.86 Å, and included in the refinement in riding motion approximation with Uiso(H) = 1.2 or 1.5Ueq of the carrier atom.

Figures

Fig. 1.

Fig. 1.

A view of the molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

View of the N—H···N hydrogen bonds (dashed lines) in the unit cell. Dashed lines indicate hydrogen bonds.

Crystal data

C9H9N3S F(000) = 400
Mr = 191.25 Dx = 1.318 Mg m3
Monoclinic, P21/c Melting point = 476–478 K
Hall symbol: -P 2ybc Mo Kα radiation, λ = 0.71073 Å
a = 12.284 (3) Å Cell parameters from 25 reflections
b = 7.3730 (15) Å θ = 9–13°
c = 11.263 (2) Å µ = 0.29 mm1
β = 109.09 (3)° T = 293 K
V = 964.0 (3) Å3 Block, colourless
Z = 4 0.30 × 0.10 × 0.10 mm

Data collection

Nonius CAD4 diffractometer 1351 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.067
graphite θmax = 26.0°, θmin = 1.8°
ω/2θ scans h = −15→0
Absorption correction: ψ scan (North et al., 1968) k = 0→9
Tmin = 0.918, Tmax = 0.972 l = −13→13
1963 measured reflections 3 standard reflections every 200 reflections
1875 independent reflections intensity decay: 1%

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.5P] where P = (Fo2 + 2Fc2)/3
1875 reflections (Δ/σ)max < 0.001
118 parameters Δρmax = 0.26 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S 0.34151 (8) 0.08993 (12) 0.57346 (7) 0.0494 (3)
N1 0.3802 (2) 0.1397 (4) 0.3670 (2) 0.0477 (7)
N2 0.4336 (3) 0.2834 (4) 0.4424 (2) 0.0504 (8)
N3 0.4638 (3) 0.3988 (5) 0.6437 (3) 0.0662 (10)
H3A 0.5027 0.4894 0.6309 0.079*
H3B 0.4527 0.3872 0.7149 0.079*
C1 0.0739 (4) −0.6083 (7) 0.1831 (5) 0.0932 (17)
H1B 0.0401 −0.5868 0.0945 0.140*
H1C 0.0143 −0.6328 0.2186 0.140*
H1D 0.1250 −0.7105 0.1966 0.140*
C2 0.1409 (3) −0.4424 (6) 0.2453 (4) 0.0623 (11)
C3 0.1475 (3) −0.2912 (6) 0.1764 (4) 0.0673 (11)
H3C 0.1101 −0.2917 0.0900 0.081*
C4 0.2085 (3) −0.1380 (6) 0.2323 (3) 0.0583 (10)
H4A 0.2112 −0.0376 0.1834 0.070*
C5 0.2653 (3) −0.1341 (5) 0.3606 (3) 0.0449 (8)
C6 0.2590 (3) −0.2873 (5) 0.4300 (4) 0.0568 (9)
H6A 0.2967 −0.2886 0.5164 0.068*
C7 0.1975 (4) −0.4375 (5) 0.3720 (4) 0.0640 (11)
H7A 0.1943 −0.5384 0.4203 0.077*
C8 0.3296 (3) 0.0279 (4) 0.4202 (3) 0.0414 (7)
C9 0.4208 (3) 0.2763 (5) 0.5533 (3) 0.0451 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S 0.0640 (6) 0.0540 (6) 0.0378 (5) −0.0091 (4) 0.0267 (4) 0.0006 (4)
N1 0.0611 (17) 0.0532 (17) 0.0353 (14) −0.0070 (14) 0.0249 (13) −0.0057 (12)
N2 0.0683 (18) 0.0538 (18) 0.0387 (15) −0.0117 (15) 0.0305 (14) −0.0064 (13)
N3 0.097 (3) 0.070 (2) 0.0441 (17) −0.0336 (19) 0.0401 (17) −0.0159 (15)
C1 0.095 (3) 0.086 (4) 0.108 (4) −0.041 (3) 0.046 (3) −0.035 (3)
C2 0.063 (2) 0.058 (2) 0.076 (3) −0.0128 (19) 0.037 (2) −0.019 (2)
C3 0.072 (3) 0.080 (3) 0.053 (2) −0.016 (2) 0.024 (2) −0.015 (2)
C4 0.072 (2) 0.059 (2) 0.046 (2) −0.011 (2) 0.0240 (18) −0.0032 (17)
C5 0.0524 (19) 0.0435 (18) 0.0451 (18) 0.0001 (15) 0.0247 (16) −0.0016 (14)
C6 0.064 (2) 0.051 (2) 0.055 (2) −0.0024 (18) 0.0193 (18) 0.0026 (18)
C7 0.070 (2) 0.045 (2) 0.084 (3) −0.0041 (19) 0.034 (2) 0.005 (2)
C8 0.0544 (19) 0.0384 (17) 0.0370 (16) 0.0016 (15) 0.0224 (15) −0.0011 (13)
C9 0.0540 (19) 0.0482 (19) 0.0380 (17) −0.0039 (16) 0.0218 (15) 0.0008 (14)

Geometric parameters (Å, °)

S—C9 1.742 (3) C2—C7 1.368 (6)
S—C8 1.745 (3) C2—C3 1.376 (6)
N1—C8 1.292 (4) C3—C4 1.387 (6)
N1—N2 1.382 (4) C3—H3C 0.9300
N2—C9 1.309 (4) C4—C5 1.385 (5)
N3—C9 1.335 (4) C4—H4A 0.9300
N3—H3A 0.8600 C5—C6 1.390 (5)
N3—H3B 0.8600 C5—C8 1.468 (5)
C1—C2 1.512 (6) C6—C7 1.380 (5)
C1—H1B 0.9600 C6—H6A 0.9300
C1—H1C 0.9600 C7—H7A 0.9300
C1—H1D 0.9600
C9—S—C8 86.96 (15) C5—C4—C3 120.3 (4)
C8—N1—N2 114.0 (3) C5—C4—H4A 119.9
C9—N2—N1 112.0 (3) C3—C4—H4A 119.9
C9—N3—H3A 120.0 C4—C5—C6 117.9 (3)
C9—N3—H3B 120.0 C4—C5—C8 120.4 (3)
H3A—N3—H3B 120.0 C6—C5—C8 121.6 (3)
C2—C1—H1B 109.5 C7—C6—C5 120.6 (4)
C2—C1—H1C 109.5 C7—C6—H6A 119.7
H1B—C1—H1C 109.5 C5—C6—H6A 119.7
C2—C1—H1D 109.5 C2—C7—C6 121.9 (4)
H1B—C1—H1D 109.5 C2—C7—H7A 119.1
H1C—C1—H1D 109.5 C6—C7—H7A 119.1
C7—C2—C3 117.6 (4) N1—C8—C5 125.2 (3)
C7—C2—C1 121.2 (4) N1—C8—S 113.2 (2)
C3—C2—C1 121.2 (4) C5—C8—S 121.6 (2)
C2—C3—C4 121.8 (4) N2—C9—N3 124.1 (3)
C2—C3—H3C 119.1 N2—C9—S 113.8 (3)
C4—C3—H3C 119.1 N3—C9—S 122.2 (2)
C8—N1—N2—C9 −0.4 (4) N2—N1—C8—S 0.5 (4)
C7—C2—C3—C4 −0.4 (6) C4—C5—C8—N1 −30.4 (5)
C1—C2—C3—C4 179.9 (4) C6—C5—C8—N1 149.7 (4)
C2—C3—C4—C5 0.3 (6) C4—C5—C8—S 148.1 (3)
C3—C4—C5—C6 0.1 (6) C6—C5—C8—S −31.8 (4)
C3—C4—C5—C8 −179.8 (3) C9—S—C8—N1 −0.3 (3)
C4—C5—C6—C7 −0.3 (5) C9—S—C8—C5 −179.0 (3)
C8—C5—C6—C7 179.6 (3) N1—N2—C9—N3 −179.9 (3)
C3—C2—C7—C6 0.2 (6) N1—N2—C9—S 0.1 (4)
C1—C2—C7—C6 179.9 (4) C8—S—C9—N2 0.1 (3)
C5—C6—C7—C2 0.2 (6) C8—S—C9—N3 −179.9 (3)
N2—N1—C8—C5 179.1 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N3—H3A···N2i 0.86 2.13 2.970 (5) 166
N3—H3B···N1ii 0.86 2.18 3.025 (4) 166

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AT2758).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  3. Han, F., Wan, R., Wu, W.-Y., Zhang, J.-J. & Wang, J.-T. (2007). Acta Cryst. E63, o717–o718.
  4. Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  5. Nakagawa, Y., Nishimura, K., Izumi, K., Kinoshita, K., Kimura, T. & Kurihara, N. (1996). J. Pestic. Sci 21, 195-201.
  6. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Wang, Y. G., Cao, L., Yan, J., Ye, W. F., Zhou, Q. C. & Lu, B. X. (1999). Chem. J. Chin. Univ.20, 1903–1905.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809012434/at2758sup1.cif

e-65-0o976-sup1.cif (15.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012434/at2758Isup2.hkl

e-65-0o976-Isup2.hkl (92.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES