Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 8;65(Pt 5):o985. doi: 10.1107/S1600536809012446

Dimethyl 6,6′-dicyano-2,2′-bipyridine-3,3′-dicarboxyl­ate

Xiao He a,b, Gui-Rong Qu a, Dongsheng Deng b, Baoming Ji b,*
PMCID: PMC2977680  PMID: 21584023

Abstract

In the title compound, C16H10N4O4, the two pyridine rings are twisted by 44.41 (2)° and the ester groups form dihedral angles of 48.77 (4) and 45.75 (2)° with the corresponding pyridine rings. The crystal structure is stabilized by inter­molecular C—H⋯O hydrogen bonds and π–π stacking inter­actions between the pyridine rings [centroid-to-centroid distance 3.797 (2) Å].

Related literature

For the synthetic procedures relevant to preparation of the title compound, see: Tichy et al. (1995); Glaup et al. (2005); Heirtzler (1999)graphic file with name e-65-0o985-scheme1.jpg

Experimental

Crystal data

  • C16H10N4O4

  • M r = 322.28

  • Triclinic, Inline graphic

  • a = 8.201 (3) Å

  • b = 10.302 (6) Å

  • c = 10.768 (3) Å

  • α = 109.148 (4)°

  • β = 106.091 (3)°

  • γ = 100.404 (5)°

  • V = 787.9 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 296 K

  • 0.49 × 0.45 × 0.41 mm

Data collection

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.952, T max = 0.960

  • 5613 measured reflections

  • 2845 independent reflections

  • 2391 reflections with I > 2σ(I)

  • R int = 0.014

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034

  • wR(F 2) = 0.094

  • S = 1.05

  • 2845 reflections

  • 218 parameters

  • H-atom parameters constrained

  • Δρmax = 0.15 e Å−3

  • Δρmin = −0.12 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXS97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809012446/gk2200sup1.cif

e-65-0o985-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012446/gk2200Isup2.hkl

e-65-0o985-Isup2.hkl (139.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C4—H4A⋯O4i 0.93 2.39 3.222 (3) 149

Symmetry code: (i) Inline graphic.

Acknowledgments

We are grateful to the National Natural Science Foundation of China (grant No. 20872057) and the Natural Science Foundation of Henan Province (No. 082300420040) for financial support.

supplementary crystallographic information

Comment

Binicotinic acid and its derivatives have been proved to be a kind of multifunctional and flexible ligand in the construction of complexes possessing novel and interesting topological structures. Our interest in these compounds has led us to prepare the title compound. First, we synthesized dimethyl 2,2'-bipyridine-3,3'-dicarboxylate 1,1'-dioxide according to the reported method (Tichy et al. 1995). Second, the incorporation of cyano group onto 6 and 6' positions of the above compound could be readily performed when adopting the literature methods (Glaup et al. 2005; Heirtzler 1999). In this contribution, we report the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound contains one molecule (Fig. 1.). In the crystal structure, the most striking feature of the title compound is the interesting arrangement of the title molecules, which are linked into centrosymmetric dimers by formation of intermolecular C—H···O hydrogen bonds, in which C4—H4A is a donor and O4 is an acceptor (Table 1, Fig. 2). Short π···π contacts between two pyridine rings with centroid-centroid distance of 3.797 (2) Å are observed in the structure.

Experimental

To an ice-cooled solution of dimethyl 2,2'-bipyridine-3,3'-dicarboxylate 1,1'-dioxide (1.22 g, 4 mmol) and trimethylsilyl cyanide (5.2 ml, 40 mmol) in ca 40 ml dry CH2Cl2 under N2 was carefully added benzoyl chloride (1.9 ml, 17 mmol). After stirring overnight at room temperature, 10% aq Na2CO3 was carefully added to the chilled reaction mixture and it was concentrated at 200 mbar to complete crude product precipitation. This was collected by filtration, washed with water and dried. Purification by silica gel chromatography using 100 ~200 mesh ZCX II eluted by hexane-ethyl acetate (3:1, v/v) gave the yellow solid. The crystalline compound was obtained by slow evaporation of CH2Cl2 solution containing the title compound.

Refinement

All H atoms were positioned geometrically and treated as riding, with C—H bond lengths constrained to 0.93 Å (aromatic CH), 0.96 Å (methyl CH3), and with Uĩso~(H) = 1.2Ueq(C) or 1.5Ueq(methyl).

Figures

Fig. 1.

Fig. 1.

View of the title molecule with the atom numbering scheme and 30% probability displacement ellipsoids for non-hydrogen atoms. Hydrogen atoms are omitted for clarity.

Fig. 2.

Fig. 2.

View of the centrosymmetric dimer; C—H···O hydrogen bonds are indicated with broken lines.

Crystal data

C16H10N4O4 Z = 2
Mr = 322.28 F(000) = 332
Triclinic, P1 Dx = 1.358 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.201 (3) Å Cell parameters from 2697 reflections
b = 10.302 (6) Å θ = 2.4–25.5°
c = 10.768 (3) Å µ = 0.10 mm1
α = 109.148 (4)° T = 296 K
β = 106.091 (3)° Block, yellow
γ = 100.404 (5)° 0.49 × 0.45 × 0.41 mm
V = 787.9 (6) Å3

Data collection

Bruker APEXII CCD diffractometer 2845 independent reflections
Radiation source: fine-focus sealed tube 2391 reflections with I > 2σ(I)
graphite Rint = 0.014
Detector resolution: 0 pixels mm-1 θmax = 25.5°, θmin = 2.4°
phi and ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) k = −12→12
Tmin = 0.952, Tmax = 0.960 l = −13→12
5613 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.140P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2845 reflections Δρmax = 0.15 e Å3
218 parameters Δρmin = −0.11 e Å3
0 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.044 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.24082 (14) 0.31796 (12) 0.50125 (12) 0.0430 (3)
N2 0.10699 (15) −0.04177 (12) 0.29318 (12) 0.0441 (3)
N3 0.2207 (3) 0.64855 (17) 0.68504 (19) 0.0880 (5)
N4 −0.1464 (3) −0.37966 (17) 0.06250 (18) 0.0918 (6)
O1 0.21123 (14) 0.07920 (12) 0.04429 (10) 0.0584 (3)
O3 0.39330 (14) 0.18868 (11) 0.78250 (10) 0.0537 (3)
O4 0.55513 (13) 0.24358 (11) 0.65966 (11) 0.0589 (3)
O2 0.41072 (15) 0.03548 (12) 0.20273 (11) 0.0611 (3)
C2 0.28278 (17) 0.22264 (15) 0.28064 (14) 0.0425 (3)
C1 0.25460 (16) 0.20947 (14) 0.39931 (14) 0.0392 (3)
C12 0.30974 (18) 0.10132 (15) 0.17406 (14) 0.0448 (3)
C3 0.2918 (2) 0.35319 (16) 0.26803 (16) 0.0520 (4)
H3A 0.3070 0.3642 0.1892 0.062*
C4 0.2783 (2) 0.46654 (16) 0.37267 (17) 0.0534 (4)
H4A 0.2850 0.5553 0.3668 0.064*
C5 0.25452 (18) 0.44348 (14) 0.48638 (16) 0.0461 (3)
C11 0.2373 (2) 0.55804 (17) 0.59939 (19) 0.0585 (4)
C15 0.2181 (3) −0.0415 (2) −0.06874 (17) 0.0693 (5)
H15A 0.1425 −0.0479 −0.1578 0.104*
H15B 0.1782 −0.1288 −0.0572 0.104*
H15C 0.3381 −0.0277 −0.0661 0.104*
C9 0.10581 (18) −0.19269 (14) 0.42201 (15) 0.0448 (3)
H9A 0.0618 −0.2823 0.4223 0.054*
C7 0.28339 (16) 0.05361 (13) 0.54006 (13) 0.0379 (3)
C6 0.21790 (16) 0.06783 (13) 0.41195 (14) 0.0382 (3)
C8 0.22261 (18) −0.07911 (14) 0.54392 (15) 0.0432 (3)
H8A 0.2603 −0.0914 0.6280 0.052*
C10 0.05610 (17) −0.16976 (14) 0.29983 (14) 0.0436 (3)
C14 0.42572 (18) 0.17362 (14) 0.66546 (14) 0.0416 (3)
C13 −0.0581 (2) −0.28668 (17) 0.16696 (18) 0.0595 (4)
C16 0.5312 (3) 0.2948 (2) 0.91195 (18) 0.0781 (6)
H16D 0.4957 0.2978 0.9904 0.117*
H16A 0.5497 0.3878 0.9077 0.117*
H16B 0.6398 0.2692 0.9235 0.117*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0426 (6) 0.0382 (6) 0.0467 (7) 0.0097 (5) 0.0153 (5) 0.0172 (5)
N2 0.0445 (6) 0.0400 (6) 0.0427 (7) 0.0101 (5) 0.0113 (5) 0.0153 (5)
N3 0.1169 (15) 0.0572 (10) 0.0928 (13) 0.0325 (10) 0.0510 (11) 0.0193 (9)
N4 0.0980 (13) 0.0583 (10) 0.0702 (11) 0.0005 (9) 0.0005 (10) 0.0035 (9)
O1 0.0661 (7) 0.0712 (7) 0.0413 (6) 0.0318 (6) 0.0166 (5) 0.0232 (5)
O3 0.0612 (6) 0.0478 (6) 0.0391 (5) 0.0067 (5) 0.0151 (5) 0.0092 (5)
O4 0.0460 (6) 0.0583 (7) 0.0626 (7) 0.0006 (5) 0.0143 (5) 0.0246 (6)
O2 0.0594 (7) 0.0714 (7) 0.0530 (6) 0.0332 (6) 0.0153 (5) 0.0225 (6)
C2 0.0385 (7) 0.0450 (8) 0.0438 (8) 0.0108 (6) 0.0120 (6) 0.0209 (6)
C1 0.0361 (7) 0.0385 (7) 0.0406 (7) 0.0093 (5) 0.0106 (5) 0.0167 (6)
C12 0.0417 (7) 0.0506 (8) 0.0437 (8) 0.0114 (6) 0.0155 (6) 0.0220 (7)
C3 0.0543 (9) 0.0559 (9) 0.0567 (9) 0.0159 (7) 0.0229 (7) 0.0335 (8)
C4 0.0556 (9) 0.0434 (8) 0.0701 (10) 0.0160 (7) 0.0239 (8) 0.0317 (8)
C5 0.0422 (7) 0.0380 (7) 0.0571 (9) 0.0109 (6) 0.0168 (6) 0.0191 (7)
C11 0.0652 (10) 0.0415 (9) 0.0706 (11) 0.0165 (7) 0.0269 (8) 0.0225 (8)
C15 0.0746 (11) 0.0858 (13) 0.0416 (9) 0.0346 (10) 0.0174 (8) 0.0161 (9)
C9 0.0437 (7) 0.0360 (7) 0.0567 (9) 0.0096 (6) 0.0208 (6) 0.0200 (7)
C7 0.0376 (7) 0.0376 (7) 0.0402 (7) 0.0117 (5) 0.0162 (6) 0.0158 (6)
C6 0.0380 (7) 0.0369 (7) 0.0406 (7) 0.0111 (5) 0.0149 (6) 0.0159 (6)
C8 0.0467 (7) 0.0426 (8) 0.0448 (8) 0.0132 (6) 0.0183 (6) 0.0216 (6)
C10 0.0396 (7) 0.0370 (7) 0.0463 (8) 0.0083 (6) 0.0119 (6) 0.0118 (6)
C14 0.0433 (7) 0.0370 (7) 0.0442 (8) 0.0128 (6) 0.0135 (6) 0.0175 (6)
C13 0.0613 (10) 0.0434 (9) 0.0568 (10) 0.0070 (7) 0.0098 (8) 0.0136 (8)
C16 0.0843 (13) 0.0666 (11) 0.0445 (10) 0.0064 (10) 0.0046 (9) −0.0007 (9)

Geometric parameters (Å, °)

N1—C1 1.3328 (17) C4—C5 1.378 (2)
N1—C5 1.3430 (18) C4—H4A 0.9300
N2—C6 1.3322 (17) C5—C11 1.451 (2)
N2—C10 1.3406 (18) C15—H15A 0.9600
N3—C11 1.136 (2) C15—H15B 0.9600
N4—C13 1.139 (2) C15—H15C 0.9600
O1—C12 1.3252 (17) C9—C10 1.376 (2)
O1—C15 1.4495 (19) C9—C8 1.3786 (19)
O3—C14 1.3249 (17) C9—H9A 0.9300
O3—C16 1.4483 (19) C7—C8 1.3864 (19)
O4—C14 1.1999 (16) C7—C6 1.4011 (18)
O2—C12 1.1997 (17) C7—C14 1.4913 (19)
C2—C3 1.386 (2) C8—H8A 0.9300
C2—C1 1.4038 (19) C10—C13 1.447 (2)
C2—C12 1.492 (2) C16—H16D 0.9600
C1—C6 1.4942 (19) C16—H16A 0.9600
C3—C4 1.378 (2) C16—H16B 0.9600
C3—H3A 0.9300
C1—N1—C5 117.06 (12) H15A—C15—H15C 109.5
C6—N2—C10 117.28 (12) H15B—C15—H15C 109.5
C12—O1—C15 116.20 (12) C10—C9—C8 118.15 (12)
C14—O3—C16 115.67 (13) C10—C9—H9A 120.9
C3—C2—C1 118.21 (13) C8—C9—H9A 120.9
C3—C2—C12 120.91 (12) C8—C7—C6 118.08 (12)
C1—C2—C12 120.83 (12) C8—C7—C14 120.67 (12)
N1—C1—C2 122.74 (12) C6—C7—C14 121.05 (11)
N1—C1—C6 115.11 (11) N2—C6—C7 122.92 (12)
C2—C1—C6 121.83 (12) N2—C6—C1 114.08 (11)
O2—C12—O1 124.85 (14) C7—C6—C1 122.83 (12)
O2—C12—C2 124.19 (13) C9—C8—C7 119.38 (13)
O1—C12—C2 110.93 (12) C9—C8—H8A 120.3
C4—C3—C2 119.75 (13) C7—C8—H8A 120.3
C4—C3—H3A 120.1 N2—C10—C9 124.06 (12)
C2—C3—H3A 120.1 N2—C10—C13 115.18 (13)
C3—C4—C5 117.53 (13) C9—C10—C13 120.76 (13)
C3—C4—H4A 121.2 O4—C14—O3 125.10 (13)
C5—C4—H4A 121.2 O4—C14—C7 123.42 (13)
N1—C5—C4 124.68 (13) O3—C14—C7 111.43 (11)
N1—C5—C11 115.08 (13) N4—C13—C10 179.1 (2)
C4—C5—C11 120.23 (13) O3—C16—H16D 109.5
N3—C11—C5 178.05 (19) O3—C16—H16A 109.5
O1—C15—H15A 109.5 H16D—C16—H16A 109.5
O1—C15—H15B 109.5 O3—C16—H16B 109.5
H15A—C15—H15B 109.5 H16D—C16—H16B 109.5
O1—C15—H15C 109.5 H16A—C16—H16B 109.5
C5—N1—C1—C2 0.20 (19) C8—C7—C6—N2 −3.22 (19)
C5—N1—C1—C6 −173.30 (11) C14—C7—C6—N2 171.65 (12)
C3—C2—C1—N1 −1.7 (2) C8—C7—C6—C1 171.66 (11)
C12—C2—C1—N1 175.79 (12) C14—C7—C6—C1 −13.47 (18)
C3—C2—C1—C6 171.35 (12) N1—C1—C6—N2 132.04 (13)
C12—C2—C1—C6 −11.14 (19) C2—C1—C6—N2 −41.53 (17)
C15—O1—C12—O2 5.1 (2) N1—C1—C6—C7 −43.25 (17)
C15—O1—C12—C2 −176.63 (12) C2—C1—C6—C7 143.18 (13)
C3—C2—C12—O2 129.19 (16) C10—C9—C8—C7 0.99 (19)
C1—C2—C12—O2 −48.3 (2) C6—C7—C8—C9 2.17 (19)
C3—C2—C12—O1 −49.07 (17) C14—C7—C8—C9 −172.72 (12)
C1—C2—C12—O1 133.48 (13) C6—N2—C10—C9 2.6 (2)
C1—C2—C3—C4 1.8 (2) C6—N2—C10—C13 −177.41 (12)
C12—C2—C3—C4 −175.66 (13) C8—C9—C10—N2 −3.6 (2)
C2—C3—C4—C5 −0.5 (2) C8—C9—C10—C13 176.48 (13)
C1—N1—C5—C4 1.3 (2) C16—O3—C14—O4 −2.7 (2)
C1—N1—C5—C11 179.56 (13) C16—O3—C14—C7 175.13 (13)
C3—C4—C5—N1 −1.1 (2) C8—C7—C14—O4 130.87 (15)
C3—C4—C5—C11 −179.31 (14) C6—C7—C14—O4 −43.86 (19)
C10—N2—C6—C7 0.86 (19) C8—C7—C14—O3 −46.97 (16)
C10—N2—C6—C1 −174.43 (11) C6—C7—C14—O3 138.30 (12)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C4—H4A···O4i 0.93 2.39 3.222 (3) 149

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2200).

References

  1. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Glaup, C., Couchet, J. M., Bedel, S., Tisnes, P. & Picard, C. (2005). J. Org. Chem.70, 2274–2284. [DOI] [PubMed]
  4. Heirtzler, F. R. (1999). Synlett, 8, 1203–1208.
  5. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  8. Tichy, M., Zhvada, J., Podlaha, J. & Vojffsek, P. (1995). Tetrahedron Asymmetry, 6, 1279–1282.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809012446/gk2200sup1.cif

e-65-0o985-sup1.cif (18.5KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012446/gk2200Isup2.hkl

e-65-0o985-Isup2.hkl (139.6KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES