Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 8;65(Pt 5):o990–o991. doi: 10.1107/S1600536809011908

N-(2-Hydroxy­ethyl)-2-[3-(p-tol­yl)triazen-1-yl]benzamide

Fernando Rocha-Alonzo a, Gerardo Aguirre a,*, Miguel Parra-Hake a
PMCID: PMC2977684  PMID: 21584027

Abstract

In the solid state, the structure of the title compound, C16H18N4O2, is stabilized by inter­molecular N—H⋯O and O—H⋯O hydrogen bonds. These hydrogen bonds arrange the mol­ecules into a double-layer supra­molecular structure. The mol­ecular conformation is is consolidated by an intra­molecular N—H⋯N hydrogen bond. The dihedral angle between the aromatic rings is 8.01 (10)°

Related literature

For the synthesis of new ligands to stabilize dinuclear complexes and control their reactivity, see: Das et al. (2008); Estevan et al. (2006); Jie et al. (2007); Müller & Vogt (2007); Schilling et al. (2008). For the synthesis of 1,3-bis­(ar­yl)triazenes as precursors for triazenido ligands bearing Lewis basic ortho substituents such as ester, meth­oxy and methyl­mercapto groups, see: Nuricumbo-Escobar et al.(2007); Ríos-Moreno et al. (2003); Rodríguez et al. (1999); Tejel et al. (2004). The starting material 2-[4,5-dihydro-1,3-oxazol-2-yl]aniline was synthesized by a modification of the literature method of Gómez et al. (2005). For bond-length data, see: Allen et al. (1987); Orpen et al. (1989).graphic file with name e-65-0o990-scheme1.jpg

Experimental

Crystal data

  • C16H18N4O2

  • M r = 298.34

  • Monoclinic, Inline graphic

  • a = 16.846 (2) Å

  • b = 12.2053 (17) Å

  • c = 7.4302 (11) Å

  • β = 93.212 (13)°

  • V = 1525.3 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.40 × 0.22 × 0.14 mm

Data collection

  • Bruker P4 diffractometer

  • Absorption correction: none

  • 4153 measured reflections

  • 3067 independent reflections

  • 1778 reflections with I > 2σ(I)

  • R int = 0.044

  • 3 standard reflections every 97 reflections intensity decay: 2.8%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.055

  • wR(F 2) = 0.188

  • S = 1.04

  • 3067 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.57 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011908/kp2210sup1.cif

e-65-0o990-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011908/kp2210Isup2.hkl

e-65-0o990-Isup2.hkl (150.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4A⋯N1 0.86 2.05 2.696 (3) 132
O2—H2B⋯O1i 0.82 1.92 2.729 (2) 169
N3—H3A⋯O2ii 0.86 2.00 2.851 (2) 170

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

We gratefully acknowledge support for this project by Consejo Nacional de Ciencia y Tecnología (CONACyT grant 60467), Consejo del Sistema Nacional de EducaciónTecno­lógica (COSNET grant 486–02-P) and a graduate scholarship from CONACyT for F. Rocha-Alonzo. The authors are indebted to Adrián Ochoa Terán and Ignacio Rivero Espejel for their support in this work. We acknowledge Universidad Autónoma de Nuevo-León (Monterrey, México) for diffractometer time.

supplementary crystallographic information

Comment

The synthesis of alternative ligands to stabilize dinuclear complexes and control their reactivity is an area of great importance in coordination and organometallic chemistry (for recent literature see: Das et al., 2008; Estevan et al., 2006; Jie et al., 2007; Müller & Vogt, 2007; Schilling et al., 2008). In this context, we have focused our attention to the synthesis of 1,3-bis(aryl)triazenes as precursors for triazenido ligands bearing Lewis basic ortho substituents such as ester, methoxy and methylmercapto groups (Nuricumbo-Escobar et al., 2007; Ríos-Moreno et al., 2003; Rodríguez et al., 1999; Tejel et al., 2004); it has been found that the nature of the substituent produces a dramatic impact on their coordination chemistry and reactivity. As part of our ongoing research, we have synthesized the title compound (I, Fig. 1) using the diazonium salt N-coupling methodology.

The molecular structure of (I) shows the characteristic trans stereochemistry about N═N of the diazoamino group of free triazenes. The N1═N2 bond [1.264 (3) Å] is longer than the typical value for N═N bond (1.222 Å), whereas the N2—N3 bond [1.320 (3) Å] is shorter than typical value for a Nsp3—Nsp2 single bond (1.420 Å) (Allen et al., 1987). In addition, the C7—N3 bond [1.395 (3) Å] is shorter than the characteristic Caryl—NH single bonds for secondary aromatic amines (1.419 Å) (Orpen, et al., 1989). An intramolecular N1—H···N4 hydrogen bond is observed (Fig. 1 and Table 1).

In the crystal structure, adjacent units are arranged into a two-dimensional network along the (100) plane via intermolecular N— H···O and O—H···O hydrogen bond interactions (Fig. 2 and Table 1). These layers are linked together via intermolecular N—H···O and O—H···O hydrogen bonds forming a zig-zag bilayered array along the [001] direction (Fig. 3).

Experimental

The synthesis of the title compound included reagents and solvents of reagent grade, which were used without further purification. As a starting material we synthesized 2-[4,5-dihydro-1,3-oxazol-2-yl]aniline by a modification of the Gómez and coworkers methodology (Gómez et al., 2005). 2-[4,5-Dihydro-1,3-oxazol-2-yl]aniline (1.00 g, 6.17 mmol) was dissolved in aqueous HCl 2 M (9.25 ml, 18.50 mmol) and cooled to 268 K. A sodium nitrite solution (0.51 g, 7.40 mmol) in water (6 ml) was slowly added with continuous stirring. A solution of p-toluidine (0.66 g, 6.17 mmol) in methanol (10 ml) was added slowly to the reaction mixture, and stirred for 30 m at 268 K. The resulting mixture was neutralised with a saturated aqueous solution of NaHCO3. A crude yellow-orange was separated by filtration and washed with small portions of water. The product was purified by flash chromatography on neutral alumina (hexane/ethyl acetate, 1:9), and recrystallized from an ethyl acetate/hexane mixture (9 : 1). Orange bar-shaped crystals of (I), suitable for X-ray analysis, were obtained by slow evaporation of the solvent mixture. Yield 47% (0.87 g, 2.90 mmol), based on 2-[4,5-dihydro-1,3-oxazol-2-yl]aniline; m.p., 111–113 °C. IR (KBr pellet, cm-1), 3278, 3233, 1625, 1538, 1269.1H NMR [(CD3)2CO, 200 MHz] δ 12.89 (s), 8.10 (s), 7.93–7.02 (m, 8H), 4.10 (s), 3.74 (dd J = 5.4, 11.0 Hz, 2H), 3.54 (dd, J = 5.4, 11.0 Hz, 2H), 2.35 (s, 3H).13C NMR [(C D3)2CO, 50 MHz] δ 135.4, 133.0, 130.1, 128.4, 121.7,114.9, 61.2, 43.2, 21.0. Anal. Calcd. for C16H18N4O2: C, 64.41; H, 6.08;N, 18.78%. Found C, 64.11; H, 6.44; N, 18.93%. HRESIMS Calcd. for [M+H]+299.1503. Found 299.1519.

Refinement

Refinement for H atoms was carried out using a riding model, with distances constrained to: 0.93 Å for aromatic CH, 0.98 Å for methine CH. Isotropic U parameters were fixed to Uiso(H)=1.2Ueq(carrier atom) for aromatic CH.

Figures

Fig. 1.

Fig. 1.

The title compound (I) with displacement ellipsoids drawn at the 30% probability level. Intramolecular H-bond is indicated by dashed lines.

Fig. 2.

Fig. 2.

Packing of I showing the H-bonds. The molecules are forming a two dimensional network in the (100) plane. H-bonds are indicated by dashed lines.

Fig. 3.

Fig. 3.

Packing of I showing the bilayer. The molecules are forming a zig-zag array along the [001] direction.

Crystal data

C16H18N4O2 F(000) = 632
Mr = 298.34 Dx = 1.299 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 76 reflections
a = 16.846 (2) Å θ = 4.7–12.0°
b = 12.2053 (17) Å µ = 0.09 mm1
c = 7.4302 (11) Å T = 298 K
β = 93.212 (13)° Neele, yellow
V = 1525.3 (4) Å3 0.40 × 0.22 × 0.14 mm
Z = 4

Data collection

Bruker P4 diffractometer Rint = 0.044
Radiation source: fine-focus sealed tube θmax = 26.3°, θmin = 2.1°
graphite h = −20→20
2θ/ω scans k = −15→1
4153 measured reflections l = −9→1
3067 independent reflections 3 standard reflections every 97 reflections
1778 reflections with I > 2σ(I) intensity decay: 2.8%

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.055 H-atom parameters constrained
wR(F2) = 0.188 w = 1/[σ2(Fo2) + (0.1035P)2 + 0.0651P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
3067 reflections Δρmax = 0.57 e Å3
201 parameters Δρmin = −0.22 e Å3
0 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.008 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.69940 (11) 0.33793 (15) −0.0017 (3) 0.0484 (5)
N2 0.76320 (11) 0.39013 (16) 0.0332 (3) 0.0481 (5)
N4 0.54570 (10) 0.30472 (15) −0.1084 (3) 0.0456 (5)
H4A 0.5790 0.3480 −0.0525 0.055*
O1 0.51316 (10) 0.13062 (14) −0.1750 (2) 0.0574 (5)
O2 0.39653 (10) 0.39859 (16) 0.0593 (3) 0.0651 (6)
H2B 0.4341 0.3834 0.1299 0.098*
N3 0.75322 (11) 0.49670 (16) 0.0124 (3) 0.0521 (6)
H3A 0.7066 0.5219 −0.0175 0.063*
C1 0.70741 (13) 0.22274 (19) 0.0146 (3) 0.0434 (6)
C2 0.64042 (13) 0.15801 (18) −0.0313 (3) 0.0424 (6)
C3 0.64717 (15) 0.0445 (2) −0.0087 (4) 0.0550 (7)
H3B 0.6029 0.0006 −0.0346 0.066*
C4 0.71719 (17) −0.0036 (2) 0.0504 (4) 0.0646 (8)
H4B 0.7200 −0.0792 0.0651 0.078*
C5 0.78345 (15) 0.0601 (2) 0.0881 (4) 0.0654 (8)
H5A 0.8317 0.0275 0.1237 0.078*
C6 0.77816 (14) 0.1716 (2) 0.0729 (4) 0.0577 (7)
H6A 0.8228 0.2141 0.1022 0.069*
C7 0.81680 (13) 0.56925 (19) 0.0379 (3) 0.0472 (6)
C8 0.80588 (14) 0.6767 (2) −0.0132 (4) 0.0552 (7)
H8A 0.7569 0.6993 −0.0642 0.066*
C9 0.86733 (16) 0.7513 (2) 0.0109 (4) 0.0608 (7)
H9A 0.8588 0.8240 −0.0227 0.073*
C10 0.94103 (16) 0.7200 (3) 0.0839 (4) 0.0622 (8)
C11 0.95105 (16) 0.6126 (3) 0.1297 (4) 0.0682 (8)
H11A 1.0006 0.5896 0.1771 0.082*
C12 0.89054 (14) 0.5364 (2) 0.1086 (4) 0.0608 (7)
H12A 0.8994 0.4637 0.1416 0.073*
C13 0.56158 (13) 0.19811 (19) −0.1101 (3) 0.0420 (5)
C14 0.47468 (13) 0.3509 (2) −0.1968 (3) 0.0495 (6)
H14A 0.4671 0.3186 −0.3157 0.059*
H14B 0.4829 0.4289 −0.2126 0.059*
C15 0.40087 (15) 0.3347 (2) −0.0995 (4) 0.0617 (8)
H15A 0.3555 0.3523 −0.1806 0.074*
H15B 0.3968 0.2580 −0.0676 0.074*
C16 1.0073 (2) 0.8027 (3) 0.1157 (5) 0.0921 (11)
H16A 1.0569 0.7649 0.1374 0.138*
H16B 0.9968 0.8470 0.2184 0.138*
H16C 1.0101 0.8486 0.0113 0.138*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0424 (10) 0.0407 (11) 0.0617 (13) −0.0019 (9) 0.0007 (9) −0.0026 (9)
N2 0.0432 (11) 0.0418 (11) 0.0585 (13) −0.0002 (9) −0.0026 (9) −0.0039 (9)
N4 0.0368 (10) 0.0412 (11) 0.0581 (13) 0.0021 (8) −0.0039 (9) −0.0023 (9)
O1 0.0554 (10) 0.0464 (10) 0.0678 (12) −0.0062 (8) −0.0189 (9) −0.0037 (8)
O2 0.0477 (10) 0.0882 (14) 0.0579 (12) 0.0226 (9) −0.0101 (8) −0.0129 (10)
N3 0.0373 (10) 0.0382 (11) 0.0796 (15) 0.0020 (8) −0.0072 (10) −0.0020 (10)
C1 0.0409 (12) 0.0430 (13) 0.0461 (13) 0.0018 (10) 0.0015 (10) 0.0002 (10)
C2 0.0438 (12) 0.0405 (13) 0.0428 (13) 0.0027 (10) 0.0001 (10) −0.0001 (10)
C3 0.0560 (15) 0.0425 (14) 0.0654 (17) −0.0017 (11) −0.0071 (12) −0.0009 (12)
C4 0.0697 (18) 0.0407 (14) 0.082 (2) 0.0094 (13) −0.0100 (15) 0.0012 (14)
C5 0.0509 (15) 0.0536 (16) 0.090 (2) 0.0143 (12) −0.0097 (14) 0.0021 (15)
C6 0.0426 (13) 0.0525 (16) 0.0771 (19) 0.0020 (11) −0.0053 (12) 0.0019 (13)
C7 0.0385 (12) 0.0428 (13) 0.0603 (15) −0.0017 (10) 0.0020 (11) −0.0070 (11)
C8 0.0420 (13) 0.0508 (15) 0.0726 (18) 0.0000 (11) 0.0029 (12) 0.0010 (13)
C9 0.0587 (16) 0.0510 (16) 0.0737 (18) −0.0109 (12) 0.0113 (14) −0.0017 (13)
C10 0.0525 (15) 0.0679 (18) 0.0669 (18) −0.0196 (13) 0.0083 (13) −0.0146 (15)
C11 0.0412 (14) 0.078 (2) 0.084 (2) −0.0023 (13) −0.0095 (13) −0.0153 (17)
C12 0.0469 (14) 0.0481 (14) 0.086 (2) 0.0037 (12) −0.0122 (13) −0.0078 (14)
C13 0.0422 (12) 0.0436 (13) 0.0398 (12) −0.0002 (10) −0.0004 (10) 0.0004 (10)
C14 0.0487 (14) 0.0481 (14) 0.0508 (15) 0.0031 (11) −0.0051 (11) 0.0011 (11)
C15 0.0456 (14) 0.0737 (19) 0.0643 (18) 0.0056 (13) −0.0097 (12) 0.0006 (15)
C16 0.073 (2) 0.103 (3) 0.100 (3) −0.043 (2) 0.0043 (18) −0.016 (2)

Geometric parameters (Å, °)

N1—N2 1.264 (3) C6—H6A 0.9300
N1—C1 1.417 (3) C7—C8 1.375 (4)
N2—N3 1.319 (3) C7—C12 1.381 (3)
N4—C13 1.329 (3) C8—C9 1.383 (3)
N4—C14 1.447 (3) C8—H8A 0.9300
N4—H4A 0.8600 C9—C10 1.381 (4)
O1—C13 1.238 (3) C9—H9A 0.9300
O2—C15 1.420 (3) C10—C11 1.363 (4)
O2—H2B 0.8200 C10—C16 1.513 (4)
N3—C7 1.395 (3) C11—C12 1.382 (4)
N3—H3A 0.8600 C11—H11A 0.9300
C1—C6 1.393 (3) C12—H12A 0.9300
C1—C2 1.404 (3) C14—C15 1.486 (4)
C2—C3 1.400 (3) C14—H14A 0.9700
C2—C13 1.503 (3) C14—H14B 0.9700
C3—C4 1.368 (3) C15—H15A 0.9700
C3—H3B 0.9300 C15—H15B 0.9700
C4—C5 1.376 (4) C16—H16A 0.9600
C4—H4B 0.9300 C16—H16B 0.9600
C5—C6 1.367 (4) C16—H16C 0.9600
C5—H5A 0.9300
N2—N1—C1 114.01 (19) C10—C9—C8 121.2 (3)
N1—N2—N3 111.82 (19) C10—C9—H9A 119.4
C13—N4—C14 122.64 (19) C8—C9—H9A 119.4
C13—N4—H4A 118.7 C11—C10—C9 117.4 (2)
C14—N4—H4A 118.7 C11—C10—C16 121.5 (3)
C15—O2—H2B 109.5 C9—C10—C16 121.0 (3)
N2—N3—C7 121.21 (19) C10—C11—C12 122.6 (3)
N2—N3—H3A 119.4 C10—C11—H11A 118.7
C7—N3—H3A 119.4 C12—C11—H11A 118.7
C6—C1—C2 119.0 (2) C7—C12—C11 119.3 (3)
C6—C1—N1 123.2 (2) C7—C12—H12A 120.3
C2—C1—N1 117.79 (19) C11—C12—H12A 120.3
C3—C2—C1 118.0 (2) O1—C13—N4 121.8 (2)
C3—C2—C13 115.7 (2) O1—C13—C2 118.9 (2)
C1—C2—C13 126.3 (2) N4—C13—C2 119.3 (2)
C4—C3—C2 121.7 (2) N4—C14—C15 114.9 (2)
C4—C3—H3B 119.1 N4—C14—H14A 108.5
C2—C3—H3B 119.1 C15—C14—H14A 108.5
C3—C4—C5 119.9 (3) N4—C14—H14B 108.5
C3—C4—H4B 120.1 C15—C14—H14B 108.5
C5—C4—H4B 120.1 H14A—C14—H14B 107.5
C6—C5—C4 119.8 (2) O2—C15—C14 114.5 (2)
C6—C5—H5A 120.1 O2—C15—H15A 108.6
C4—C5—H5A 120.1 C14—C15—H15A 108.6
C5—C6—C1 121.5 (2) O2—C15—H15B 108.6
C5—C6—H6A 119.3 C14—C15—H15B 108.6
C1—C6—H6A 119.3 H15A—C15—H15B 107.6
C8—C7—C12 119.1 (2) C10—C16—H16A 109.5
C8—C7—N3 118.6 (2) C10—C16—H16B 109.5
C12—C7—N3 122.3 (2) H16A—C16—H16B 109.5
C7—C8—C9 120.3 (2) C10—C16—H16C 109.5
C7—C8—H8A 119.8 H16A—C16—H16C 109.5
C9—C8—H8A 119.8 H16B—C16—H16C 109.5
C1—N1—N2—N3 178.6 (2) N3—C7—C8—C9 179.6 (2)
N1—N2—N3—C7 −177.7 (2) C7—C8—C9—C10 0.9 (4)
N2—N1—C1—C6 3.2 (3) C8—C9—C10—C11 0.6 (4)
N2—N1—C1—C2 −176.6 (2) C8—C9—C10—C16 −178.0 (3)
C6—C1—C2—C3 2.7 (3) C9—C10—C11—C12 −1.2 (4)
N1—C1—C2—C3 −177.6 (2) C16—C10—C11—C12 177.4 (3)
C6—C1—C2—C13 −174.8 (2) C8—C7—C12—C11 1.3 (4)
N1—C1—C2—C13 5.0 (3) N3—C7—C12—C11 179.8 (2)
C1—C2—C3—C4 −2.1 (4) C10—C11—C12—C7 0.2 (5)
C13—C2—C3—C4 175.6 (2) C14—N4—C13—O1 −6.1 (4)
C2—C3—C4—C5 −0.5 (4) C14—N4—C13—C2 173.9 (2)
C3—C4—C5—C6 2.5 (5) C3—C2—C13—O1 −11.0 (3)
C4—C5—C6—C1 −2.0 (5) C1—C2—C13—O1 166.5 (2)
C2—C1—C6—C5 −0.7 (4) C3—C2—C13—N4 169.0 (2)
N1—C1—C6—C5 179.5 (3) C1—C2—C13—N4 −13.5 (3)
N2—N3—C7—C8 169.7 (2) C13—N4—C14—C15 76.5 (3)
N2—N3—C7—C12 −8.8 (4) N4—C14—C15—O2 71.8 (3)
C12—C7—C8—C9 −1.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N4—H4A···N1 0.86 2.05 2.696 (3) 132
O2—H2B···O1i 0.82 1.92 2.729 (2) 169
N3—H3A···O2ii 0.86 2.00 2.851 (2) 170

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y+1, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2210).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, V., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Das, S., Brudvig, G. W. & Crabtree, R. H. (2008). Chem. Commun.4, 413–424. [DOI] [PubMed]
  3. Estevan, F., Lloret, J., Sanau, M. & Ubeda, M. A. (2006). Organometallics, 25, 4977–4984.
  4. Gómez, M., Jansat, S., Muller, G., Aullón, G. & Maestro, M. A. (2005). Eur. J. Inorg. Chem.2005, 4341–4351.
  5. Jie, S., Agostinho, M., Kermagoret, A., Cazin, C. S. J. & Braunstein, P. (2007). Dalton Trans. pp. 4472–4482. [DOI] [PubMed]
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  7. Müller, C. & Vogt, D. (2007). Dalton Trans. pp. 5505–5523. [DOI] [PubMed]
  8. Nuricumbo-Escobar, J. J., Campos-Alvarado, C., Ríos-Moreno, G., Morales-Morales, D., Walsh, P. J. & Parra-Hake, M. (2007). Inorg. Chem.46, 6182–6189. [DOI] [PMC free article] [PubMed]
  9. Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1989). J. Chem. Soc. Dalton Trans. pp. S1–83.
  10. Ríos-Moreno, G., Aguirre, G., Parra-Hake, M. & Walsh, P. J. (2003). Polyhedron, 22, 563–568.
  11. Rodríguez, J. G., Parra-Hake, M., Aguirre, G., Ortega, F. & Walsh, P. J. (1999). Polyhedron, 18, 3051–3055.
  12. Schilling, M., Görl, C. & Alt, H. G. (2008). Appl. Catal. A, 348, 79–85.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  15. Tejel, C., Ciriano, M. A., Rios-Moreno, G., Dobrinovitch, I. T., Lahoz, F. J., Oro, L. A. & Parra-Hake, M. (2004). Inorg. Chem.43, 4719–4726. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809011908/kp2210sup1.cif

e-65-0o990-sup1.cif (17.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809011908/kp2210Isup2.hkl

e-65-0o990-Isup2.hkl (150.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES