Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 8;65(Pt 5):o992–o993. doi: 10.1107/S160053680901246X

(1RS,4RS,5RS)-Methyl 2-(3,5-dinitro­benzo­yl)-2-oxa-3-aza­bicyclo­[3.3.0]oct-7-ene-4-carboxyl­ate

Carlos A D Sousa a,*, José E Rodríguez-Borges a, M Luísa C Vale a, Xerardo Garcia-Mera b
PMCID: PMC2977685  PMID: 21584028

Abstract

The title compound, C15H13N3O8, comprises two crystallographically independent mol­ecules in the asymmetric unit. In the crystal, intermolecular C—H⋯O hydrogen bonds link the molecules and short C=O⋯π contacts are seen.

Related literature

For the preparation of the precursor of the title compound, see: Sousa et al. (2008). For examples of the use of the 3,5dinitro­benzoyl­ation technique for the assignment of structures by X-ray, see: Caamaño et al. (2000); Fernández et al. (2001). graphic file with name e-65-0o992-scheme1.jpg

Experimental

Crystal data

  • C15H13N3O8

  • M r = 363.28

  • Triclinic, Inline graphic

  • a = 8.7157 (3) Å

  • b = 10.8269 (3) Å

  • c = 17.0677 (5) Å

  • α = 79.881 (1)°

  • β = 77.773 (1)°

  • γ = 78.281 (1)°

  • V = 1526.35 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.13 mm−1

  • T = 100 K

  • 0.26 × 0.23 × 0.1 mm

Data collection

  • Bruker ApexII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.913, T max = 0.99

  • 28142 measured reflections

  • 6012 independent reflections

  • 4564 reflections with I > 2σ(I)

  • R int = 0.039

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.124

  • S = 1.05

  • 6012 reflections

  • 471 parameters

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901246X/kp2206sup1.cif

e-65-0o992-sup1.cif (29.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901246X/kp2206Isup2.hkl

e-65-0o992-Isup2.hkl (288.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C17—H17⋯O11i 0.98 2.40 3.064 (3) 124
C47—H47⋯O41ii 0.98 2.45 3.083 (3) 122

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Table 2. Geometric parameters of YXCg contacts (Å, °).

YXCg XCg YXCg YCg
C13—O14⋯Cg2 3.2009 (18) 106.47 (13) 3.736 (3)
C43—O44⋯Cg1 3.1434 (18) 104.52 (13) 3.649 (3)

Cg1 and Cg2 are the centroids of the rings defined by C1, C2, C3, C7, C8, C12 and C31, C32, C33, C37, C38, C42, respectively.

Acknowledgments

This work was supported by Centro de Investigação em Química of the University of Porto. The X-ray data were collected at the Unidade de Raios X, RIAIDT, University of Santiago de Compostela. The authors thank Fundação para a Ciência e Tecnologia (FCT) (POCTI/QUI/44471/2002) and Xunta de Galicia (07CSA008203-PR) for financial support. CADS thanks the FCT for a grant (No. SFRH/BD/31526/2006).

supplementary crystallographic information

Comment

In organic synthesis, the usual techniques as NMR, mass or infra-red spectrometry and elemental analysis are often not enough for the unequivocally determination of a structure of a compound. When it is possible to crystallize desired compound, the X-ray crystallography is the ultimate analysis. 3,5-dinitrobenzoylation of 2-oxa-3-azabicyclo[3.3.0]oct-7-ene-4- carboxylate leaded to title compound (I) that was unambigously analysed by X-ray analysis.

The two independent molecules of the title compound (I) are coupled by π···π interactions of the 3,5-dinitrobenzoyl rings (Fig. 1) [Cg1-Cg2iv = 4.2295 Å, symmetry code: (iv) 1 + x, y, z]. It is also possible to verify the existence of the three stereogenic centres of the same chirality in both molecules of the asymmetric unit. As the space group is centrosymmetric, a racemate is present in a crystal. No other stereoisomers of methyl 2-oxa-3-azabicyclo[3.3.0]oct-7-ene-4-carboxylate are obtained from the reported synthetic methodology (Sousa et al. 2008).

In the crystal structure, each pair of the molecules are linked by π··· π contacts between the 3,5-dinitrobenzoyl rings along [100] direction (Fig. 2) (Cg1-Cg2iii = 4.4862 Å, Cg2-Cg1iii = 4.4862 Å; symmetry code: (iii) x, y, z). Intermolecular interactions between carbonyl and nitro groups (distance C···O ≈ 3.0 Å), between nitro groups (distance N···O ≈ 3.0 Å) and C—H···O intermolecular hydrogen bonds (Table 1) generate an assembly by packing these chains along [010] direction (Fig. 3). Table 2 lists the interactions between aromatic rings (resulting in a π···π stacking assembly).

The carbonyl and nitro groups are very electronegative; as a result, the electronic density of the 3,5-dinitrobenzoyl rings is delocalized from the centre of π-system towards the electronegative O atoms. This delocalization origins from electrostatic intermolecular interactions between the oxygen atoms and the centre of the π-system (Table 3).

This analysis suggest that the most important intermolecular interactions in compound (I) are due to the 3,5-dinitrobenzoyl ring (including the nitro and carbonyl groups), which seems to be the main reason why compound (I) is a solid.

Experimental

The title compound was synthesized from 2-oxa-3-azabicyclo[3.3.0]oct-7-ene-4-carboxylate as reported in literature (Sousa et al. 2008). Crystals were obtained from a slow evaporation of a dichlorometane/methanol/hexane solution of (I).

Refinement

All H atoms were found in a difference Fourier map and placed in geometrically idealized and constrained to ride on their parent atoms [C—H = 0.93–0.98 Å and Uiso(H) = 1.2 (1.5 for methyl groups) × Ueq(C)].

Figures

Fig. 1.

Fig. 1.

A view of a pair of independent molecules of (I) connected by π···π interactions (dashed lines) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure of (I) viewed along the b axis. Dashed lines show Cg1-Cg2 (π···π) interactions along [100] direction and the respective distances are given in Å. H atoms are omitted for clarity.

Fig. 3.

Fig. 3.

Part of the crystal structure of (I) viewed along the a axis. Dashed lines show CO···NO2, NO2···NO2 and C—H···O interactions along [010] direction. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C15H13N3O8 Z = 4
Mr = 363.28 F(000) = 752
Triclinic, P1 Dx = 1.581 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71069 Å
a = 8.7157 (3) Å Cell parameters from 6065 reflections
b = 10.8269 (3) Å θ = 2.4–26.0°
c = 17.0677 (5) Å µ = 0.13 mm1
α = 79.881 (1)° T = 100 K
β = 77.773 (1)° Prism, colourless
γ = 78.281 (1)° 0.26 × 0.23 × 0.1 mm
V = 1526.35 (8) Å3

Data collection

Bruker ApexII CCD area-detector diffractometer 6012 independent reflections
Radiation source: sealed tube 4564 reflections with I > 2σ(I)
graphite Rint = 0.039
phi and ω scans θmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −10→10
Tmin = 0.913, Tmax = 0.99 k = −13→13
28142 measured reflections l = 0→21

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0478P)2 + 1.4085P] where P = (Fo2 + 2Fc2)/3
6012 reflections (Δ/σ)max < 0.001
471 parameters Δρmax = 0.27 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9942 (2) 0.18394 (19) 0.38593 (13) 0.0155 (4)
C2 1.0752 (2) 0.2818 (2) 0.34588 (13) 0.0166 (4)
H2 1.0992 0.2956 0.2896 0.02*
C3 1.1195 (2) 0.35814 (19) 0.39127 (13) 0.0160 (4)
N4 1.2051 (2) 0.46174 (17) 0.34844 (11) 0.0195 (4)
O5 1.2230 (2) 0.48129 (16) 0.27460 (10) 0.0313 (4)
O6 1.25526 (19) 0.52204 (15) 0.38914 (10) 0.0246 (4)
C7 1.0872 (2) 0.34329 (19) 0.47509 (13) 0.0159 (4)
H7 1.1201 0.3946 0.5044 0.019*
C8 1.0029 (2) 0.24721 (19) 0.51215 (13) 0.0152 (4)
N9 0.9606 (2) 0.22901 (17) 0.60139 (11) 0.0187 (4)
O10 1.0221 (2) 0.28525 (15) 0.63892 (10) 0.0267 (4)
O11 0.8644 (2) 0.15906 (15) 0.63199 (10) 0.0269 (4)
C12 0.9546 (2) 0.1685 (2) 0.47014 (13) 0.0165 (4)
H12 0.8964 0.1059 0.4977 0.02*
C13 0.9295 (3) 0.0975 (2) 0.34540 (13) 0.0176 (5)
O14 0.81962 (18) 0.04407 (14) 0.38263 (9) 0.0207 (3)
N15 0.9857 (2) 0.08830 (17) 0.26587 (11) 0.0189 (4)
O16 1.13586 (18) 0.11886 (14) 0.22609 (9) 0.0213 (4)
C17 1.2273 (3) −0.0039 (2) 0.20221 (14) 0.0206 (5)
H17 1.278 −0.0563 0.2458 0.025*
C18 1.3444 (3) 0.0181 (2) 0.12586 (14) 0.0243 (5)
H18 1.4385 0.0484 0.1223 0.029*
C19 1.2969 (3) −0.0111 (2) 0.06383 (14) 0.0259 (5)
H19 1.3561 −0.0057 0.0116 0.031*
C20 1.1382 (3) −0.0538 (2) 0.08611 (14) 0.0264 (5)
H20A 1.1434 −0.1343 0.0673 0.032*
H20B 1.0571 0.0093 0.0635 0.032*
C21 1.1035 (3) −0.0680 (2) 0.17955 (13) 0.0200 (5)
H21 1.1197 −0.1586 0.2016 0.024*
C22 0.9406 (3) −0.0004 (2) 0.22286 (13) 0.0201 (5)
H22 0.8892 −0.0635 0.2626 0.024*
C23 0.8278 (3) 0.0653 (2) 0.16619 (14) 0.0240 (5)
O24 0.7600 (2) 0.00814 (17) 0.13342 (10) 0.0308 (4)
O25 0.8140 (2) 0.19225 (16) 0.15572 (10) 0.0307 (4)
C26 0.7075 (4) 0.2615 (3) 0.10190 (17) 0.0400 (7)
H26A 0.7476 0.2395 0.0484 0.06*
H26B 0.7009 0.3514 0.1007 0.06*
H26C 0.6034 0.2394 0.121 0.06*
C31 0.6061 (2) 0.36166 (19) 0.38716 (13) 0.0163 (4)
C32 0.5616 (2) 0.2795 (2) 0.34533 (13) 0.0176 (5)
H32 0.5863 0.2881 0.2891 0.021*
C33 0.4798 (2) 0.1845 (2) 0.38893 (13) 0.0173 (5)
N34 0.4341 (2) 0.09760 (17) 0.34395 (12) 0.0205 (4)
O35 0.4812 (2) 0.10687 (17) 0.27083 (10) 0.0318 (4)
O36 0.35044 (19) 0.02069 (15) 0.38273 (10) 0.0253 (4)
C37 0.4382 (2) 0.16728 (19) 0.47197 (13) 0.0175 (5)
H37 0.3799 0.1049 0.4997 0.021*
C38 0.4885 (2) 0.2484 (2) 0.51171 (13) 0.0164 (4)
N39 0.4501 (2) 0.23228 (17) 0.60065 (11) 0.0196 (4)
O40 0.3526 (2) 0.16400 (16) 0.63497 (10) 0.0290 (4)
O41 0.5182 (2) 0.28796 (15) 0.63533 (10) 0.0268 (4)
C42 0.5721 (2) 0.3436 (2) 0.47166 (13) 0.0175 (5)
H42 0.6055 0.3951 0.5007 0.021*
C43 0.7027 (3) 0.4644 (2) 0.34872 (13) 0.0179 (5)
O44 0.78205 (18) 0.50231 (14) 0.38786 (9) 0.0209 (3)
N45 0.7092 (2) 0.50775 (18) 0.26884 (11) 0.0209 (4)
O46 0.59327 (19) 0.49161 (14) 0.22645 (9) 0.0234 (4)
C47 0.5203 (3) 0.6231 (2) 0.19852 (14) 0.0242 (5)
H47 0.4338 0.6587 0.2395 0.029*
C48 0.4685 (3) 0.6268 (2) 0.12065 (15) 0.0294 (6)
H48 0.3777 0.5984 0.1157 0.035*
C49 0.5688 (3) 0.6761 (3) 0.05900 (16) 0.0346 (6)
H49 0.556 0.686 0.0054 0.042*
C50 0.7046 (3) 0.7143 (3) 0.08449 (15) 0.0358 (6)
H50A 0.7137 0.8021 0.0628 0.043*
H50B 0.8045 0.6598 0.0666 0.043*
C51 0.6601 (3) 0.6973 (2) 0.17758 (14) 0.0241 (5)
H51 0.6251 0.7809 0.1962 0.029*
C52 0.7859 (3) 0.6152 (2) 0.22667 (14) 0.0221 (5)
H52 0.8012 0.664 0.2668 0.026*
C53 0.9452 (3) 0.5754 (2) 0.17384 (14) 0.0241 (5)
O54 1.0372 (2) 0.64757 (16) 0.14466 (11) 0.0317 (4)
O55 0.9688 (2) 0.45359 (16) 0.16190 (10) 0.0292 (4)
C56 1.1169 (3) 0.4105 (3) 0.10927 (16) 0.0362 (6)
H56A 1.1234 0.4644 0.058 0.054*
H56B 1.1202 0.3244 0.1012 0.054*
H56C 1.2052 0.4142 0.1337 0.054*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0128 (10) 0.0146 (10) 0.0202 (11) 0.0019 (8) −0.0055 (8) −0.0069 (8)
C2 0.0151 (11) 0.0174 (11) 0.0166 (11) 0.0011 (8) −0.0038 (8) −0.0042 (8)
C3 0.0127 (10) 0.0142 (10) 0.0211 (12) −0.0016 (8) −0.0034 (9) −0.0026 (8)
N4 0.0183 (10) 0.0174 (9) 0.0239 (11) −0.0043 (8) −0.0045 (8) −0.0035 (8)
O5 0.0433 (11) 0.0351 (10) 0.0194 (9) −0.0212 (8) −0.0033 (8) −0.0003 (7)
O6 0.0266 (9) 0.0219 (8) 0.0310 (9) −0.0100 (7) −0.0095 (7) −0.0073 (7)
C7 0.0122 (10) 0.0154 (10) 0.0217 (12) 0.0023 (8) −0.0071 (9) −0.0072 (9)
C8 0.0121 (10) 0.0178 (11) 0.0154 (11) 0.0025 (8) −0.0043 (8) −0.0050 (8)
N9 0.0192 (10) 0.0189 (9) 0.0183 (10) −0.0016 (8) −0.0046 (8) −0.0035 (8)
O10 0.0353 (10) 0.0287 (9) 0.0213 (9) −0.0083 (8) −0.0118 (7) −0.0063 (7)
O11 0.0319 (9) 0.0299 (9) 0.0204 (9) −0.0129 (8) −0.0024 (7) −0.0017 (7)
C12 0.0124 (10) 0.0156 (10) 0.0215 (12) −0.0003 (8) −0.0035 (9) −0.0042 (9)
C13 0.0181 (11) 0.0160 (11) 0.0199 (12) −0.0003 (9) −0.0079 (9) −0.0037 (9)
O14 0.0179 (8) 0.0228 (8) 0.0234 (8) −0.0070 (7) −0.0018 (6) −0.0072 (7)
N15 0.0194 (10) 0.0240 (10) 0.0168 (10) −0.0108 (8) −0.0014 (8) −0.0067 (8)
O16 0.0215 (8) 0.0247 (8) 0.0202 (8) −0.0118 (7) 0.0023 (6) −0.0077 (7)
C17 0.0226 (12) 0.0226 (11) 0.0194 (12) −0.0071 (9) −0.0030 (9) −0.0077 (9)
C18 0.0251 (13) 0.0274 (12) 0.0219 (12) −0.0099 (10) 0.0008 (10) −0.0072 (10)
C19 0.0290 (13) 0.0275 (13) 0.0198 (12) −0.0055 (10) 0.0008 (10) −0.0055 (10)
C20 0.0270 (13) 0.0387 (14) 0.0171 (12) −0.0081 (11) −0.0025 (10) −0.0124 (10)
C21 0.0233 (12) 0.0208 (11) 0.0191 (12) −0.0069 (9) −0.0054 (9) −0.0060 (9)
C22 0.0250 (12) 0.0219 (11) 0.0178 (12) −0.0112 (9) −0.0029 (9) −0.0075 (9)
C23 0.0229 (12) 0.0285 (13) 0.0221 (12) −0.0048 (10) −0.0019 (10) −0.0103 (10)
O24 0.0285 (9) 0.0382 (10) 0.0328 (10) −0.0059 (8) −0.0123 (8) −0.0159 (8)
O25 0.0382 (10) 0.0264 (9) 0.0315 (10) −0.0015 (8) −0.0165 (8) −0.0067 (7)
C26 0.0500 (18) 0.0405 (16) 0.0317 (15) 0.0081 (13) −0.0213 (13) −0.0123 (12)
C31 0.0126 (10) 0.0148 (10) 0.0217 (12) −0.0002 (8) −0.0044 (9) −0.0038 (9)
C32 0.0153 (11) 0.0186 (11) 0.0186 (12) 0.0011 (8) −0.0052 (9) −0.0041 (9)
C33 0.0144 (10) 0.0153 (10) 0.0240 (12) −0.0002 (8) −0.0060 (9) −0.0073 (9)
N34 0.0193 (10) 0.0182 (10) 0.0269 (11) −0.0023 (8) −0.0086 (8) −0.0072 (8)
O35 0.0441 (11) 0.0366 (10) 0.0211 (10) −0.0182 (8) −0.0053 (8) −0.0085 (7)
O36 0.0254 (9) 0.0199 (8) 0.0338 (10) −0.0093 (7) −0.0069 (7) −0.0043 (7)
C37 0.0135 (10) 0.0129 (10) 0.0257 (12) −0.0004 (8) −0.0044 (9) −0.0030 (9)
C38 0.0124 (10) 0.0177 (11) 0.0181 (11) 0.0016 (8) −0.0035 (8) −0.0037 (9)
N39 0.0182 (10) 0.0186 (9) 0.0213 (10) −0.0014 (8) −0.0022 (8) −0.0051 (8)
O40 0.0308 (9) 0.0296 (9) 0.0262 (9) −0.0129 (8) 0.0036 (7) −0.0048 (7)
O41 0.0300 (9) 0.0285 (9) 0.0248 (9) −0.0079 (7) −0.0062 (7) −0.0069 (7)
C42 0.0150 (11) 0.0146 (10) 0.0246 (12) 0.0013 (8) −0.0082 (9) −0.0062 (9)
C43 0.0151 (11) 0.0158 (11) 0.0236 (12) −0.0016 (8) −0.0039 (9) −0.0057 (9)
O44 0.0214 (8) 0.0200 (8) 0.0247 (9) −0.0068 (7) −0.0078 (7) −0.0036 (6)
N45 0.0250 (10) 0.0241 (10) 0.0184 (10) −0.0124 (8) −0.0073 (8) −0.0019 (8)
O46 0.0310 (9) 0.0233 (8) 0.0221 (9) −0.0116 (7) −0.0134 (7) −0.0011 (7)
C47 0.0253 (12) 0.0229 (12) 0.0253 (13) −0.0062 (10) −0.0062 (10) −0.0012 (10)
C48 0.0358 (14) 0.0269 (13) 0.0284 (14) −0.0073 (11) −0.0140 (11) 0.0001 (10)
C49 0.0433 (16) 0.0377 (15) 0.0226 (14) −0.0041 (12) −0.0123 (12) 0.0005 (11)
C50 0.0349 (15) 0.0435 (16) 0.0252 (14) −0.0083 (12) −0.0076 (11) 0.0098 (12)
C51 0.0262 (13) 0.0217 (12) 0.0249 (13) −0.0068 (10) −0.0045 (10) −0.0016 (9)
C52 0.0304 (13) 0.0204 (11) 0.0183 (12) −0.0102 (10) −0.0062 (10) −0.0017 (9)
C53 0.0280 (13) 0.0254 (12) 0.0212 (12) −0.0086 (10) −0.0089 (10) 0.0007 (10)
O54 0.0287 (10) 0.0324 (10) 0.0342 (10) −0.0134 (8) −0.0028 (8) 0.0008 (8)
O55 0.0315 (10) 0.0266 (9) 0.0284 (9) −0.0067 (7) −0.0002 (8) −0.0059 (7)
C56 0.0370 (15) 0.0363 (15) 0.0307 (15) −0.0046 (12) 0.0028 (12) −0.0051 (12)

Geometric parameters (Å, °)

C1—C2 1.390 (3) C31—C32 1.390 (3)
C1—C12 1.393 (3) C31—C42 1.396 (3)
C1—C13 1.510 (3) C31—C43 1.505 (3)
C2—C3 1.384 (3) C32—C33 1.388 (3)
C2—H2 0.93 C32—H32 0.93
C3—C7 1.385 (3) C33—C37 1.375 (3)
C3—N4 1.473 (3) C33—N34 1.473 (3)
N4—O5 1.222 (2) N34—O35 1.221 (2)
N4—O6 1.226 (2) N34—O36 1.230 (2)
C7—C8 1.380 (3) C37—C38 1.384 (3)
C7—H7 0.93 C37—H37 0.93
C8—C12 1.380 (3) C38—C42 1.381 (3)
C8—N9 1.477 (3) C38—N39 1.470 (3)
N9—O11 1.217 (2) N39—O41 1.218 (2)
N9—O10 1.218 (2) N39—O40 1.226 (2)
C12—H12 0.93 C42—H42 0.93
C13—O14 1.222 (3) C43—O44 1.225 (3)
C13—N15 1.356 (3) C43—N45 1.355 (3)
N15—O16 1.416 (2) N45—O46 1.414 (2)
N15—C22 1.463 (3) N45—C52 1.461 (3)
O16—C17 1.480 (3) O46—C47 1.476 (3)
C17—C18 1.491 (3) C47—C48 1.483 (3)
C17—C21 1.539 (3) C47—C51 1.540 (3)
C17—H17 0.98 C47—H47 0.98
C18—C19 1.323 (3) C48—C49 1.326 (4)
C18—H18 0.93 C48—H48 0.93
C19—C20 1.499 (3) C49—C50 1.498 (4)
C19—H19 0.93 C49—H49 0.93
C20—C21 1.545 (3) C50—C51 1.541 (3)
C20—H20A 0.97 C50—H50A 0.97
C20—H20B 0.97 C50—H50B 0.97
C21—C22 1.556 (3) C51—C52 1.557 (3)
C21—H21 0.98 C51—H51 0.98
C22—C23 1.512 (3) C52—C53 1.513 (3)
C22—H22 0.98 C52—H52 0.98
C23—O24 1.206 (3) C53—O54 1.204 (3)
C23—O25 1.338 (3) C53—O55 1.338 (3)
O25—C26 1.451 (3) O55—C56 1.450 (3)
C26—H26A 0.96 C56—H56A 0.96
C26—H26B 0.96 C56—H56B 0.96
C26—H26C 0.96 C56—H56C 0.96
C2—C1—C12 119.33 (19) C32—C31—C42 119.20 (19)
C2—C1—C13 125.21 (19) C32—C31—C43 124.9 (2)
C12—C1—C13 115.20 (19) C42—C31—C43 115.68 (19)
C3—C2—C1 118.7 (2) C33—C32—C31 118.8 (2)
C3—C2—H2 120.6 C33—C32—H32 120.6
C1—C2—H2 120.6 C31—C32—H32 120.6
C2—C3—C7 123.71 (19) C37—C33—C32 123.6 (2)
C2—C3—N4 118.47 (19) C37—C33—N34 118.10 (19)
C7—C3—N4 117.82 (18) C32—C33—N34 118.30 (19)
O5—N4—O6 124.19 (18) O35—N34—O36 124.40 (18)
O5—N4—C3 117.94 (17) O35—N34—C33 118.04 (18)
O6—N4—C3 117.87 (18) O36—N34—C33 117.56 (18)
C8—C7—C3 115.49 (19) C33—C37—C38 115.97 (19)
C8—C7—H7 122.3 C33—C37—H37 122
C3—C7—H7 122.3 C38—C37—H37 122
C12—C8—C7 123.4 (2) C42—C38—C37 123.0 (2)
C12—C8—N9 118.47 (18) C42—C38—N39 118.83 (19)
C7—C8—N9 118.09 (18) C37—C38—N39 118.16 (19)
O11—N9—O10 124.79 (19) O41—N39—O40 124.37 (19)
O11—N9—C8 116.85 (17) O41—N39—C38 117.38 (18)
O10—N9—C8 118.35 (18) O40—N39—C38 118.24 (18)
C8—C12—C1 119.23 (19) C38—C42—C31 119.3 (2)
C8—C12—H12 120.4 C38—C42—H42 120.3
C1—C12—H12 120.4 C31—C42—H42 120.3
O14—C13—N15 120.63 (19) O44—C43—N45 120.51 (19)
O14—C13—C1 119.92 (19) O44—C43—C31 120.4 (2)
N15—C13—C1 119.24 (18) N45—C43—C31 118.93 (19)
C13—N15—O16 122.19 (17) C43—N45—O46 121.93 (17)
C13—N15—C22 123.37 (17) C43—N45—C52 123.86 (18)
O16—N15—C22 109.47 (15) O46—N45—C52 109.63 (16)
N15—O16—C17 103.45 (14) N45—O46—C47 103.91 (15)
O16—C17—C18 110.40 (18) O46—C47—C48 109.52 (19)
O16—C17—C21 104.41 (17) O46—C47—C51 104.18 (18)
C18—C17—C21 105.22 (18) C48—C47—C51 105.38 (19)
O16—C17—H17 112.1 O46—C47—H47 112.4
C18—C17—H17 112.1 C48—C47—H47 112.4
C21—C17—H17 112.1 C51—C47—H47 112.4
C19—C18—C17 111.1 (2) C49—C48—C47 111.0 (2)
C19—C18—H18 124.5 C49—C48—H48 124.5
C17—C18—H18 124.5 C47—C48—H48 124.5
C18—C19—C20 113.4 (2) C48—C49—C50 113.1 (2)
C18—C19—H19 123.3 C48—C49—H49 123.4
C20—C19—H19 123.3 C50—C49—H49 123.4
C19—C20—C21 103.39 (18) C49—C50—C51 103.6 (2)
C19—C20—H20A 111.1 C49—C50—H50A 111
C21—C20—H20A 111.1 C51—C50—H50A 111
C19—C20—H20B 111.1 C49—C50—H50B 111
C21—C20—H20B 111.1 C51—C50—H50B 111
H20A—C20—H20B 109 H50A—C50—H50B 109
C17—C21—C20 105.39 (18) C47—C51—C50 105.2 (2)
C17—C21—C22 104.16 (17) C47—C51—C52 104.17 (18)
C20—C21—C22 118.67 (19) C50—C51—C52 117.9 (2)
C17—C21—H21 109.4 C47—C51—H51 109.7
C20—C21—H21 109.4 C50—C51—H51 109.7
C22—C21—H21 109.4 C52—C51—H51 109.7
N15—C22—C23 112.66 (18) N45—C52—C53 113.37 (19)
N15—C22—C21 103.44 (17) N45—C52—C51 103.52 (18)
C23—C22—C21 113.97 (18) C53—C52—C51 112.90 (19)
N15—C22—H22 108.9 N45—C52—H52 109
C23—C22—H22 108.9 C53—C52—H52 108.9
C21—C22—H22 108.9 C51—C52—H52 109
O24—C23—O25 124.3 (2) O54—C53—O55 124.6 (2)
O24—C23—C22 122.9 (2) O54—C53—C52 123.0 (2)
O25—C23—C22 112.79 (19) O55—C53—C52 112.42 (19)
C23—O25—C26 115.69 (19) C53—O55—C56 115.30 (19)
O25—C26—H26A 109.5 O55—C56—H56A 109.5
O25—C26—H26B 109.5 O55—C56—H56B 109.5
H26A—C26—H26B 109.5 H56A—C56—H56B 109.5
O25—C26—H26C 109.5 O55—C56—H56C 109.5
H26A—C26—H26C 109.5 H56A—C56—H56C 109.5
H26B—C26—H26C 109.5 H56B—C56—H56C 109.5
C12—C1—C2—C3 2.4 (3) C42—C31—C32—C33 2.2 (3)
C13—C1—C2—C3 176.23 (19) C43—C31—C32—C33 176.5 (2)
C1—C2—C3—C7 −0.3 (3) C31—C32—C33—C37 0.6 (3)
C1—C2—C3—N4 −179.91 (18) C31—C32—C33—N34 −179.63 (18)
C2—C3—N4—O5 5.2 (3) C37—C33—N34—O35 −174.67 (19)
C7—C3—N4—O5 −174.49 (19) C32—C33—N34—O35 5.6 (3)
C2—C3—N4—O6 −174.10 (19) C37—C33—N34—O36 5.6 (3)
C7—C3—N4—O6 6.2 (3) C32—C33—N34—O36 −174.15 (19)
C2—C3—C7—C8 −1.4 (3) C32—C33—C37—C38 −2.4 (3)
N4—C3—C7—C8 178.24 (18) N34—C33—C37—C38 177.81 (18)
C3—C7—C8—C12 1.0 (3) C33—C37—C38—C42 1.5 (3)
C3—C7—C8—N9 −178.24 (18) C33—C37—C38—N39 −178.77 (18)
C12—C8—N9—O11 −11.2 (3) C42—C38—N39—O41 −13.0 (3)
C7—C8—N9—O11 168.04 (19) C37—C38—N39—O41 167.26 (19)
C12—C8—N9—O10 169.49 (19) C42—C38—N39—O40 167.13 (19)
C7—C8—N9—O10 −11.2 (3) C37—C38—N39—O40 −12.6 (3)
C7—C8—C12—C1 1.1 (3) C37—C38—C42—C31 1.2 (3)
N9—C8—C12—C1 −179.67 (18) N39—C38—C42—C31 −178.54 (18)
C2—C1—C12—C8 −2.8 (3) C32—C31—C42—C38 −3.0 (3)
C13—C1—C12—C8 −177.25 (18) C43—C31—C42—C38 −177.91 (19)
C2—C1—C13—O14 −156.4 (2) C32—C31—C43—O44 −154.8 (2)
C12—C1—C13—O14 17.7 (3) C42—C31—C43—O44 19.7 (3)
C2—C1—C13—N15 18.3 (3) C32—C31—C43—N45 20.6 (3)
C12—C1—C13—N15 −167.64 (19) C42—C31—C43—N45 −164.86 (19)
O14—C13—N15—O16 −163.04 (19) O44—C43—N45—O46 −164.20 (19)
C1—C13—N15—O16 22.3 (3) C31—C43—N45—O46 20.4 (3)
O14—C13—N15—C22 −10.6 (3) O44—C43—N45—C52 −10.7 (3)
C1—C13—N15—C22 174.73 (19) C31—C43—N45—C52 173.9 (2)
C13—N15—O16—C17 116.3 (2) C43—N45—O46—C47 118.3 (2)
C22—N15—O16—C17 −39.5 (2) C52—N45—O46—C47 −38.5 (2)
N15—O16—C17—C18 148.95 (18) N45—O46—C47—C48 148.66 (18)
N15—O16—C17—C21 36.3 (2) N45—O46—C47—C51 36.3 (2)
O16—C17—C18—C19 −105.7 (2) O46—C47—C48—C49 −103.5 (2)
C21—C17—C18—C19 6.4 (3) C51—C47—C48—C49 8.1 (3)
C17—C18—C19—C20 1.9 (3) C47—C48—C49—C50 −0.2 (3)
C18—C19—C20—C21 −9.1 (3) C48—C49—C50—C51 −7.8 (3)
O16—C17—C21—C20 104.78 (19) O46—C47—C51—C50 103.0 (2)
C18—C17—C21—C20 −11.5 (2) C48—C47—C51—C50 −12.3 (3)
O16—C17—C21—C22 −20.9 (2) O46—C47—C51—C52 −21.7 (2)
C18—C17—C21—C22 −137.14 (19) C48—C47—C51—C52 −137.0 (2)
C19—C20—C21—C17 12.2 (2) C49—C50—C51—C47 12.0 (3)
C19—C20—C21—C22 128.3 (2) C49—C50—C51—C52 127.5 (2)
C13—N15—C22—C23 106.4 (2) C43—N45—C52—C53 104.7 (2)
O16—N15—C22—C23 −98.2 (2) O46—N45—C52—C53 −99.0 (2)
C13—N15—C22—C21 −130.1 (2) C43—N45—C52—C51 −132.6 (2)
O16—N15—C22—C21 25.4 (2) O46—N45—C52—C51 23.7 (2)
C17—C21—C22—N15 −1.6 (2) C47—C51—C52—N45 −0.1 (2)
C20—C21—C22—N15 −118.4 (2) C50—C51—C52—N45 −116.2 (2)
C17—C21—C22—C23 121.1 (2) C47—C51—C52—C53 122.8 (2)
C20—C21—C22—C23 4.3 (3) C50—C51—C52—C53 6.7 (3)
N15—C22—C23—O24 −169.9 (2) N45—C52—C53—O54 −168.0 (2)
C21—C22—C23—O24 72.7 (3) C51—C52—C53—O54 74.7 (3)
N15—C22—C23—O25 11.2 (3) N45—C52—C53—O55 13.8 (3)
C21—C22—C23—O25 −106.3 (2) C51—C52—C53—O55 −103.5 (2)
O24—C23—O25—C26 1.0 (3) O54—C53—O55—C56 −0.4 (3)
C22—C23—O25—C26 179.9 (2) C52—C53—O55—C56 177.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C17—H17···O11i 0.98 2.40 3.064 (3) 124
C47—H47···O41ii 0.98 2.45 3.083 (3) 122

Symmetry codes: (i) −x+2, −y, −z+1; (ii) −x+1, −y+1, −z+1.

Table 2 Table 2. Geometric parameters of π···π contacts (Å, °)

Cg X···Cg Y Cg···Cg α β
Cg1···Cg2 4.4862 0.49 (9) 39.43
Cg1···Cg2iii 4.2295 0.49 (9) 39.50
Cg2···Cg1iv 4.2296 0.49 (9) 39.15
Cg2···Cg1 4.4862 0.49 (9) 39.08

Symmetry codes: (iii) 1+x, y, z; (iv) -1+x, y, z. Cg1 and Cg2 are the centroids of the rings defined by C1, C2, C3, C7, C8, C12 and C31, C32, C33, C37, C38 C42, respectively.

Table 3 Table 3. Geometric parameters of Y—X···Cg (π···ring) contacts (Å, °)

Y—X···Cg X···Cg Y—X···Cg Y···Cg
N4—O6···Cg2iii 3.3345 (18) 88.47 (12) 3.522 (2)
C13—O14···Cg2 3.2009 (18) 106.47 (13) 3.736 (3)
N34—O36···Cg1iv 3.4450 (18) 91.01 (12) 3.678 (2)
C43—O44···Cg1 3.1434 (18) 104.52 (13) 3.649 (3)

Symmetry codes: (iii) 1+x, y, z; (iv) -1+x, y, z. Cg1 and Cg2 are the centroids of the rings defined by C1, C2, C3, C7, C8, C12 and C31, C32, C33, C37, C38 C42, respectively.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2206).

References

  1. Altomare, A., Cascarano, C., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., Polidori, G., Camalli, M. & Spagna, R. (1997). SIR97 University of Bari, Italy.
  2. Bruker (2007). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Caamaño, O., Fernández, F., Garcia-Mera, X. & Rodrígues-Borges, J. E. (2000). Tetrahedron Lett.41, 4123–4125.
  4. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  5. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  6. Fernández, F., Garcia-Mera, X. & Rodrígues-Borges, J. E. (2001). Tetrahedron Asymmetry, 12, 365–368.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Sousa, C. A. D., Vale, M. L. C., Rodrígues-Borges, J. E. & García-Mera, X. (2008). Tetrahedron Lett.49, 5777–5781.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901246X/kp2206sup1.cif

e-65-0o992-sup1.cif (29.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901246X/kp2206Isup2.hkl

e-65-0o992-Isup2.hkl (288.3KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES