Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 8;65(Pt 5):o1002–o1003. doi: 10.1107/S1600536809012689

Redetermination of methyl 3,4-O-isopropyl­idene-β-D-fucopyran­oside monohydrate

Hoong-Kun Fun a,*,, Samuel Robinson Jebas a,§, Sankappa Rai b, Prakash Shetty c, Arun M Isloor d
PMCID: PMC2977692  PMID: 21583828

Abstract

In the title compound, C10H18O5·H2O, the fucopyran­oside ring adopts a chair conformation. The crystal packing is stabilized by inter­molecular O—H⋯O and C—H⋯O hydrogen bonds together with intra­molecular O⋯O [2.2936 (8) Å] and inter­molecular O⋯O [2.7140 (8)–2.829 (3) Å] short contacts. The mol­ecules are linked together to form an infinite chain along the a axis. This structure has been solved previously but with no R-values [Spiers (1931). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem. 78, 101].

Related literature

D-fucose (6-de­oxy-D-galactose) is an effective gratuitous inducer of the galactose operon in Escherichia coli, see: Musso et al. (1963). 6-Deoxy­hexose and its derivatives are important components of lipopolysaccharides, see: Bilge et al. (1996); Villeneuve et al. (2000); Wu & Mackenzie (1987); Caroff, Bundle & Perry (1984); Caroff, Bundle, Perry, Cherwonogrodzky & Dunch (1984). For a previous structure determination of the title compound, see: Spiers (1931). For bond-length data, see: Allen et al. (1987). For ring puckering analysis, see: Cremer & Pople (1975). For the stability of the temperature controller, see: Cosier & Glazer (1986).graphic file with name e-65-o1002-scheme1.jpg

Experimental

Crystal data

  • C10H18O5·H2O

  • M r = 236.26

  • Orthorhombic, Inline graphic

  • a = 8.5824 (1) Å

  • b = 9.2834 (1) Å

  • c = 14.6711 (2) Å

  • V = 1168.90 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 100 K

  • 0.50 × 0.27 × 0.27 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.947, T max = 0.971

  • 64045 measured reflections

  • 3449 independent reflections

  • 3337 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026

  • wR(F 2) = 0.073

  • S = 1.13

  • 3449 reflections

  • 161 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.31 e Å−3

  • Δρmin = −0.27 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809012689/is2405sup1.cif

e-65-o1002-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012689/is2405Isup2.hkl

e-65-o1002-Isup2.hkl (165.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H1O4⋯O1Wi 0.821 (9) 1.909 (9) 2.7140 (8) 166.4 (16)
O1W—H1W1⋯O4ii 0.834 (8) 1.921 (8) 2.7534 (8) 175.6 (14)
O1W—H2W1⋯O5iii 0.838 (8) 2.113 (11) 2.8294 (8) 143.3 (15)
C9—H9C⋯O3iv 0.96 2.51 3.4306 (9) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

HKF and SRJ thank the Malaysian Government and Universiti Sains Malaysia for the Science Fund grant No. 305/PFIZIK/613312. SRJ thanks Universiti Sains Malaysia for a post–doctoral research fellowship. HKF also thanks Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. AMI is grateful to the Head of the Department of Chemistry and the Director, NITK, Surathkal, India, for providing research facilities. SR thanks Dr Gautam Das, Syngene International Ltd, Bangalore, India, for allocation of research resources.

supplementary crystallographic information

Comment

Buttin has demonstrated that D-fucose (6-deoxy-D-galactose) is an effective gratuitous inducer of the galactose operon in Escherichia coli (Musso et al., 1963). 6-Deoxyhexose and its derivatives are important components of lipopolysaccharides in, amongst others, Vibrio cholerae O1 (Bilge et al., 1996), Brucella spc., Citrobacter freundii F90 (Villeneuve et al., 2000), Salmonella enterica O30, and Escherichia coli O157 (Wu & Mackenzie, 1987). Further investigation revealed that D-fucose derivatives are important component of a repeating pentasaccharide unit in O-chains of the LPS of Yersiniaenterocolitica (Caroff, Bundle & Perry, 1984) and Brucella abortus (Caroff, Bundle, Perry, Cherwonogrodzky & Dunch, 1984). These findings established a molecular basis for extensive serological cross-reactivity between the various antigenic LPSs. These observations prompted us to synthesize the title compound, (I). Herein we report the synthesis and the redetermination of the crystal structure of the title compound.

The title compund has been determined previously (Spiers. 1931), but no R-values were given. The asymmetric unit of (I) (Fig.1) comprises of one molecule of methyl 3,4-O-isopropylidene -β-D–fucopyranoside and a water molecule. The isopropylidene-fucopyranoside ring is non-planar with the maximum deviation from planarity of 0.6532 (6) Å for the atom C5. The fucopyranoside ring adopts the chair conformation with the puckering parameters Q = 0.5344 (6), θ = 20.15 (7)° and φ = 22.3 (2)° (Cremer & Pople, 1975). The bond lengths (Allen et al., 1987) and bond angles show normal values.

The crystal packing is stabilized by O—H···O and C—H···O hydrogen bonds to form infinite one dimensional chain along the [100] direction (Fig. 2). Short contacts of O···O = 2.2936 (8) Å; O···Oi = 2.7140 (8) Å; O···Oii = 2.7535 (8) Å & O···Oiii = 2.8293 (8) Å [symmetry codes: (i) x,1 + y,z; (ii) -1/2 + x,3/2 - y,-z & (iii) x,1 + y,z] are observed.

Experimental

The title compound was obtained by stirring a solution of 1,2,3,4 di-O-isopropylidene -α-D-fucopyranoside (0.5 g, 2.1 mmol) in dry methanol (5 ml). To this was added 3M solution of HCl in methanol (5 ml) at 0°C under nitrogen atmosphere. Further the reaction mixture was stirred at ambient temperature for 12 h. The reaction mixture was neutralized with solid sodium bicarbonate (1 g), concentrated, and residue was purified by flash column chromatography using 5% methanol in chloroform as eluent to get compound as foam-like solid which was taken in dry dimethylformamide (5 ml) and to this was added PTSA (Para Toluene Sulphonic Acid) (0.015 g, 2.0 mmol) and 2,2-dimethoxypropane (1.13 g,10 mmol). The mixture was further stirred at ambient temperature for 12 more hours. TLC (30% EtOAc/hexane,Rf-0.5) shows complete conversion of the starting materials. Reaction mixture was neutralized with triethylamine (2 ml) and concentrated under vacuum, residue was purified by column chromatography using 25% ethylacetate in pet ether to get a colourless liquid and the title compound as a white solid, which was recrystalized using hot acetone (yield 0.40 g, 85%; m.p. 328–330 K).

Refinement

H atoms were positioned geometrically [C–H = 0.96–0.98 Å] and refined using a riding model, with Uiso(H) = 1.2Ueq(C) and 1.5Ueq(methyl C). A rotating–group model was used for the methyl groups. The O-bound hydrogen atoms were located in a difference Fourier map and allowed to refine freely. Restraints were applied to fix the distance of O4—H = 0.82 (2) Å, O1W—H = 0.84 (2) Å and H1W1—H2W1 = 1.37 (4) Å. 2694 Friedel pairs were merged before final refinement as there is no large anomalous dispersion to determine the absolute configuration.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom numbering scheme.

Fig. 2.

Fig. 2.

The crystal packing of the title compound, viewed approximately along the c axis, showing an extended molecular chain along the a axis. Dashed lines indicate the hydrogen bondings.

Crystal data

C10H18O5·H2O F(000) = 512
Mr = 236.26 Dx = 1.343 Mg m3
Orthorhombic, P212121 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2ab Cell parameters from 9413 reflections
a = 8.5824 (1) Å θ = 2.8–41.6°
b = 9.2834 (1) Å µ = 0.11 mm1
c = 14.6711 (2) Å T = 100 K
V = 1168.90 (2) Å3 Block, colourless
Z = 4 0.50 × 0.27 × 0.27 mm

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3449 independent reflections
Radiation source: fine-focus sealed tube 3337 reflections with I > 2σ(I)
graphite Rint = 0.032
φ and ω scans θmax = 37.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −14→14
Tmin = 0.947, Tmax = 0.971 k = −15→15
64045 measured reflections l = −25→25

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.073 H atoms treated by a mixture of independent and constrained refinement
S = 1.13 w = 1/[σ2(Fo2) + (0.0439P)2 + 0.0731P] where P = (Fo2 + 2Fc2)/3
3449 reflections (Δ/σ)max = 0.001
161 parameters Δρmax = 0.31 e Å3
4 restraints Δρmin = −0.27 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat [Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107] operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.43844 (6) 0.76639 (5) 0.05482 (3) 0.01206 (8)
O2 0.46299 (6) 0.72835 (6) −0.14722 (3) 0.01333 (9)
O3 0.37807 (7) 0.95475 (6) −0.18528 (3) 0.01399 (9)
O4 0.34767 (7) 1.13634 (6) −0.01512 (4) 0.01634 (10)
O5 0.48979 (6) 0.97492 (6) 0.13084 (3) 0.01364 (9)
C1 0.38958 (8) 0.91139 (7) 0.06752 (4) 0.01172 (10)
H1A 0.2818 0.9145 0.0895 0.014*
C2 0.33053 (8) 0.68941 (7) −0.00168 (4) 0.01206 (10)
H2A 0.2268 0.6964 0.0259 0.014*
C3 0.32312 (8) 0.75401 (7) −0.09665 (4) 0.01172 (10)
H3A 0.2342 0.7132 −0.1296 0.014*
C4 0.46232 (8) 0.83123 (7) −0.21980 (4) 0.01328 (10)
C5 0.31314 (7) 0.91860 (7) −0.09849 (4) 0.01160 (10)
H5A 0.2038 0.9487 −0.0961 0.014*
C6 0.40456 (8) 0.99275 (7) −0.02236 (4) 0.01164 (10)
H6A 0.5148 0.9961 −0.0396 0.014*
C7 0.37798 (10) 0.77431 (9) −0.30350 (5) 0.01941 (13)
H7A 0.2738 0.7469 −0.2871 0.029*
H7B 0.4326 0.6920 −0.3269 0.029*
H7C 0.3742 0.8481 −0.3493 0.029*
C8 0.62911 (9) 0.87289 (9) −0.24007 (5) 0.01995 (13)
H8A 0.6795 0.9026 −0.1848 0.030*
H8B 0.6305 0.9508 −0.2831 0.030*
H8C 0.6833 0.7917 −0.2653 0.030*
C9 0.46504 (9) 0.92419 (8) 0.22239 (4) 0.01716 (12)
H9A 0.5330 0.9749 0.2633 0.026*
H9B 0.4870 0.8229 0.2253 0.026*
H9C 0.3587 0.9409 0.2396 0.026*
C10 0.37923 (9) 0.53235 (7) −0.00202 (5) 0.01627 (11)
H10A 0.3747 0.4950 0.0589 0.024*
H10B 0.4838 0.5243 −0.0247 0.024*
H10C 0.3101 0.4784 −0.0405 0.024*
O1W 0.57299 (7) 0.26179 (6) 0.08757 (4) 0.01852 (10)
H1O4 0.4072 (16) 1.1865 (15) 0.0151 (9) 0.032 (4)*
H1W1 0.6579 (13) 0.2881 (14) 0.0656 (9) 0.030 (4)*
H2W1 0.5836 (19) 0.1840 (12) 0.1158 (10) 0.041 (4)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.01237 (19) 0.01127 (17) 0.01255 (18) 0.00025 (15) −0.00175 (15) 0.00011 (15)
O2 0.01453 (19) 0.01320 (18) 0.01227 (18) 0.00295 (16) 0.00272 (15) 0.00221 (15)
O3 0.0180 (2) 0.01283 (19) 0.01116 (18) 0.00330 (17) 0.00186 (16) 0.00176 (15)
O4 0.0190 (2) 0.01123 (18) 0.0188 (2) 0.00316 (17) −0.00409 (18) −0.00123 (17)
O5 0.0155 (2) 0.0152 (2) 0.01031 (18) −0.00255 (16) −0.00114 (15) −0.00001 (15)
C1 0.0116 (2) 0.0122 (2) 0.0114 (2) 0.00024 (19) −0.00052 (18) −0.00035 (18)
C2 0.0118 (2) 0.0122 (2) 0.0122 (2) −0.00124 (18) −0.00016 (19) 0.00084 (18)
C3 0.0112 (2) 0.0126 (2) 0.0114 (2) −0.00007 (18) −0.00006 (18) 0.00028 (19)
C4 0.0146 (2) 0.0138 (2) 0.0114 (2) 0.0020 (2) 0.00107 (19) 0.00140 (19)
C5 0.0111 (2) 0.0127 (2) 0.0110 (2) 0.00160 (18) −0.00033 (18) 0.00072 (18)
C6 0.0119 (2) 0.0111 (2) 0.0119 (2) 0.00140 (17) −0.00036 (18) 0.00060 (18)
C7 0.0262 (3) 0.0196 (3) 0.0124 (2) 0.0016 (3) −0.0019 (2) −0.0015 (2)
C8 0.0159 (3) 0.0246 (3) 0.0193 (3) 0.0013 (2) 0.0040 (2) 0.0059 (3)
C9 0.0185 (3) 0.0222 (3) 0.0107 (2) −0.0003 (2) 0.0004 (2) 0.0003 (2)
C10 0.0199 (3) 0.0121 (2) 0.0169 (3) −0.0007 (2) −0.0002 (2) 0.0010 (2)
O1W 0.0186 (2) 0.0147 (2) 0.0223 (2) −0.00180 (18) −0.00014 (19) 0.00053 (19)

Geometric parameters (Å, °)

O1—C1 1.4222 (8) C4—C7 1.5202 (10)
O1—C2 1.4336 (8) C5—C6 1.5287 (9)
O2—C4 1.4304 (8) C5—H5A 0.9800
O2—C3 1.4311 (8) C6—H6A 0.9800
O3—C5 1.4299 (8) C7—H7A 0.9600
O3—C4 1.4472 (8) C7—H7B 0.9600
O4—C6 1.4236 (8) C7—H7C 0.9600
O4—H1O4 0.821 (9) C8—H8A 0.9600
O5—C1 1.3966 (8) C8—H8B 0.9600
O5—C9 1.4389 (8) C8—H8C 0.9600
C1—C6 1.5251 (9) C9—H9A 0.9600
C1—H1A 0.9800 C9—H9B 0.9600
C2—C10 1.5168 (10) C9—H9C 0.9600
C2—C3 1.5183 (9) C10—H10A 0.9600
C2—H2A 0.9800 C10—H10B 0.9600
C3—C5 1.5306 (9) C10—H10C 0.9600
C3—H3A 0.9800 O1W—H1W1 0.834 (8)
C4—C8 1.5123 (10) O1W—H2W1 0.838 (8)
C1—O1—C2 110.92 (5) C6—C5—H5A 109.7
C4—O2—C3 105.75 (5) C3—C5—H5A 109.7
C5—O3—C4 108.68 (5) O4—C6—C1 111.74 (5)
C6—O4—H1O4 111.0 (12) O4—C6—C5 107.46 (5)
C1—O5—C9 113.06 (5) C1—C6—C5 111.43 (5)
O5—C1—O1 107.78 (5) O4—C6—H6A 108.7
O5—C1—C6 108.30 (5) C1—C6—H6A 108.7
O1—C1—C6 109.30 (5) C5—C6—H6A 108.7
O5—C1—H1A 110.5 C4—C7—H7A 109.5
O1—C1—H1A 110.5 C4—C7—H7B 109.5
C6—C1—H1A 110.5 H7A—C7—H7B 109.5
O1—C2—C10 107.64 (5) C4—C7—H7C 109.5
O1—C2—C3 111.14 (5) H7A—C7—H7C 109.5
C10—C2—C3 112.84 (6) H7B—C7—H7C 109.5
O1—C2—H2A 108.4 C4—C8—H8A 109.5
C10—C2—H2A 108.4 C4—C8—H8B 109.5
C3—C2—H2A 108.4 H8A—C8—H8B 109.5
O2—C3—C2 112.02 (5) C4—C8—H8C 109.5
O2—C3—C5 101.77 (5) H8A—C8—H8C 109.5
C2—C3—C5 114.38 (5) H8B—C8—H8C 109.5
O2—C3—H3A 109.5 O5—C9—H9A 109.5
C2—C3—H3A 109.5 O5—C9—H9B 109.5
C5—C3—H3A 109.5 H9A—C9—H9B 109.5
O2—C4—O3 105.70 (5) O5—C9—H9C 109.5
O2—C4—C8 108.26 (6) H9A—C9—H9C 109.5
O3—C4—C8 109.83 (6) H9B—C9—H9C 109.5
O2—C4—C7 111.79 (6) C2—C10—H10A 109.5
O3—C4—C7 108.67 (6) C2—C10—H10B 109.5
C8—C4—C7 112.38 (6) H10A—C10—H10B 109.5
O3—C5—C6 110.18 (5) C2—C10—H10C 109.5
O3—C5—C3 103.19 (5) H10A—C10—H10C 109.5
C6—C5—C3 114.08 (5) H10B—C10—H10C 109.5
O3—C5—H5A 109.7 H1W1—O1W—H2W1 110.4 (12)
C9—O5—C1—O1 −72.50 (7) C5—O3—C4—C8 −123.77 (6)
C9—O5—C1—C6 169.36 (6) C5—O3—C4—C7 112.93 (6)
C2—O1—C1—O5 173.54 (5) C4—O3—C5—C6 106.03 (6)
C2—O1—C1—C6 −68.96 (6) C4—O3—C5—C3 −16.15 (7)
C1—O1—C2—C10 −172.91 (5) O2—C3—C5—O3 33.37 (6)
C1—O1—C2—C3 63.06 (7) C2—C3—C5—O3 154.36 (5)
C4—O2—C3—C2 −161.33 (5) O2—C3—C5—C6 −86.15 (6)
C4—O2—C3—C5 −38.71 (6) C2—C3—C5—C6 34.84 (8)
O1—C2—C3—O2 70.09 (7) O5—C1—C6—O4 −66.61 (7)
C10—C2—C3—O2 −50.94 (7) O1—C1—C6—O4 176.22 (5)
O1—C2—C3—C5 −45.05 (8) O5—C1—C6—C5 173.15 (5)
C10—C2—C3—C5 −166.08 (6) O1—C1—C6—C5 55.99 (7)
C3—O2—C4—O3 29.57 (7) O3—C5—C6—O4 82.09 (6)
C3—O2—C4—C8 147.20 (6) C3—C5—C6—O4 −162.42 (5)
C3—O2—C4—C7 −88.49 (7) O3—C5—C6—C1 −155.19 (5)
C5—O3—C4—O2 −7.19 (7) C3—C5—C6—C1 −39.69 (8)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O4—H1O4···O1Wi 0.82 (1) 1.91 (1) 2.7140 (8) 166 (2)
O1W—H1W1···O4ii 0.83 (1) 1.92 (1) 2.7534 (8) 176 (1)
O1W—H2W1···O5iii 0.84 (1) 2.11 (1) 2.8294 (8) 143 (2)
C9—H9C···O3iv 0.96 2.51 3.4306 (9) 162

Symmetry codes: (i) x, y+1, z; (ii) x+1/2, −y+3/2, −z; (iii) x, y−1, z; (iv) −x+1/2, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2405).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bilge, S. S., Vary, J. C., Dowell, S. F. & Tarr, P. I. (1996). Infect. Immun.64, 4795–4801. [DOI] [PMC free article] [PubMed]
  3. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Caroff, M., Bundle, D. R. & Perry, M. B. (1984). Eur. J. Biochem.139, 195–200. [DOI] [PubMed]
  5. Caroff, M., Bundle, D. R., Perry, M. B., Cherwonogrodzky, J. W. & Dunch, J. R. (1984). Infect. Immun.46, 384–391. [DOI] [PMC free article] [PubMed]
  6. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  7. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  8. Musso, R., Di Lauro, R., Rosenberg, M. & de Crombrugghe, B. (1963). J. Mol. Biol.7, 164–182.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Spiers, Y. (1931). Z. Kristallogr. Kristallgeom. Kristallphys. Kristallchem.78, 101.
  12. Villeneuve, S., Souchon, H., Riottot, M. M., Mazie, J. C., Lei, P., Glaudemans, C. P., Kovac, P., Fournier, J. M. & Alzari, P. M. (2000). Proc. Natl. Acad. Sci. USA, pp. 8433–8438. [DOI] [PMC free article] [PubMed]
  13. Wu, A. M. & Mackenzie, N. E. (1987). Mol. Cell. Biochem.75, 103–111. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809012689/is2405sup1.cif

e-65-o1002-sup1.cif (18.6KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012689/is2405Isup2.hkl

e-65-o1002-Isup2.hkl (165.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES