Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 8;65(Pt 5):o1011. doi: 10.1107/S1600536809012999

2-[(E)-3-Phenyl­prop-2-en­yl]-1,2-benzisothia­zol-3(2H)-one 1,1-dioxide

Muhammad Nadeem Arshad a, Hafiz Mubashar-ur-Rehman a, Muhammad Zia-ur-Rehman b, Islam Ullah Khan a,*, Muhammad Shafique a
PMCID: PMC2977698  PMID: 21583834

Abstract

In the crystal structure of the title compound, C16H13NO3S, the benzisothia­zole group is almost planar (r.m.s. deviation for all non-H atoms excluding the two O atoms bonded to S = 0.009 Å). The dihedral angle between the fused ring and the terminal ring is 13.8 (1)°. In the crystal, mol­ecules are linked through inter­molecular C—H⋯O contacts forming a chain of mol­ecules along b.

Related literature

For the synthesis of benzothia­zine and benzisothia­zol derivatives, see: Zia-ur-Rehman et al. (2006, 2009); Siddiqui et al. (2008). For the biological activity of benzisothia­zols, see: Kapui et al. (2003); Liang et al. (2006). For related structures, see: Siddiqui et al. (2006, 2007a ,b ,c ).graphic file with name e-65-o1011-scheme1.jpg

Experimental

Crystal data

  • C16H13NO3S

  • M r = 299.33

  • Monoclinic, Inline graphic

  • a = 6.9375 (5) Å

  • b = 7.1579 (4) Å

  • c = 29.673 (2) Å

  • β = 96.160 (4)°

  • V = 1464.99 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.39 × 0.11 × 0.10 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: none

  • 8250 measured reflections

  • 3606 independent reflections

  • 1722 reflections with I > 2σ(I)

  • R int = 0.034

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051

  • wR(F 2) = 0.178

  • S = 0.96

  • 3606 reflections

  • 190 parameters

  • H-atom parameters constrained

  • Δρmax = 0.32 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SMART (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and local programs.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809012999/bt2924sup1.cif

e-65-o1011-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012999/bt2924Isup2.hkl

e-65-o1011-Isup2.hkl (176.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C2—H2⋯O1i 0.93 2.29 3.174 (4) 158

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are grateful to the Higher Education Commission of Pakistan for a grant for the purchase of diffractometer.

supplementary crystallographic information

Comment

Benzisothiazolone-1,1-dioxide and its various derivatives are well known as biologically active compounds e.g., saccharin has been identified as an important molecular component in various classes of 5-HTla antagonists, analgesics and human mast cell tryptase inhibitors (Liang et al., 2006). Few of its derivatives are considered to be the most potent orally active human leucocyte elastase (HLE) inhibitors for the treatment ofchronic obstructive pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), cystic fibrosis, asthma and other inflammatory diseases (Kapui et al., 2003). Its N-alkyl derivatives have been successfully transformed to non-steroidal anti-inflammatory drugs e.g., piroxicam (Zia-ur-Rehman et al., 2006).

In continuation to our research on the synthesis of 1,2-benzothiazine 1,1-dioxide derivatives (Zia-ur-Rehman et al., 2009; Zia-ur-Rehman et al., 2006), we have in addtion, worked on the synthesis of benzisothiazole derivatives (Siddiqui et al., 2006; Siddiqui et al., 2008). Herein, crystal structure of the title compound (I) is described. The benzisothiazole moiety is exactly planar.The molecular dimensions are in accord with the corresponding dimensions reported in similar structures (Siddiqui et al., 2007a-c). Each molecule is linked to its adjacent one through C—H···O contacts forming a chain of molecules along b.

Experimental

A mixture of 2,3-dihydro-1,2-benzisothiazol-3-one-1,1-dioxide (1.83 g, 10.0 mmoles), dimethyl formamide (5.0 ml) and cinnamyl chloride (1.67 g, 10.0 mmoles) was stirred for a period of three hours at 90°C. Contents were cooled to room temperature; poured over crushed ice to get white coloured precipitates which were filtered, washed and dried. Crystallization of the white precipitates (in methanol) afforded suitable crystals for X-ray studies after recrystalization in methanol.

Refinement

H atoms bound to C were placed in geometric positions (C—H distance = 0.93 to 0.96 Å) using a riding model with Uiso(H) = 1.2 Ueq(C) or Uiso(H) = 1.5 Ueq(C methyl).

Figures

Fig. 1.

Fig. 1.

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Perspective view of the crystal packing showing inter molecular C—H···O interactions (dashed lines). H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C16H13NO3S F(000) = 624
Mr = 299.33 Dx = 1.357 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1453 reflections
a = 6.9375 (5) Å θ = 2.8–20.7°
b = 7.1579 (4) Å µ = 0.23 mm1
c = 29.673 (2) Å T = 296 K
β = 96.160 (4)° Needles, white
V = 1464.99 (17) Å3 0.39 × 0.11 × 0.10 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer 1722 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.034
graphite θmax = 28.3°, θmin = 1.4°
φ and ω scans h = −9→8
8250 measured reflections k = −8→9
3606 independent reflections l = −35→39

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178 H-atom parameters constrained
S = 0.96 w = 1/[σ2(Fo2) + (0.0875P)2] where P = (Fo2 + 2Fc2)/3
3606 reflections (Δ/σ)max < 0.001
190 parameters Δρmax = 0.32 e Å3
0 restraints Δρmin = −0.40 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.25184 (11) −0.21860 (10) 0.08353 (3) 0.0673 (3)
O1 0.2457 (3) 0.2827 (3) 0.05026 (8) 0.0871 (7)
O2 0.4314 (3) −0.2892 (3) 0.10446 (8) 0.0937 (8)
O3 0.0787 (3) −0.2970 (3) 0.09666 (7) 0.0909 (7)
N1 0.2464 (3) 0.0118 (3) 0.09024 (7) 0.0634 (6)
C1 0.2500 (4) −0.1992 (4) 0.02512 (9) 0.0552 (7)
C2 0.2505 (4) −0.3412 (4) −0.00625 (12) 0.0800 (9)
H2 0.2512 −0.4661 0.0025 0.096*
C3 0.2499 (5) −0.2902 (6) −0.05133 (12) 0.0914 (11)
H3 0.2495 −0.3827 −0.0733 0.110*
C4 0.2498 (4) −0.1074 (6) −0.06412 (11) 0.0805 (9)
H4 0.2496 −0.0775 −0.0946 0.097*
C5 0.2501 (4) 0.0333 (5) −0.03269 (10) 0.0654 (8)
H5 0.2500 0.1578 −0.0416 0.078*
C6 0.2506 (3) −0.0140 (4) 0.01241 (8) 0.0532 (6)
C7 0.2488 (4) 0.1141 (4) 0.05129 (10) 0.0609 (7)
C8 0.2380 (4) 0.0994 (5) 0.13459 (10) 0.0799 (9)
H8A 0.1591 0.0230 0.1524 0.096*
H8B 0.1762 0.2206 0.1304 0.096*
C9 0.4368 (4) 0.1238 (5) 0.16027 (10) 0.0735 (8)
H9 0.4949 0.0193 0.1746 0.088*
C10 0.5312 (5) 0.2786 (4) 0.16377 (9) 0.0700 (8)
H10 0.4704 0.3826 0.1499 0.084*
C11 0.7266 (4) 0.3074 (4) 0.18770 (9) 0.0603 (7)
C12 0.8373 (5) 0.4574 (4) 0.17645 (9) 0.0768 (9)
H12 0.7871 0.5416 0.1544 0.092*
C13 1.0228 (5) 0.4829 (5) 0.19796 (11) 0.0834 (10)
H13 1.0982 0.5821 0.1897 0.100*
C14 1.0949 (5) 0.3626 (5) 0.23127 (12) 0.0838 (10)
H14 1.2193 0.3801 0.2457 0.101*
C15 0.9854 (5) 0.2174 (5) 0.24335 (11) 0.0799 (9)
H15 1.0337 0.1375 0.2666 0.096*
C16 0.8052 (5) 0.1884 (4) 0.22158 (10) 0.0745 (9)
H16 0.7332 0.0865 0.2296 0.089*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0771 (6) 0.0647 (5) 0.0584 (5) 0.0005 (4) −0.0004 (4) 0.0158 (4)
O1 0.1019 (17) 0.0544 (13) 0.1044 (19) 0.0035 (11) 0.0083 (13) 0.0060 (11)
O2 0.1041 (17) 0.0869 (15) 0.0828 (16) 0.0187 (12) −0.0234 (13) 0.0209 (12)
O3 0.1006 (17) 0.0970 (17) 0.0785 (16) −0.0211 (12) 0.0253 (13) 0.0253 (12)
N1 0.0710 (15) 0.0670 (15) 0.0509 (14) 0.0007 (11) 0.0009 (11) 0.0008 (11)
C1 0.0510 (15) 0.0568 (16) 0.0570 (16) −0.0012 (11) 0.0015 (13) 0.0099 (13)
C2 0.098 (2) 0.0619 (19) 0.080 (2) −0.0007 (16) 0.0071 (19) −0.0011 (17)
C3 0.104 (3) 0.107 (3) 0.064 (2) 0.004 (2) 0.013 (2) −0.014 (2)
C4 0.067 (2) 0.113 (3) 0.062 (2) 0.0019 (18) 0.0115 (16) 0.012 (2)
C5 0.0494 (16) 0.081 (2) 0.0669 (19) 0.0027 (14) 0.0093 (14) 0.0217 (17)
C6 0.0398 (14) 0.0625 (17) 0.0572 (16) 0.0007 (11) 0.0043 (12) 0.0131 (13)
C7 0.0500 (16) 0.0592 (19) 0.073 (2) 0.0009 (12) 0.0023 (14) 0.0112 (15)
C8 0.072 (2) 0.100 (2) 0.068 (2) −0.0014 (17) 0.0060 (16) −0.0131 (17)
C9 0.082 (2) 0.079 (2) 0.0603 (19) 0.0036 (17) 0.0112 (16) 0.0005 (15)
C10 0.084 (2) 0.074 (2) 0.0532 (18) 0.0113 (17) 0.0096 (16) 0.0003 (14)
C11 0.0657 (18) 0.0722 (19) 0.0438 (15) 0.0036 (14) 0.0103 (14) −0.0014 (13)
C12 0.106 (3) 0.076 (2) 0.0497 (17) −0.0063 (18) 0.0141 (17) 0.0012 (15)
C13 0.100 (3) 0.089 (2) 0.065 (2) −0.0285 (19) 0.0236 (19) −0.0086 (18)
C14 0.067 (2) 0.115 (3) 0.069 (2) −0.0069 (19) 0.0076 (17) −0.012 (2)
C15 0.073 (2) 0.095 (2) 0.070 (2) 0.0056 (18) 0.0020 (18) 0.0096 (18)
C16 0.073 (2) 0.078 (2) 0.072 (2) −0.0025 (15) 0.0068 (17) 0.0110 (16)

Geometric parameters (Å, °)

S1—O3 1.418 (2) C8—C9 1.512 (4)
S1—O2 1.424 (2) C8—H8A 0.9700
S1—N1 1.662 (2) C8—H8B 0.9700
S1—C1 1.738 (3) C9—C10 1.286 (4)
O1—C7 1.207 (3) C9—H9 0.9300
N1—C7 1.370 (3) C10—C11 1.476 (4)
N1—C8 1.464 (3) C10—H10 0.9300
C1—C6 1.378 (3) C11—C12 1.382 (4)
C1—C2 1.378 (4) C11—C16 1.384 (4)
C2—C3 1.387 (4) C12—C13 1.386 (4)
C2—H2 0.9300 C12—H12 0.9300
C3—C4 1.362 (5) C13—C14 1.365 (4)
C3—H3 0.9300 C13—H13 0.9300
C4—C5 1.372 (4) C14—C15 1.358 (4)
C4—H4 0.9300 C14—H14 0.9300
C5—C6 1.380 (3) C15—C16 1.360 (4)
C5—H5 0.9300 C15—H15 0.9300
C6—C7 1.475 (4) C16—H16 0.9300
O3—S1—O2 117.84 (14) N1—C8—C9 112.4 (2)
O3—S1—N1 109.21 (13) N1—C8—H8A 109.1
O2—S1—N1 109.29 (12) C9—C8—H8A 109.1
O3—S1—C1 112.95 (13) N1—C8—H8B 109.1
O2—S1—C1 112.08 (14) C9—C8—H8B 109.1
N1—S1—C1 92.43 (12) H8A—C8—H8B 107.9
C7—N1—C8 122.3 (3) C10—C9—C8 124.7 (3)
C7—N1—S1 115.28 (19) C10—C9—H9 117.7
C8—N1—S1 122.4 (2) C8—C9—H9 117.7
C6—C1—C2 121.6 (3) C9—C10—C11 126.3 (3)
C6—C1—S1 110.5 (2) C9—C10—H10 116.8
C2—C1—S1 127.9 (2) C11—C10—H10 116.8
C1—C2—C3 117.2 (3) C12—C11—C16 117.9 (3)
C1—C2—H2 121.4 C12—C11—C10 119.8 (3)
C3—C2—H2 121.4 C16—C11—C10 122.3 (3)
C4—C3—C2 121.5 (3) C11—C12—C13 120.3 (3)
C4—C3—H3 119.3 C11—C12—H12 119.9
C2—C3—H3 119.3 C13—C12—H12 119.9
C3—C4—C5 121.0 (3) C14—C13—C12 120.0 (3)
C3—C4—H4 119.5 C14—C13—H13 120.0
C5—C4—H4 119.5 C12—C13—H13 120.0
C4—C5—C6 118.6 (3) C15—C14—C13 120.1 (3)
C4—C5—H5 120.7 C15—C14—H14 119.9
C6—C5—H5 120.7 C13—C14—H14 119.9
C1—C6—C5 120.1 (3) C14—C15—C16 120.2 (3)
C1—C6—C7 112.6 (2) C14—C15—H15 119.9
C5—C6—C7 127.3 (3) C16—C15—H15 119.9
O1—C7—N1 123.6 (3) C15—C16—C11 121.5 (3)
O1—C7—C6 127.1 (3) C15—C16—H16 119.3
N1—C7—C6 109.2 (2) C11—C16—H16 119.3
O3—S1—N1—C7 −117.2 (2) C8—N1—C7—O1 0.6 (4)
O2—S1—N1—C7 112.6 (2) S1—N1—C7—O1 −179.9 (2)
C1—S1—N1—C7 −1.9 (2) C8—N1—C7—C6 −178.0 (2)
O3—S1—N1—C8 62.3 (2) S1—N1—C7—C6 1.5 (3)
O2—S1—N1—C8 −67.9 (2) C1—C6—C7—O1 −178.7 (3)
C1—S1—N1—C8 177.7 (2) C5—C6—C7—O1 0.4 (4)
O3—S1—C1—C6 113.7 (2) C1—C6—C7—N1 −0.2 (3)
O2—S1—C1—C6 −110.3 (2) C5—C6—C7—N1 178.9 (2)
N1—S1—C1—C6 1.6 (2) C7—N1—C8—C9 −94.9 (3)
O3—S1—C1—C2 −67.1 (3) S1—N1—C8—C9 85.6 (3)
O2—S1—C1—C2 68.9 (3) N1—C8—C9—C10 101.9 (4)
N1—S1—C1—C2 −179.2 (3) C8—C9—C10—C11 −178.7 (3)
C6—C1—C2—C3 −0.5 (4) C9—C10—C11—C12 157.8 (3)
S1—C1—C2—C3 −179.6 (2) C9—C10—C11—C16 −22.3 (5)
C1—C2—C3—C4 0.3 (5) C16—C11—C12—C13 1.6 (4)
C2—C3—C4—C5 −0.1 (5) C10—C11—C12—C13 −178.4 (3)
C3—C4—C5—C6 0.0 (4) C11—C12—C13—C14 −1.8 (5)
C2—C1—C6—C5 0.5 (4) C12—C13—C14—C15 0.1 (5)
S1—C1—C6—C5 179.73 (19) C13—C14—C15—C16 1.6 (5)
C2—C1—C6—C7 179.7 (2) C14—C15—C16—C11 −1.8 (5)
S1—C1—C6—C7 −1.1 (3) C12—C11—C16—C15 0.1 (4)
C4—C5—C6—C1 −0.2 (4) C10—C11—C16—C15 −179.8 (3)
C4—C5—C6—C7 −179.3 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C2—H2···O1i 0.93 2.29 3.174 (4) 158

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT2924).

References

  1. Bruker (2007). APEX2, SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Kapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther.305, 1–9. [DOI] [PubMed]
  3. Liang, X., Hong, S., Ying, L., Suhong, Z. & Mark, L. T. (2006). Tetrahedron, 62, 7902–7910.
  4. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Siddiqui, W. A., Ahmad, S., Siddiqui, H. L. & Parvez, M. (2008). Acta Cryst E64, o724. [DOI] [PMC free article] [PubMed]
  7. Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007a). Acta Cryst. E63, o4001.
  8. Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007b). Acta Cryst. E63, o4117.
  9. Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007c). Acta Cryst. E63, o4585.
  10. Siddiqui, W. A., Ahmad, S., Ullah, I. & Malik, A. (2006). J. Chem. Soc. Pak 28, 583–589.
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Zia-ur-Rehman, M., Anwar, J., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull.54, 1175–1178. [DOI] [PubMed]
  13. Zia-ur-Rehman, M., Choudary, J. A., Elsegood, M. R. J., Siddiqui, H. L. & Khan, K. M. (2009). Eur. J. Med. Chem 44, 1311–1316. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809012999/bt2924sup1.cif

e-65-o1011-sup1.cif (18.4KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012999/bt2924Isup2.hkl

e-65-o1011-Isup2.hkl (176.8KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES