Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 10;65(Pt 5):o1013. doi: 10.1107/S1600536809012574

2,6-Bis(1H-benzimidazol­-2-yl)pyridine methanol trisolvate

Ying Chen a, Jixi Guo b, Xingcai Huang a, Ruirui Yun a, Huilu Wu a,*
PMCID: PMC2977700  PMID: 21583836

Abstract

In the title compound, C19H13N5·3CH4O, the 2,6-bis­(2-benzimidazol­yl)pyridine mol­ecule is essentially planar with an r.m.s. deviation for all non-H atoms of 0.185 Å. The crystal structure is stabilized by inter­molecular O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds and weak π⋯π stacking inter­actions with centroid–centroid distances of 3.6675 (16) and 3.6891 (15) Å. The atoms of one of the methanol solvent molecules are disordered over two sites with refined occupancies of 0.606(8) and 0.394(8).

Related literature

For the crystal structures of the mono- and sesquihydrate analogs of 2,6-bis­(2-benzimidazol­yl)pyridine, see: Freire et al. (2003). For the synthesis of 2,6-bis­(2-benzimidazol­yl)pyridine, see: Addison & Burke (1981).graphic file with name e-65-o1013-scheme1.jpg

Experimental

Crystal data

  • C19H13N5·3CH4O

  • M r = 407.47

  • Monoclinic, Inline graphic

  • a = 11.2686 (9) Å

  • b = 15.0928 (13) Å

  • c = 13.0679 (11) Å

  • β = 107.391 (2)°

  • V = 2120.9 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 153 K

  • 0.18 × 0.14 × 0.11 mm

Data collection

  • Rigaku R-AXIS Spider diffractometer

  • Absorption correction: multi-scan (Higashi, 1995) T min = 0.984, T max = 0.990

  • 17035 measured reflections

  • 3945 independent reflections

  • 2527 reflections with I > 2σ(I)

  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.077

  • wR(F 2) = 0.236

  • S = 1.04

  • 3945 reflections

  • 307 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.39 e Å−3

  • Δρmin = −0.40 e Å−3

Data collection: RAPID-AUTO (Rigaku/MSC 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809012574/lh2799sup1.cif

e-65-o1013-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012574/lh2799Isup2.hkl

e-65-o1013-Isup2.hkl (193.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.83 2.670 (3) 176
O2—H2⋯N4 0.84 1.91 2.741 (3) 168
N1—H1N⋯O1 0.866 (10) 2.069 (12) 2.927 (3) 171 (3)
N3—H3N⋯O1 0.863 (10) 2.069 (12) 2.925 (3) 171 (4)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors acknowledge financial support and a grant from ‘Qing Lan’ Talent Engineering Funds and Students’ Science and Technology Innovation Funds (grant No. DXS2008–040,041) of Lanzhou Jiaotong University. A grant from the Middle-Young Age Science Foundation (grant No. 3YS061-A25–023) and Long Yuan ‘Qing Nian’ of Gansu Province is also acknowledged.

supplementary crystallographic information

Comment

The synthesis of 2,6-bis(2-benzimidazolyl)pyridine has been reported in the literature (Addison & Burke 1981) and the crystal structures of the mono and sesqihydrates of this compound have been determined (Freire et al., 2003). During our studies of benzimidazole complexes involving a recrystallization of 2,6-bis(2-benzimidazolyl)pyridine from methanol we unexpectedly form the trimethanol solvate (I).

The molecular structure of the 2,6-bis(2-benzimidazolyl)pyridine molecule is shown in Fig. 1. The molecule is essentially planar with a rms deviation of all non-hydrogen fitted atoms = 0.185. The crystal structure is stabilized by intermolecular hydrogen bonds (see Table 1) and weak π···π stacking interactions (Fig. 2) with, centroid to centroid distances of 3.6675 (16) and 3.6891 (15)Å, between pryridine rings and benzimidazole rings of inversion related molecules.

Experimental

2,6-bis(2-benzimidazolyl)pyridine was prepared by the method of Addison & Burke (1981). After recrystallization from methanol, fine white needles were formed. The mother liquor was set aside for several days leading to the formation of crystals that were suitable for X-ray diffraction analysis.

Refinement

All H atoms were found in difference electron maps and were subsequently refined in a riding-model approximation with C—H distances ranging from 0.95 to 0.98 Å and with Uiso(H) = 1.2 Ueq(C) for CH and Uiso(H) = 1.2 Ueq(O) for OH. H atoms bonded to N atoms were refined independently with isotropic displacement parameters. The atoms of one methanol solvent molecule is disordered over two sites with refined occupancies of 0.606 (8) and 0.394 (8).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms and solvent molecules have been omitted for clarity.

Fig. 2.

Fig. 2.

Part of the crystal structure showing weak π···π stacking interactions. The solvent molecules are not shown

Crystal data

C19H13N5·3CH4O F(000) = 864
Mr = 407.47 Dx = 1.276 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3945 reflections
a = 11.2686 (9) Å θ = 3.2–25.5°
b = 15.0928 (13) Å µ = 0.09 mm1
c = 13.0679 (11) Å T = 153 K
β = 107.391 (2)° Block, colorless
V = 2120.9 (3) Å3 0.18 × 0.14 × 0.11 mm
Z = 4

Data collection

Rigaku R-AXIS Spider diffractometer 3945 independent reflections
Radiation source: fine-focus sealed tube 2527 reflections with I > 2σ(I)
graphite Rint = 0.071
φ and ω scans θmax = 25.5°, θmin = 3.2°
Absorption correction: multi-scan (Higashi, 1995) h = −13→11
Tmin = 0.984, Tmax = 0.990 k = −18→18
17035 measured reflections l = −15→15

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.077 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.236 w = 1/[σ2(Fo2) + (0.1505P)2] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max = 0.002
3945 reflections Δρmax = 0.39 e Å3
307 parameters Δρmin = −0.40 e Å3
2 restraints Extinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.040 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.20534 (18) 0.61337 (13) 0.36351 (15) 0.0631 (6)
H1 0.2509 0.6582 0.3816 0.076*
O2 0.65988 (19) 0.23950 (14) 0.57774 (17) 0.0704 (6)
H2 0.6009 0.2626 0.5299 0.084*
N1 0.11042 (19) 0.58598 (15) 0.54657 (17) 0.0477 (6)
N2 0.0754 (2) 0.53929 (15) 0.69788 (17) 0.0517 (6)
N3 0.3694 (2) 0.46017 (15) 0.38227 (18) 0.0510 (6)
N4 0.4825 (2) 0.33787 (15) 0.43304 (18) 0.0536 (6)
N5 0.27120 (19) 0.45211 (14) 0.54781 (16) 0.0492 (6)
C1 0.0280 (2) 0.64631 (18) 0.5671 (2) 0.0498 (7)
C2 −0.0274 (2) 0.72243 (19) 0.5148 (2) 0.0558 (7)
H2A −0.0109 0.7432 0.4518 0.067*
C3 −0.1076 (3) 0.7667 (2) 0.5589 (2) 0.0609 (8)
H3 −0.1476 0.8191 0.5254 0.073*
C4 −0.1313 (3) 0.7359 (2) 0.6519 (2) 0.0615 (8)
H4 −0.1875 0.7680 0.6795 0.074*
C5 −0.0761 (2) 0.6613 (2) 0.7043 (2) 0.0558 (7)
H5 −0.0930 0.6411 0.7674 0.067*
C6 0.0060 (2) 0.61602 (18) 0.6613 (2) 0.0500 (7)
C7 0.1350 (2) 0.52423 (17) 0.6263 (2) 0.0479 (6)
C8 0.2211 (2) 0.45155 (17) 0.62863 (19) 0.0467 (7)
C9 0.2477 (2) 0.38735 (18) 0.7084 (2) 0.0513 (7)
H9 0.2096 0.3888 0.7641 0.062*
C10 0.3312 (2) 0.32126 (18) 0.7045 (2) 0.0536 (7)
H10 0.3520 0.2767 0.7582 0.064*
C11 0.3837 (2) 0.32049 (18) 0.6221 (2) 0.0529 (7)
H11 0.4411 0.2755 0.6181 0.063*
C12 0.3512 (2) 0.38721 (17) 0.5444 (2) 0.0471 (7)
C13 0.4022 (2) 0.39322 (17) 0.4542 (2) 0.0480 (7)
C14 0.5051 (2) 0.37188 (19) 0.3421 (2) 0.0539 (7)
C15 0.5848 (3) 0.3422 (2) 0.2854 (2) 0.0656 (8)
H15 0.6334 0.2901 0.3066 0.079*
C16 0.5905 (3) 0.3906 (2) 0.1981 (3) 0.0695 (9)
H16 0.6442 0.3717 0.1584 0.083*
C17 0.5188 (3) 0.4674 (2) 0.1662 (2) 0.0713 (9)
H17 0.5244 0.4990 0.1049 0.086*
C18 0.4406 (3) 0.4980 (2) 0.2211 (2) 0.0616 (8)
H18 0.3930 0.5504 0.1999 0.074*
C19 0.4344 (2) 0.44882 (18) 0.3089 (2) 0.0531 (7)
C20 0.1118 (3) 0.6305 (3) 0.2645 (3) 0.0789 (10)
H20A 0.0453 0.6661 0.2780 0.095*
H20B 0.0773 0.5742 0.2312 0.095*
H20C 0.1484 0.6628 0.2163 0.095*
C21 0.7174 (4) 0.1739 (3) 0.5314 (4) 0.0958 (12)
H21A 0.7639 0.2025 0.4879 0.115*
H21B 0.6536 0.1350 0.4858 0.115*
H21C 0.7745 0.1389 0.5883 0.115*
O3 0.1278 (5) 0.5658 (3) 0.9743 (4) 0.094 (2) 0.606 (8)
H3A 0.1412 0.5425 1.0350 0.112* 0.606 (8)
C22 0.2186 (8) 0.5366 (7) 0.9269 (9) 0.0521 (19) 0.606 (8)
H22A 0.2730 0.5862 0.9227 0.062* 0.606 (8)
H22B 0.1774 0.5142 0.8547 0.062* 0.606 (8)
H22C 0.2681 0.4892 0.9707 0.062* 0.606 (8)
O3' 0.0859 (9) 0.4916 (6) 0.8986 (6) 0.118 (4) 0.394 (8)
H3' 0.0325 0.5092 0.9272 0.141* 0.394 (8)
C22' 0.1816 (12) 0.5468 (13) 0.9232 (18) 0.078 (5) 0.394 (8)
H22D 0.1522 0.6072 0.9022 0.094* 0.394 (8)
H22E 0.2405 0.5293 0.8848 0.094* 0.394 (8)
H22F 0.2230 0.5449 1.0006 0.094* 0.394 (8)
H1N 0.144 (3) 0.589 (2) 0.4954 (17) 0.075 (10)*
H3N 0.316 (3) 0.5018 (17) 0.380 (3) 0.095 (12)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0689 (13) 0.0565 (13) 0.0638 (13) 0.0040 (9) 0.0197 (10) 0.0078 (9)
O2 0.0655 (13) 0.0665 (14) 0.0811 (15) 0.0113 (10) 0.0249 (11) 0.0109 (11)
N1 0.0473 (12) 0.0518 (13) 0.0463 (12) 0.0027 (10) 0.0175 (10) 0.0002 (10)
N2 0.0524 (12) 0.0558 (14) 0.0479 (12) −0.0030 (10) 0.0164 (10) −0.0030 (10)
N3 0.0535 (13) 0.0505 (14) 0.0516 (13) −0.0013 (10) 0.0196 (10) −0.0001 (10)
N4 0.0559 (13) 0.0514 (14) 0.0553 (13) −0.0005 (10) 0.0194 (10) −0.0041 (10)
N5 0.0515 (12) 0.0491 (13) 0.0443 (12) −0.0018 (10) 0.0104 (10) −0.0040 (9)
C1 0.0490 (14) 0.0486 (15) 0.0505 (14) −0.0026 (12) 0.0130 (11) −0.0065 (12)
C2 0.0579 (15) 0.0553 (17) 0.0534 (15) 0.0034 (13) 0.0154 (13) 0.0005 (13)
C3 0.0564 (16) 0.0600 (18) 0.0634 (17) 0.0060 (13) 0.0134 (14) −0.0076 (14)
C4 0.0529 (15) 0.067 (2) 0.0655 (18) 0.0034 (14) 0.0188 (14) −0.0138 (15)
C5 0.0523 (15) 0.0639 (19) 0.0538 (15) −0.0056 (13) 0.0195 (12) −0.0095 (13)
C6 0.0464 (13) 0.0524 (16) 0.0508 (14) −0.0025 (12) 0.0140 (11) −0.0058 (12)
C7 0.0495 (14) 0.0462 (15) 0.0470 (14) −0.0030 (11) 0.0130 (11) −0.0019 (11)
C8 0.0474 (14) 0.0469 (15) 0.0446 (13) −0.0029 (11) 0.0119 (11) −0.0032 (11)
C9 0.0551 (15) 0.0542 (17) 0.0440 (14) −0.0031 (12) 0.0136 (12) 0.0031 (11)
C10 0.0587 (16) 0.0499 (16) 0.0518 (15) 0.0000 (12) 0.0159 (13) 0.0066 (12)
C11 0.0517 (15) 0.0486 (16) 0.0548 (15) 0.0031 (12) 0.0106 (12) 0.0008 (12)
C12 0.0474 (14) 0.0437 (15) 0.0480 (14) −0.0022 (11) 0.0108 (11) −0.0047 (11)
C13 0.0478 (14) 0.0440 (15) 0.0515 (14) −0.0022 (11) 0.0140 (11) −0.0038 (11)
C14 0.0536 (15) 0.0539 (17) 0.0570 (16) −0.0096 (12) 0.0211 (13) −0.0116 (13)
C15 0.0624 (17) 0.068 (2) 0.0706 (19) −0.0118 (15) 0.0260 (15) −0.0182 (16)
C16 0.0716 (19) 0.076 (2) 0.070 (2) −0.0209 (17) 0.0358 (16) −0.0247 (17)
C17 0.081 (2) 0.082 (2) 0.0552 (17) −0.0275 (18) 0.0271 (16) −0.0105 (16)
C18 0.0663 (17) 0.0607 (19) 0.0588 (16) −0.0094 (14) 0.0202 (14) −0.0025 (14)
C19 0.0548 (15) 0.0552 (17) 0.0486 (15) −0.0087 (12) 0.0145 (12) −0.0072 (12)
C20 0.073 (2) 0.091 (3) 0.070 (2) −0.0099 (18) 0.0166 (17) 0.0182 (18)
C21 0.087 (2) 0.073 (3) 0.131 (3) 0.0229 (19) 0.037 (2) 0.005 (2)
O3 0.106 (4) 0.102 (4) 0.070 (3) −0.012 (3) 0.021 (3) 0.001 (2)
C22 0.024 (4) 0.086 (5) 0.050 (3) 0.011 (3) 0.016 (4) 0.010 (3)
O3' 0.130 (8) 0.127 (7) 0.088 (5) −0.044 (6) 0.020 (5) 0.001 (5)
C22' 0.021 (7) 0.147 (13) 0.070 (7) 0.039 (7) 0.019 (6) 0.000 (6)

Geometric parameters (Å, °)

O1—C20 1.427 (3) C10—H10 0.9500
O1—H1 0.8400 C11—C12 1.399 (4)
O2—C21 1.415 (4) C11—H11 0.9500
O2—H2 0.8400 C12—C13 1.460 (4)
N1—C7 1.363 (3) C14—C15 1.398 (4)
N1—C1 1.383 (3) C14—C19 1.402 (4)
N1—H1N 0.866 (10) C15—C16 1.372 (5)
N2—C7 1.324 (3) C15—H15 0.9500
N2—C6 1.399 (3) C16—C17 1.404 (5)
N3—C13 1.354 (3) C16—H16 0.9500
N3—C19 1.381 (4) C17—C18 1.372 (4)
N3—H3N 0.863 (10) C17—H17 0.9500
N4—C13 1.321 (3) C18—C19 1.385 (4)
N4—C14 1.386 (4) C18—H18 0.9500
N5—C8 1.338 (3) C20—H20A 0.9800
N5—C12 1.341 (3) C20—H20B 0.9800
C1—C2 1.386 (4) C20—H20C 0.9800
C1—C6 1.402 (4) C21—H21A 0.9800
C2—C3 1.381 (4) C21—H21B 0.9800
C2—H2A 0.9500 C21—H21C 0.9800
C3—C4 1.398 (4) O3—C22 1.414 (10)
C3—H3 0.9500 O3—H3A 0.8400
C4—C5 1.367 (4) C22—H22A 0.9800
C4—H4 0.9500 C22—H22B 0.9800
C5—C6 1.397 (4) C22—H22C 0.9800
C5—H5 0.9500 O3'—C22' 1.324 (19)
C7—C8 1.459 (4) O3'—H3' 0.8400
C8—C9 1.389 (3) C22'—H22D 0.9800
C9—C10 1.383 (4) C22'—H22E 0.9800
C9—H9 0.9500 C22'—H22F 0.9800
C10—C11 1.374 (4)
C20—O1—H1 109.5 N5—C12—C11 122.3 (3)
C21—O2—H2 109.5 N5—C12—C13 114.4 (2)
C7—N1—C1 107.3 (2) C11—C12—C13 123.4 (2)
C7—N1—H1N 126 (2) N4—C13—N3 112.8 (2)
C1—N1—H1N 126 (2) N4—C13—C12 126.1 (2)
C7—N2—C6 104.5 (2) N3—C13—C12 121.0 (2)
C13—N3—C19 107.4 (2) N4—C14—C15 130.3 (3)
C13—N3—H3N 128 (3) N4—C14—C19 109.9 (2)
C19—N3—H3N 125 (3) C15—C14—C19 119.8 (3)
C13—N4—C14 105.0 (2) C16—C15—C14 117.8 (3)
C8—N5—C12 117.9 (2) C16—C15—H15 121.1
N1—C1—C2 132.8 (3) C14—C15—H15 121.1
N1—C1—C6 105.1 (2) C15—C16—C17 121.4 (3)
C2—C1—C6 122.1 (3) C15—C16—H16 119.3
C3—C2—C1 116.7 (3) C17—C16—H16 119.3
C3—C2—H2A 121.6 C18—C17—C16 121.7 (3)
C1—C2—H2A 121.6 C18—C17—H17 119.1
C2—C3—C4 121.4 (3) C16—C17—H17 119.1
C2—C3—H3 119.3 C17—C18—C19 116.9 (3)
C4—C3—H3 119.3 C17—C18—H18 121.6
C5—C4—C3 122.2 (3) C19—C18—H18 121.6
C5—C4—H4 118.9 N3—C19—C18 132.6 (3)
C3—C4—H4 118.9 N3—C19—C14 104.9 (2)
C4—C5—C6 117.3 (3) C18—C19—C14 122.4 (3)
C4—C5—H5 121.4 O1—C20—H20A 109.5
C6—C5—H5 121.4 O1—C20—H20B 109.5
C5—C6—N2 129.6 (3) H20A—C20—H20B 109.5
C5—C6—C1 120.4 (3) O1—C20—H20C 109.5
N2—C6—C1 110.1 (2) H20A—C20—H20C 109.5
N2—C7—N1 113.1 (2) H20B—C20—H20C 109.5
N2—C7—C8 126.1 (2) O2—C21—H21A 109.5
N1—C7—C8 120.8 (2) O2—C21—H21B 109.5
N5—C8—C9 123.3 (2) H21A—C21—H21B 109.5
N5—C8—C7 114.4 (2) O2—C21—H21C 109.5
C9—C8—C7 122.2 (2) H21A—C21—H21C 109.5
C10—C9—C8 118.2 (3) H21B—C21—H21C 109.5
C10—C9—H9 120.9 C22'—O3'—H3' 109.5
C8—C9—H9 120.9 O3'—C22'—H22D 109.5
C11—C10—C9 119.5 (2) O3'—C22'—H22E 109.5
C11—C10—H10 120.3 H22D—C22'—H22E 109.5
C9—C10—H10 120.3 O3'—C22'—H22F 109.5
C10—C11—C12 118.8 (2) H22D—C22'—H22F 109.5
C10—C11—H11 120.6 H22E—C22'—H22F 109.5
C12—C11—H11 120.6
C7—N1—C1—C2 179.1 (3) C9—C10—C11—C12 0.2 (4)
C7—N1—C1—C6 −0.4 (3) C8—N5—C12—C11 −0.5 (3)
N1—C1—C2—C3 179.4 (3) C8—N5—C12—C13 −179.5 (2)
C6—C1—C2—C3 −1.1 (4) C10—C11—C12—N5 0.4 (4)
C1—C2—C3—C4 0.1 (4) C10—C11—C12—C13 179.4 (2)
C2—C3—C4—C5 0.4 (4) C14—N4—C13—N3 1.0 (3)
C3—C4—C5—C6 0.0 (4) C14—N4—C13—C12 −178.6 (2)
C4—C5—C6—N2 179.5 (2) C19—N3—C13—N4 −0.9 (3)
C4—C5—C6—C1 −1.0 (4) C19—N3—C13—C12 178.7 (2)
C7—N2—C6—C5 178.7 (3) N5—C12—C13—N4 179.9 (2)
C7—N2—C6—C1 −0.9 (3) C11—C12—C13—N4 0.8 (4)
N1—C1—C6—C5 −178.8 (2) N5—C12—C13—N3 0.3 (3)
C2—C1—C6—C5 1.6 (4) C11—C12—C13—N3 −178.7 (2)
N1—C1—C6—N2 0.8 (3) C13—N4—C14—C15 178.1 (3)
C2—C1—C6—N2 −178.8 (2) C13—N4—C14—C19 −0.7 (3)
C6—N2—C7—N1 0.6 (3) N4—C14—C15—C16 −178.7 (3)
C6—N2—C7—C8 179.5 (2) C19—C14—C15—C16 0.1 (4)
C1—N1—C7—N2 −0.1 (3) C14—C15—C16—C17 −0.2 (4)
C1—N1—C7—C8 −179.1 (2) C15—C16—C17—C18 0.6 (5)
C12—N5—C8—C9 −0.1 (3) C16—C17—C18—C19 −0.9 (4)
C12—N5—C8—C7 −179.9 (2) C13—N3—C19—C18 −177.7 (3)
N2—C7—C8—N5 −178.7 (2) C13—N3—C19—C14 0.4 (3)
N1—C7—C8—N5 0.1 (3) C17—C18—C19—N3 178.6 (3)
N2—C7—C8—C9 1.5 (4) C17—C18—C19—C14 0.8 (4)
N1—C7—C8—C9 −179.7 (2) N4—C14—C19—N3 0.2 (3)
N5—C8—C9—C10 0.7 (4) C15—C14—C19—N3 −178.7 (2)
C7—C8—C9—C10 −179.6 (2) N4—C14—C19—C18 178.6 (2)
C8—C9—C10—C11 −0.7 (4) C15—C14—C19—C18 −0.4 (4)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O1—H1···O2i 0.84 1.83 2.670 (3) 176
O2—H2···N4 0.84 1.91 2.741 (3) 168
N1—H1N···O1 0.87 (1) 2.07 (1) 2.927 (3) 171 (3)
N3—H3N···O1 0.86 (1) 2.07 (1) 2.925 (3) 171 (4)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2799).

References

  1. Addison, A. W. & Burke, P. J. (1981). J. Heterocycl. Chem 18, 803–805.
  2. Freire, E., Baggio, S., Muñoz, J. C. & Baggio, R. (2003). Acta Cryst. C59, o259–o262. [DOI] [PubMed]
  3. Higashi, T. (1995). Rigaku Corporation, Tokyo, Japan.
  4. Rigaku/MSC (2004). RAPID-AUTO Rigaku/MSC, The Woodlans, Texas, USA.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809012574/lh2799sup1.cif

e-65-o1013-sup1.cif (22.9KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809012574/lh2799Isup2.hkl

e-65-o1013-Isup2.hkl (193.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES