Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 18;65(Pt 5):o1040. doi: 10.1107/S160053680901304X

2-Chloro-N-(3,5-dimethyl­phen­yl)acetamide

B Thimme Gowda a,*, Sabine Foro b, Hiromitsu Terao c, Hartmut Fuess b
PMCID: PMC2977723  PMID: 21583859

Abstract

The conformation of the C=O bond in the structure of the title compound, C10H12ClNO, is anti to the N—H bond and to the C—Cl bond in the side chain in all four independent mol­ecules comprising the asymmetric unit. In the crystal, inter­molecular N—H⋯O hydrogen bonds link the mol­ecules into supra­molecular chains

Related literature

For details of the preparation of the title compound, see: Shilpa & Gowda (2007). For related structures, see: Gowda et al. (2008a,b ,c ).graphic file with name e-65-o1040-scheme1.jpg

Experimental

Crystal data

  • C10H12ClNO

  • M r = 197.66

  • Orthorhombic, Inline graphic

  • a = 25.9770 (1) Å

  • b = 9.7698 (4) Å

  • c = 16.0578 (7) Å

  • V = 4075.3 (3) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 0.34 mm−1

  • T = 299 K

  • 0.45 × 0.42 × 0.30 mm

Data collection

  • Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) T min = 0.864, T max = 0.906

  • 27845 measured reflections

  • 7450 independent reflections

  • 4868 reflections with I > 2σ(I)

  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.164

  • S = 1.04

  • 7450 reflections

  • 478 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.53 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2004); cell refinement: CrysAlis RED (Oxford Diffraction, 2007); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901304X/tk2414sup1.cif

e-65-o1040-sup1.cif (30.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901304X/tk2414Isup2.hkl

e-65-o1040-Isup2.hkl (364.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O4i 0.86 2.14 2.983 (4) 168
N2—H2N⋯O3ii 0.86 2.12 2.975 (4) 171
N3—H3N⋯O2iii 0.86 2.15 3.000 (4) 170
N4—H4N⋯O1iv 0.86 2.13 2.987 (4) 172

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

Comment

In the present work, as part of a study of substituent effects on the crystal structures of aromatic amides (Gowda et al., 2008a,b,c), the structure of 2-chloro-N-(3,5-dimethylphenyl)acetamide (I) has been determined. The conformation of the C=O bond in (I) is anti to the N—H bond and to the C–Cl bond in the side chain (Fig. 1), in all the four independent molecules comprising the asymmetric unit. This is consistent with the anti conformation of the C=O bond to the N—H bond and to the side chain methylene H-atoms in 2-chloro-N- (2,4-dimethylphenyl)acetamide (Gowda et al., 2008a), in 2-chloro-N-(3,5-dichlorophenyl)acetamide (Gowda et al., 2008b), and in 2-chloro-N-(3-methylphenyl)acetamide (Gowda et al., 2008c). The molecules in (I) are linked into infinite chains through intermolecular N—H···O hydrogen bonding (Table 1, Fig. 2). There are two independent supramolecular chains, one comprising O2- and O3- containing molecules, and the other comprising O1- and O4-containing molecules.

Experimental

Compound (I) was prepared according to the literature method (Shilpa and Gowda, 2007). Single crystals were obtained from the slow evaporation of an ethanolic solution of (I).

Refinement

The H atoms were positioned with idealized geometry using a riding model with C—H = 0.93–0.97 Å, N—H = 0.86 Å, and were refined with isotropic displacement parameters set to 1.2 times of the Ueq of the parent atom. The structure was refined in the non-centrosymmetric space group Pna21 with four independent molecules in the asymmetric unit. No evidence for higher symmetry was found but the structure was refined as a racemic twin.

Figures

Fig. 1.

Fig. 1.

Molecular structure of (I), showing the atom labeling scheme and displacement ellipsoids drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Molecular packing of (I) with hydrogen bonding shown as dashed lines.

Crystal data

C10H12ClNO F(000) = 1664
Mr = 197.66 Dx = 1.289 Mg m3
Orthorhombic, Pna21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2n Cell parameters from 7291 reflections
a = 25.9770 (1) Å θ = 2.4–27.9°
b = 9.7698 (4) Å µ = 0.34 mm1
c = 16.0578 (7) Å T = 299 K
V = 4075.3 (3) Å3 Prism, colourless
Z = 16 0.45 × 0.42 × 0.30 mm

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire CCD detector 7450 independent reflections
Radiation source: fine-focus sealed tube 4868 reflections with I > 2σ(I)
graphite Rint = 0.021
Rotation method data acquisition using ω and φ scans θmax = 25.4°, θmin = 2.4°
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007) h = −22→31
Tmin = 0.864, Tmax = 0.906 k = −11→11
27845 measured reflections l = −19→19

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.164 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0756P)2 + 2.0227P] where P = (Fo2 + 2Fc2)/3
7450 reflections (Δ/σ)max = 0.041
478 parameters Δρmax = 0.53 e Å3
1 restraint Δρmin = −0.20 e Å3

Special details

Experimental. Absorption correction: CrysAlis RED, Oxford Diffraction Ltd., 2007 Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.02134 (6) 0.25677 (12) 0.66479 (8) 0.0671 (5)
O1 0.06503 (10) 0.0729 (2) 0.5120 (2) 0.0537 (7)
N1 0.09129 (12) 0.2887 (3) 0.4815 (2) 0.0441 (8)
H1N 0.0825 0.3731 0.4867 0.053*
C1 0.13883 (16) 0.2643 (4) 0.4388 (3) 0.0380 (11)
C2 0.16416 (16) 0.3814 (4) 0.4133 (3) 0.0442 (10)
H2 0.1508 0.4672 0.4260 0.053*
C3 0.21023 (17) 0.3698 (4) 0.3679 (3) 0.0474 (10)
C4 0.22853 (18) 0.2446 (4) 0.3479 (4) 0.0517 (14)
H4 0.2583 0.2380 0.3160 0.062*
C5 0.20462 (16) 0.1281 (4) 0.3733 (3) 0.0490 (11)
C6 0.15811 (15) 0.1369 (4) 0.4183 (3) 0.0430 (10)
H6 0.1406 0.0579 0.4339 0.052*
C7 0.05941 (15) 0.1988 (3) 0.5138 (3) 0.0437 (9)
C8 0.01308 (17) 0.2590 (3) 0.5560 (3) 0.0366 (11)
H8A −0.0173 0.2066 0.5412 0.044*
H8B 0.0081 0.3524 0.5372 0.044*
C9 0.2371 (2) 0.5040 (5) 0.3424 (4) 0.0793 (17)
H9A 0.2535 0.5438 0.3902 0.095*
H9B 0.2120 0.5667 0.3206 0.095*
H9C 0.2625 0.4850 0.3006 0.095*
C10 0.22586 (19) −0.0168 (5) 0.3544 (4) 0.0706 (15)
H10A 0.2395 −0.0561 0.4046 0.085*
H10B 0.2526 −0.0104 0.3134 0.085*
H10C 0.1986 −0.0736 0.3336 0.085*
Cl2 0.27157 (5) 0.24330 (13) 0.66707 (8) 0.0662 (5)
O2 0.31648 (10) 0.0778 (2) 0.5114 (3) 0.0517 (8)
N2 0.34182 (11) 0.2954 (3) 0.4823 (2) 0.0370 (8)
H2N 0.3325 0.3792 0.4891 0.044*
C11 0.38852 (15) 0.2759 (4) 0.4382 (3) 0.0332 (10)
C12 0.41393 (15) 0.3947 (4) 0.4151 (3) 0.0412 (9)
H12 0.4006 0.4796 0.4300 0.049*
C13 0.45959 (17) 0.3868 (4) 0.3693 (3) 0.0487 (10)
C14 0.47836 (19) 0.2619 (4) 0.3459 (4) 0.0531 (14)
H14 0.5083 0.2569 0.3143 0.064*
C15 0.45357 (15) 0.1443 (4) 0.3686 (3) 0.0429 (10)
C16 0.40740 (15) 0.1502 (4) 0.4143 (3) 0.0422 (10)
H16 0.3899 0.0704 0.4282 0.051*
C17 0.31025 (13) 0.2014 (3) 0.5149 (3) 0.0354 (9)
C18 0.26418 (17) 0.2609 (3) 0.5580 (3) 0.0389 (12)
H18A 0.2333 0.2136 0.5400 0.047*
H18B 0.2607 0.3569 0.5437 0.047*
C19 0.48651 (18) 0.5228 (5) 0.3457 (4) 0.0703 (15)
H19A 0.5033 0.5601 0.3939 0.084*
H19B 0.4614 0.5867 0.3256 0.084*
H19C 0.5116 0.5058 0.3030 0.084*
C20 0.47403 (19) 0.0020 (5) 0.3456 (4) 0.0737 (16)
H20A 0.4897 −0.0392 0.3936 0.088*
H20B 0.4992 0.0104 0.3021 0.088*
H20C 0.4461 −0.0543 0.3267 0.088*
Cl3 0.14541 (5) 0.25313 (12) −0.12686 (8) 0.0661 (5)
O3 0.19027 (10) 0.0786 (2) 0.0264 (3) 0.0508 (8)
N3 0.21661 (12) 0.2938 (3) 0.0580 (2) 0.0405 (8)
H3N 0.2081 0.3780 0.0510 0.049*
C21 0.26230 (16) 0.2724 (4) 0.1032 (3) 0.0392 (11)
C22 0.29014 (16) 0.3888 (4) 0.1253 (3) 0.0417 (10)
H22 0.2773 0.4742 0.1104 0.050*
C23 0.33499 (16) 0.3822 (4) 0.1676 (3) 0.0460 (11)
C24 0.35436 (17) 0.2513 (4) 0.1881 (4) 0.0460 (12)
H24 0.3855 0.2445 0.2165 0.055*
C25 0.32768 (16) 0.1304 (4) 0.1665 (3) 0.0485 (11)
C26 0.28151 (15) 0.1437 (4) 0.1241 (3) 0.0428 (10)
H26 0.2631 0.0658 0.1094 0.051*
C27 0.18431 (13) 0.2016 (3) 0.0241 (3) 0.0347 (9)
C28 0.13749 (17) 0.2653 (4) −0.0172 (3) 0.0431 (13)
H28A 0.1343 0.3605 −0.0008 0.052*
H28B 0.1065 0.2173 −0.0001 0.052*
C29 0.36440 (18) 0.5045 (5) 0.1930 (4) 0.0651 (14)
H29A 0.3620 0.5157 0.2523 0.078*
H29B 0.3505 0.5839 0.1659 0.078*
H29C 0.3998 0.4935 0.1774 0.078*
C30 0.34979 (18) −0.0028 (5) 0.1894 (4) 0.0693 (15)
H30A 0.3442 −0.0192 0.2477 0.083*
H30B 0.3861 −0.0024 0.1782 0.083*
H30C 0.3336 −0.0737 0.1575 0.083*
Cl4 −0.10462 (5) 0.26428 (12) −0.12784 (7) 0.0655 (4)
O4 −0.05838 (10) 0.4286 (2) 0.0272 (2) 0.0571 (8)
N4 −0.03326 (12) 0.2113 (3) 0.0574 (2) 0.0445 (8)
H4N −0.0418 0.1274 0.0491 0.053*
C31 0.01203 (16) 0.2306 (4) 0.1042 (3) 0.0386 (11)
C32 0.03858 (16) 0.1116 (3) 0.1258 (3) 0.0425 (10)
H32 0.0248 0.0276 0.1100 0.051*
C33 0.08350 (16) 0.1130 (4) 0.1687 (3) 0.0453 (10)
C34 0.10421 (17) 0.2418 (4) 0.1895 (4) 0.0451 (12)
H34 0.1352 0.2461 0.2185 0.054*
C35 0.07887 (16) 0.3651 (4) 0.1673 (3) 0.0461 (11)
C36 0.03352 (15) 0.3570 (4) 0.1245 (3) 0.0417 (9)
H36 0.0168 0.4369 0.1086 0.050*
C37 −0.06507 (14) 0.3041 (3) 0.0239 (3) 0.0431 (9)
C38 −0.11124 (18) 0.2462 (4) −0.0188 (4) 0.0482 (14)
H38A −0.1419 0.2938 −0.0002 0.058*
H38B −0.1149 0.1502 −0.0047 0.058*
C39 0.11117 (17) −0.0117 (5) 0.1926 (4) 0.0660 (14)
H39A 0.0964 −0.0889 0.1644 0.079*
H39B 0.1084 −0.0248 0.2517 0.079*
H39C 0.1468 −0.0031 0.1775 0.079*
C40 0.10289 (16) 0.4969 (4) 0.1907 (4) 0.0637 (14)
H40A 0.1392 0.4930 0.1799 0.076*
H40B 0.0972 0.5140 0.2488 0.076*
H40C 0.0878 0.5694 0.1585 0.076*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0814 (11) 0.0752 (9) 0.0446 (10) 0.0129 (6) 0.0047 (8) −0.0048 (5)
O1 0.0556 (16) 0.0297 (11) 0.076 (2) 0.0029 (10) 0.0151 (15) −0.0013 (14)
N1 0.0427 (18) 0.0332 (15) 0.056 (2) 0.0030 (14) 0.0042 (16) 0.0020 (16)
C1 0.036 (2) 0.043 (2) 0.035 (3) 0.0020 (15) 0.004 (2) −0.0045 (16)
C2 0.048 (2) 0.042 (2) 0.043 (3) 0.0026 (17) 0.005 (2) 0.0010 (18)
C3 0.043 (2) 0.060 (2) 0.039 (2) −0.0051 (19) 0.008 (2) 0.011 (2)
C4 0.039 (3) 0.074 (3) 0.042 (3) −0.0030 (19) 0.007 (2) −0.007 (2)
C5 0.045 (3) 0.057 (2) 0.046 (3) 0.011 (2) 0.000 (2) −0.016 (2)
C6 0.038 (2) 0.042 (2) 0.049 (2) −0.0028 (16) 0.002 (2) −0.0036 (19)
C7 0.058 (2) 0.0292 (17) 0.044 (2) 0.0024 (16) −0.003 (2) 0.0017 (17)
C8 0.040 (3) 0.0286 (18) 0.041 (3) 0.0029 (14) 0.007 (2) 0.0000 (14)
C9 0.075 (3) 0.080 (3) 0.082 (4) −0.028 (3) 0.015 (3) 0.018 (3)
C10 0.063 (3) 0.062 (3) 0.086 (4) 0.009 (2) 0.014 (3) −0.020 (3)
Cl2 0.0789 (11) 0.0734 (8) 0.0463 (11) 0.0040 (6) 0.0062 (8) −0.0082 (6)
O2 0.0581 (18) 0.0239 (12) 0.073 (2) 0.0009 (10) 0.0153 (16) 0.0023 (15)
N2 0.0368 (18) 0.0249 (14) 0.049 (2) 0.0074 (13) 0.0089 (16) 0.0004 (15)
C11 0.035 (2) 0.0337 (17) 0.030 (2) −0.0054 (16) 0.0045 (19) −0.0030 (19)
C12 0.043 (2) 0.0389 (19) 0.042 (2) −0.0022 (16) 0.005 (2) 0.0033 (19)
C13 0.047 (2) 0.062 (2) 0.037 (2) −0.009 (2) 0.006 (2) 0.012 (2)
C14 0.046 (3) 0.076 (3) 0.037 (3) −0.001 (2) 0.010 (2) 0.006 (2)
C15 0.042 (2) 0.048 (2) 0.039 (2) 0.0080 (18) 0.005 (2) −0.012 (2)
C16 0.045 (2) 0.0350 (19) 0.046 (2) 0.0002 (18) 0.008 (2) −0.001 (2)
C17 0.033 (2) 0.0329 (18) 0.040 (2) 0.0041 (15) 0.0011 (19) 0.004 (2)
C18 0.048 (3) 0.0302 (19) 0.038 (3) 0.0001 (15) 0.008 (2) 0.0064 (16)
C19 0.064 (3) 0.064 (3) 0.082 (4) −0.028 (2) 0.013 (3) 0.025 (3)
C20 0.059 (3) 0.078 (3) 0.084 (4) 0.012 (2) 0.020 (3) −0.020 (3)
Cl3 0.0835 (11) 0.0721 (8) 0.0427 (9) 0.0096 (6) −0.0094 (8) 0.0089 (5)
O3 0.0581 (18) 0.0260 (13) 0.068 (2) −0.0002 (11) −0.0152 (16) 0.0001 (15)
N3 0.043 (2) 0.0245 (14) 0.054 (2) −0.0015 (14) −0.0095 (17) 0.0031 (16)
C21 0.039 (3) 0.037 (2) 0.042 (3) 0.0033 (17) 0.004 (2) −0.0036 (19)
C22 0.046 (2) 0.0318 (19) 0.048 (3) 0.0019 (16) −0.001 (2) −0.0038 (19)
C23 0.046 (2) 0.047 (2) 0.045 (3) −0.0093 (18) 0.006 (2) −0.006 (2)
C24 0.035 (3) 0.067 (3) 0.035 (3) −0.0035 (18) −0.003 (2) 0.0056 (16)
C25 0.042 (2) 0.052 (2) 0.051 (3) 0.0017 (19) 0.002 (2) 0.006 (2)
C26 0.042 (2) 0.036 (2) 0.051 (3) −0.0012 (17) −0.002 (2) 0.004 (2)
C27 0.036 (2) 0.0241 (17) 0.044 (2) −0.0050 (15) −0.0027 (19) 0.0051 (19)
C28 0.039 (3) 0.0334 (19) 0.057 (4) 0.0014 (15) −0.006 (2) −0.0026 (19)
C29 0.064 (3) 0.069 (3) 0.062 (3) −0.007 (2) −0.011 (3) −0.016 (3)
C30 0.060 (3) 0.062 (3) 0.086 (4) 0.011 (2) −0.008 (3) 0.028 (3)
Cl4 0.0838 (11) 0.0709 (8) 0.0418 (9) −0.0003 (6) −0.0079 (8) −0.0071 (7)
O4 0.0615 (17) 0.0299 (12) 0.080 (2) −0.0013 (11) −0.0212 (16) 0.0020 (14)
N4 0.0435 (19) 0.0326 (15) 0.058 (2) 0.0063 (14) −0.0085 (16) 0.0005 (16)
C31 0.031 (2) 0.0413 (19) 0.043 (3) −0.0044 (16) 0.0005 (19) 0.0042 (18)
C32 0.048 (2) 0.0290 (17) 0.050 (2) 0.0006 (16) 0.002 (2) 0.0017 (17)
C33 0.045 (2) 0.046 (2) 0.046 (3) 0.0091 (17) 0.004 (2) 0.0091 (19)
C34 0.037 (3) 0.061 (3) 0.038 (3) 0.0042 (17) −0.004 (2) −0.0050 (17)
C35 0.048 (2) 0.048 (2) 0.043 (3) −0.0026 (18) 0.007 (2) −0.005 (2)
C36 0.043 (2) 0.0360 (19) 0.046 (2) 0.0040 (17) 0.002 (2) −0.0038 (19)
C37 0.054 (2) 0.0293 (17) 0.046 (2) 0.0011 (16) −0.004 (2) −0.0017 (17)
C38 0.046 (3) 0.041 (2) 0.058 (4) −0.0049 (15) −0.007 (3) 0.0045 (18)
C39 0.055 (3) 0.067 (3) 0.076 (4) 0.012 (2) −0.005 (3) 0.021 (3)
C40 0.059 (3) 0.055 (3) 0.077 (3) −0.012 (2) −0.006 (3) −0.023 (2)

Geometric parameters (Å, °)

Cl1—C8 1.761 (5) Cl3—C28 1.778 (6)
O1—C7 1.239 (4) O3—C27 1.212 (4)
N1—C7 1.314 (5) N3—C27 1.346 (4)
N1—C1 1.433 (5) N3—C21 1.407 (5)
N1—H1N 0.8600 N3—H3N 0.8600
C1—C6 1.381 (5) C21—C26 1.394 (5)
C1—C2 1.382 (5) C21—C22 1.393 (5)
C2—C3 1.405 (6) C22—C23 1.350 (6)
C2—H2 0.9300 C22—H22 0.9300
C3—C4 1.351 (6) C23—C24 1.413 (6)
C3—C9 1.540 (6) C23—C29 1.476 (6)
C4—C5 1.360 (6) C24—C25 1.413 (6)
C4—H4 0.9300 C24—H24 0.9300
C5—C6 1.410 (6) C25—C26 1.385 (6)
C5—C10 1.549 (6) C25—C30 1.469 (6)
C6—H6 0.9300 C26—H26 0.9300
C7—C8 1.501 (6) C27—C28 1.519 (6)
C8—H8A 0.9700 C28—H28A 0.9700
C8—H8B 0.9700 C28—H28B 0.9700
C9—H9A 0.9600 C29—H29A 0.9600
C9—H9B 0.9600 C29—H29B 0.9600
C9—H9C 0.9600 C29—H29C 0.9600
C10—H10A 0.9600 C30—H30A 0.9600
C10—H10B 0.9600 C30—H30B 0.9600
C10—H10C 0.9600 C30—H30C 0.9600
Cl2—C18 1.770 (5) Cl4—C38 1.768 (6)
O2—C17 1.220 (4) O4—C37 1.230 (3)
N2—C17 1.338 (4) N4—C37 1.339 (4)
N2—C11 1.418 (5) N4—C31 1.409 (5)
N2—H2N 0.8600 N4—H4N 0.8600
C11—C16 1.377 (5) C31—C36 1.393 (5)
C11—C12 1.386 (5) C31—C32 1.396 (5)
C12—C13 1.397 (6) C32—C33 1.356 (6)
C12—H12 0.9300 C32—H32 0.9300
C13—C14 1.366 (6) C33—C34 1.409 (6)
C13—C19 1.549 (6) C33—C39 1.466 (6)
C14—C15 1.367 (5) C34—C35 1.418 (6)
C14—H14 0.9300 C34—H34 0.9300
C15—C16 1.407 (5) C35—C36 1.367 (6)
C15—C20 1.534 (5) C35—C40 1.479 (5)
C16—H16 0.9300 C36—H36 0.9300
C17—C18 1.500 (6) C37—C38 1.493 (6)
C18—H18A 0.9700 C38—H38A 0.9700
C18—H18B 0.9700 C38—H38B 0.9700
C19—H19A 0.9600 C39—H39A 0.9600
C19—H19B 0.9600 C39—H39B 0.9600
C19—H19C 0.9600 C39—H39C 0.9600
C20—H20A 0.9600 C40—H40A 0.9600
C20—H20B 0.9600 C40—H40B 0.9600
C20—H20C 0.9600 C40—H40C 0.9600
C7—N1—C1 128.4 (3) C27—N3—C21 129.5 (3)
C7—N1—H1N 115.8 C27—N3—H3N 115.3
C1—N1—H1N 115.8 C21—N3—H3N 115.3
C6—C1—C2 120.2 (4) C26—C21—C22 119.3 (4)
C6—C1—N1 125.2 (4) C26—C21—N3 124.1 (4)
C2—C1—N1 114.5 (3) C22—C21—N3 116.6 (3)
C1—C2—C3 119.5 (4) C23—C22—C21 122.5 (4)
C1—C2—H2 120.3 C23—C22—H22 118.8
C3—C2—H2 120.3 C21—C22—H22 118.8
C4—C3—C2 119.7 (4) C22—C23—C24 117.9 (4)
C4—C3—C9 123.2 (4) C22—C23—C29 123.2 (4)
C2—C3—C9 117.1 (4) C24—C23—C29 119.0 (4)
C3—C4—C5 121.8 (5) C25—C24—C23 121.6 (4)
C3—C4—H4 119.1 C25—C24—H24 119.2
C5—C4—H4 119.1 C23—C24—H24 119.2
C4—C5—C6 119.6 (4) C26—C25—C24 117.8 (4)
C4—C5—C10 122.9 (4) C26—C25—C30 123.0 (4)
C6—C5—C10 117.5 (4) C24—C25—C30 119.1 (4)
C1—C6—C5 119.2 (4) C25—C26—C21 120.9 (4)
C1—C6—H6 120.4 C25—C26—H26 119.6
C5—C6—H6 120.4 C21—C26—H26 119.6
O1—C7—N1 125.5 (4) O3—C27—N3 124.8 (4)
O1—C7—C8 119.6 (3) O3—C27—C28 121.5 (3)
N1—C7—C8 114.9 (3) N3—C27—C28 113.7 (3)
C7—C8—Cl1 110.2 (3) C27—C28—Cl3 108.2 (3)
C7—C8—H8A 109.6 C27—C28—H28A 110.1
Cl1—C8—H8A 109.6 Cl3—C28—H28A 110.1
C7—C8—H8B 109.6 C27—C28—H28B 110.1
Cl1—C8—H8B 109.6 Cl3—C28—H28B 110.1
H8A—C8—H8B 108.1 H28A—C28—H28B 108.4
C3—C9—H9A 109.5 C23—C29—H29A 109.5
C3—C9—H9B 109.5 C23—C29—H29B 109.5
H9A—C9—H9B 109.5 H29A—C29—H29B 109.5
C3—C9—H9C 109.5 C23—C29—H29C 109.5
H9A—C9—H9C 109.5 H29A—C29—H29C 109.5
H9B—C9—H9C 109.5 H29B—C29—H29C 109.5
C5—C10—H10A 109.5 C25—C30—H30A 109.5
C5—C10—H10B 109.5 C25—C30—H30B 109.5
H10A—C10—H10B 109.5 H30A—C30—H30B 109.5
C5—C10—H10C 109.5 C25—C30—H30C 109.5
H10A—C10—H10C 109.5 H30A—C30—H30C 109.5
H10B—C10—H10C 109.5 H30B—C30—H30C 109.5
C17—N2—C11 128.9 (3) C37—N4—C31 129.7 (3)
C17—N2—H2N 115.6 C37—N4—H4N 115.1
C11—N2—H2N 115.6 C31—N4—H4N 115.1
C16—C11—C12 120.2 (4) C36—C31—C32 118.8 (4)
C16—C11—N2 124.3 (3) C36—C31—N4 125.3 (4)
C12—C11—N2 115.4 (3) C32—C31—N4 115.7 (3)
C11—C12—C13 119.9 (4) C33—C32—C31 122.9 (4)
C11—C12—H12 120.1 C33—C32—H32 118.5
C13—C12—H12 120.1 C31—C32—H32 118.5
C14—C13—C12 119.8 (4) C32—C33—C34 117.3 (4)
C14—C13—C19 122.5 (4) C32—C33—C39 123.2 (4)
C12—C13—C19 117.7 (4) C34—C33—C39 119.5 (4)
C13—C14—C15 120.6 (4) C33—C34—C35 121.5 (4)
C13—C14—H14 119.7 C33—C34—H34 119.3
C15—C14—H14 119.7 C35—C34—H34 119.3
C14—C15—C16 120.4 (4) C36—C35—C34 118.5 (4)
C14—C15—C20 122.3 (4) C36—C35—C40 122.8 (4)
C16—C15—C20 117.3 (4) C34—C35—C40 118.7 (4)
C11—C16—C15 119.0 (3) C35—C36—C31 121.0 (4)
C11—C16—H16 120.5 C35—C36—H36 119.5
C15—C16—H16 120.5 C31—C36—H36 119.5
O2—C17—N2 125.5 (4) O4—C37—N4 124.4 (4)
O2—C17—C18 120.7 (3) O4—C37—C38 120.5 (3)
N2—C17—C18 113.8 (3) N4—C37—C38 115.1 (3)
C17—C18—Cl2 109.4 (3) C37—C38—Cl4 109.8 (3)
C17—C18—H18A 109.8 C37—C38—H38A 109.7
Cl2—C18—H18A 109.8 Cl4—C38—H38A 109.7
C17—C18—H18B 109.8 C37—C38—H38B 109.7
Cl2—C18—H18B 109.8 Cl4—C38—H38B 109.7
H18A—C18—H18B 108.2 H38A—C38—H38B 108.2
C13—C19—H19A 109.5 C33—C39—H39A 109.5
C13—C19—H19B 109.5 C33—C39—H39B 109.5
H19A—C19—H19B 109.5 H39A—C39—H39B 109.5
C13—C19—H19C 109.5 C33—C39—H39C 109.5
H19A—C19—H19C 109.5 H39A—C39—H39C 109.5
H19B—C19—H19C 109.5 H39B—C39—H39C 109.5
C15—C20—H20A 109.5 C35—C40—H40A 109.5
C15—C20—H20B 109.5 C35—C40—H40B 109.5
H20A—C20—H20B 109.5 H40A—C40—H40B 109.5
C15—C20—H20C 109.5 C35—C40—H40C 109.5
H20A—C20—H20C 109.5 H40A—C40—H40C 109.5
H20B—C20—H20C 109.5 H40B—C40—H40C 109.5
C7—N1—C1—C6 5.1 (8) C27—N3—C21—C26 −2.7 (8)
C7—N1—C1—C2 −178.9 (4) C27—N3—C21—C22 175.1 (4)
C6—C1—C2—C3 −1.4 (7) C26—C21—C22—C23 −1.0 (7)
N1—C1—C2—C3 −177.6 (4) N3—C21—C22—C23 −178.9 (4)
C1—C2—C3—C4 1.7 (7) C21—C22—C23—C24 1.4 (7)
C1—C2—C3—C9 −179.1 (5) C21—C22—C23—C29 −178.7 (5)
C2—C3—C4—C5 −2.7 (8) C22—C23—C24—C25 −0.9 (8)
C9—C3—C4—C5 178.2 (5) C29—C23—C24—C25 179.1 (5)
C3—C4—C5—C6 3.2 (8) C23—C24—C25—C26 0.1 (8)
C3—C4—C5—C10 −177.4 (5) C23—C24—C25—C30 179.9 (5)
C2—C1—C6—C5 1.9 (7) C24—C25—C26—C21 0.3 (7)
N1—C1—C6—C5 177.7 (4) C30—C25—C26—C21 −179.6 (5)
C4—C5—C6—C1 −2.7 (7) C22—C21—C26—C25 0.1 (7)
C10—C5—C6—C1 177.8 (5) N3—C21—C26—C25 177.9 (5)
C1—N1—C7—O1 −0.7 (7) C21—N3—C27—O3 −1.1 (7)
C1—N1—C7—C8 178.9 (5) C21—N3—C27—C28 177.6 (5)
O1—C7—C8—Cl1 77.7 (4) O3—C27—C28—Cl3 −74.7 (5)
N1—C7—C8—Cl1 −102.0 (3) N3—C27—C28—Cl3 106.6 (4)
C17—N2—C11—C16 6.3 (7) C37—N4—C31—C36 −0.8 (8)
C17—N2—C11—C12 −177.3 (4) C37—N4—C31—C32 −175.9 (4)
C16—C11—C12—C13 −1.7 (7) C36—C31—C32—C33 2.7 (7)
N2—C11—C12—C13 −178.2 (4) N4—C31—C32—C33 178.2 (4)
C11—C12—C13—C14 1.5 (7) C31—C32—C33—C34 −1.9 (7)
C11—C12—C13—C19 −179.6 (5) C31—C32—C33—C39 179.1 (5)
C12—C13—C14—C15 −1.6 (8) C32—C33—C34—C35 0.6 (8)
C19—C13—C14—C15 179.5 (5) C39—C33—C34—C35 179.7 (4)
C13—C14—C15—C16 2.0 (8) C33—C34—C35—C36 −0.3 (8)
C13—C14—C15—C20 −178.4 (5) C33—C34—C35—C40 −179.6 (4)
C12—C11—C16—C15 2.0 (7) C34—C35—C36—C31 1.1 (7)
N2—C11—C16—C15 178.2 (4) C40—C35—C36—C31 −179.6 (5)
C14—C15—C16—C11 −2.2 (7) C32—C31—C36—C35 −2.3 (7)
C20—C15—C16—C11 178.2 (5) N4—C31—C36—C35 −177.3 (4)
C11—N2—C17—O2 −0.7 (7) C31—N4—C37—O4 2.2 (7)
C11—N2—C17—C18 179.7 (4) C31—N4—C37—C38 −177.3 (5)
O2—C17—C18—Cl2 73.2 (4) O4—C37—C38—Cl4 72.7 (5)
N2—C17—C18—Cl2 −107.1 (3) N4—C37—C38—Cl4 −107.9 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
N1—H1N···O4i 0.86 2.14 2.983 (4) 168
N2—H2N···O3ii 0.86 2.12 2.975 (4) 171
N3—H3N···O2iii 0.86 2.15 3.000 (4) 170
N4—H4N···O1iv 0.86 2.13 2.987 (4) 172

Symmetry codes: (i) −x, −y+1, z+1/2; (ii) −x+1/2, y+1/2, z+1/2; (iii) −x+1/2, y+1/2, z−1/2; (iv) −x, −y, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2414).

References

  1. Gowda, B. T., Foro, S. & Fuess, H. (2008a). Acta Cryst. E64, o85. [DOI] [PMC free article] [PubMed]
  2. Gowda, B. T., Foro, S. & Fuess, H. (2008b). Acta Cryst. E64, o420. [DOI] [PMC free article] [PubMed]
  3. Gowda, B. T., Svoboda, I., Foro, S., Dou, S. & Fuess, H. (2008c). Acta Cryst. E64, o208. [DOI] [PMC free article] [PubMed]
  4. Oxford Diffraction (2004). CrysAlis CCD Oxford Diffraction Ltd, Köln, Germany.
  5. Oxford Diffraction (2007). CrysAlis RED Oxford Diffraction Ltd, Köln, Germany.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Shilpa & Gowda, B. T. (2007). Z. Naturforsch. Teil A, 62, 84–90.
  8. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053680901304X/tk2414sup1.cif

e-65-o1040-sup1.cif (30.2KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S160053680901304X/tk2414Isup2.hkl

e-65-o1040-Isup2.hkl (364.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES