Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 18;65(Pt 5):o1073. doi: 10.1107/S1600536809013798

4-(4-Bromo­benzene­sulfonamido)benzoic acid

Islam Ullah Khan a, Ghulam Mustafa a, Muhammad Nadeem Arshad a,*, Muhammad Shafiq a, Shahzad Sharif a
PMCID: PMC2977752  PMID: 21583888

Abstract

The title compound, C13H10BrNO4S, belongs to the sulfonamide class of organic compounds. The two aromatic rings are inclined at 34.30 (15)° to one another, and the carboxyl substituent lies in the plane of the benzene ring to which it is bound (maximum deviation = 0.004 Å). In the crystal structure, charactersitic carboxylic acid dimers are formed through O—H⋯O hydrogen bonds. These dimers are linked into rows down a by N—H⋯O inter­actions. Additional C—H⋯O contacts further stabilize the structure, and a close Br⋯Br(x, −y + 1, −z + 1) contact of 3.5199 (9) Å is also observed.

Related literature

For details of the biological activity and pharmaceutical applications of sulfonamide derivatives, see: Pandya et al. (2003); Supuran & Scozzafava (2000); Arshad, Khan & Zia-ur-Rehman (2008). For thia­zine-related heterocycles, see: Arshad, Tahir et al. (2008). For a related structure, see: Nan & Xing (2006). For bond-length information, see: Allen et al. (1987). For the synthesis, see: Deng & Mani (2006).graphic file with name e-65-o1073-scheme1.jpg

Experimental

Crystal data

  • C13H10BrNO4S

  • M r = 356.19

  • Monoclinic, Inline graphic

  • a = 5.1344 (5) Å

  • b = 13.1713 (11) Å

  • c = 20.0224 (19) Å

  • β = 91.730 (5)°

  • V = 1353.4 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.20 mm−1

  • T = 296 K

  • 0.35 × 0.21 × 0.09 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2007) T min = 0.448, T max = 0.754

  • 14856 measured reflections

  • 3352 independent reflections

  • 1838 reflections with I > 2σ(I)

  • R int = 0.061

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048

  • wR(F 2) = 0.128

  • S = 1.01

  • 3352 reflections

  • 182 parameters

  • H-atom parameters constrained

  • Δρmax = 1.43 e Å−3

  • Δρmin = −1.09 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809013798/sj2609sup1.cif

e-65-o1073-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013798/sj2609Isup2.hkl

e-65-o1073-Isup2.hkl (164.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2A⋯O1i 0.82 1.80 2.606 (4) 171
N1—H1⋯O4ii 0.86 2.57 3.001 (3) 112
C2—H2⋯O1iii 0.93 2.46 3.361 (5) 164
C3—H3⋯O2iv 0.93 2.53 3.314 (5) 143
C11—H11⋯O3v 0.93 2.58 3.395 (5) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Acknowledgments

MNA acknowledges the Higher Education Commission, Pakistan, for providing a PhD Scholarship under the PIN 042-120607-PS2-183 scheme and also acknowledges Professor Dr M. Nawaz Tahir, Chairman, Department of Physics, University of Sargodha, Pakistan, for his kind guidance in crystallography.

supplementary crystallographic information

Comment

Sulfonamide derivatives have been reported as antibacterial agents (Pandya et al., 2003) as well as enzyme inhibitors. The studies also revealed that aromatic sulfonamides are inhibitors of the growth of tumor cells (Supuran, & Scozzafava, 2000). Herein we report the structure of the title compound I, Fig, 1, as a continuation of our work on the synthesis and structure of sulfonamides (Arshad, Khan & Zia-ur-Rehman et al., 2008a) and thiazine related heterocycles (Arshad, Tahir et al., 2008b).

The structure of the title compound I can be compared with that of 4-(tosylamino)benzoic acid (Nan and Xing, 2006) which differs only in respect that I has bromo substituent in the para position instead of methyl group. The carboxylic acid substituent lies in the plane of the benzene ring to which it is bound (maximum deviation 0.004 Å) and the phenyl rings (C1—C6) and (C7—C12) are oriented at an angle of 34.30 (0.15) ° to each other. Bond lengths in the molecule are normal (Allen et al., 1987). The carboxylic acid substituent forms dimers via intermolecular O—H···O hydrogen bonds. These dimers are further linked through N–H···O hydrogen bonds between the N–H and the oxygen of the sulfonyl group (SO2) along the a axis. Moreover the structure is further stabilized by C–H···O intermolecular interactions, Table 1, by forming seven and ten membered ring motifs Fig. 3.

Experimental

The title compound was synthesized following the method (Deng & Mani, 2006). and recrystallized from ethanol for X-ray studies.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso=1.2Ueq (C) for aromatic 0.82 Å, Uiso = 1.5Ueq (O) for the OH group and 0.86 Å, Uiso = 1.2Ueq (N) for the NH group.

Figures

Fig. 1.

Fig. 1.

The structure of (I) with displacement ellipsoids for the non-hydrogenatoms drawn at the 50% probability level.

Fig. 2.

Fig. 2.

Crystal packing for (I) showing the formation of rows of dimers with hydrogen bonds drawn as dashed lines and H atoms not involved in hydrogen bonding omitted.

Fig. 3.

Fig. 3.

Unit cell packing for (I) showing additional C–H···O hydrogen bonds drawn as dashed lines and H atoms not involved in hydrogen bonding omitted.

Crystal data

C13H10BrNO4S F(000) = 712
Mr = 356.19 Dx = 1.748 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc 1 Cell parameters from 2704 reflections
a = 5.1344 (5) Å θ = 2.6–22.0°
b = 13.1713 (11) Å µ = 3.20 mm1
c = 20.0224 (19) Å T = 296 K
β = 91.730 (5)° Irregular fragment, white
V = 1353.4 (2) Å3 0.35 × 0.21 × 0.09 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 3352 independent reflections
Radiation source: fine-focus sealed tube 1838 reflections with I > 2σ(I)
graphite Rint = 0.061
φ and ω scans θmax = 28.3°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2007) h = −6→6
Tmin = 0.448, Tmax = 0.754 k = −17→10
14856 measured reflections l = −26→23

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.128 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0594P)2 + 0.1787P] where P = (Fo2 + 2Fc2)/3
3352 reflections (Δ/σ)max < 0.001
182 parameters Δρmax = 1.43 e Å3
0 restraints Δρmin = −1.09 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.06086 (10) 0.39989 (3) 0.44439 (2) 0.0693 (2)
S1 0.41495 (17) 0.01866 (7) 0.27290 (5) 0.0348 (2)
O1 0.6125 (5) 0.38278 (19) 0.01376 (14) 0.0509 (8)
O2 0.2589 (5) 0.4559 (2) 0.05304 (15) 0.0528 (8)
H2A 0.3084 0.5024 0.0293 0.079*
O3 0.3343 (5) −0.07285 (18) 0.30378 (14) 0.0459 (7)
O4 0.6772 (4) 0.0308 (2) 0.25256 (13) 0.0458 (7)
N1 0.2274 (5) 0.0325 (2) 0.20612 (15) 0.0353 (7)
H1 0.1085 −0.0116 0.1965 0.042*
C1 0.1820 (8) 0.2852 (3) 0.3973 (2) 0.0448 (10)
C2 0.0653 (8) 0.1929 (3) 0.4067 (2) 0.0498 (11)
H2 −0.0666 0.1862 0.4372 0.060*
C3 0.1449 (7) 0.1108 (3) 0.3707 (2) 0.0434 (10)
H3 0.0678 0.0478 0.3770 0.052*
C4 0.3401 (6) 0.1213 (3) 0.32476 (18) 0.0339 (9)
C5 0.4571 (8) 0.2152 (3) 0.3160 (2) 0.0472 (10)
H5 0.5886 0.2222 0.2854 0.057*
C6 0.3796 (8) 0.2975 (3) 0.3523 (2) 0.0548 (12)
H6 0.4582 0.3604 0.3468 0.066*
C7 0.2632 (6) 0.1189 (2) 0.16378 (18) 0.0310 (8)
C8 0.4623 (7) 0.1184 (3) 0.1193 (2) 0.0399 (9)
H8 0.5652 0.0608 0.1148 0.048*
C9 0.5087 (7) 0.2035 (3) 0.08134 (19) 0.0398 (9)
H9 0.6459 0.2037 0.0521 0.048*
C10 0.3537 (7) 0.2881 (3) 0.08650 (18) 0.0324 (8)
C11 0.1471 (7) 0.2863 (3) 0.1297 (2) 0.0412 (10)
H11 0.0378 0.3424 0.1326 0.049*
C12 0.1038 (7) 0.2019 (3) 0.16820 (19) 0.0411 (9)
H12 −0.0340 0.2011 0.1973 0.049*
C13 0.4143 (7) 0.3801 (3) 0.04823 (18) 0.0372 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0983 (4) 0.0484 (3) 0.0624 (4) 0.0061 (2) 0.0194 (3) −0.0097 (2)
S1 0.0293 (5) 0.0328 (5) 0.0428 (6) 0.0016 (4) 0.0084 (4) 0.0072 (4)
O1 0.0523 (17) 0.0412 (16) 0.061 (2) 0.0101 (12) 0.0304 (15) 0.0144 (13)
O2 0.0589 (17) 0.0363 (16) 0.065 (2) 0.0145 (14) 0.0293 (15) 0.0186 (14)
O3 0.0485 (16) 0.0331 (15) 0.0567 (19) 0.0037 (12) 0.0135 (13) 0.0141 (13)
O4 0.0271 (13) 0.0532 (18) 0.0579 (19) 0.0035 (11) 0.0117 (12) 0.0064 (13)
N1 0.0321 (16) 0.0332 (17) 0.041 (2) −0.0093 (12) 0.0037 (14) 0.0058 (14)
C1 0.056 (3) 0.040 (2) 0.039 (2) 0.0045 (19) 0.0048 (19) −0.0047 (18)
C2 0.053 (3) 0.051 (3) 0.047 (3) −0.003 (2) 0.021 (2) 0.001 (2)
C3 0.047 (2) 0.037 (2) 0.047 (3) −0.0076 (17) 0.014 (2) 0.0067 (18)
C4 0.0300 (19) 0.034 (2) 0.038 (2) −0.0021 (15) 0.0045 (16) 0.0050 (16)
C5 0.048 (2) 0.044 (2) 0.051 (3) −0.0081 (18) 0.019 (2) 0.001 (2)
C6 0.064 (3) 0.037 (2) 0.064 (3) −0.014 (2) 0.017 (2) 0.000 (2)
C7 0.0308 (18) 0.0265 (19) 0.036 (2) −0.0010 (14) 0.0040 (16) 0.0025 (15)
C8 0.044 (2) 0.031 (2) 0.046 (2) 0.0101 (16) 0.0135 (18) 0.0014 (17)
C9 0.043 (2) 0.035 (2) 0.042 (2) 0.0037 (17) 0.0171 (18) 0.0011 (18)
C10 0.0332 (19) 0.030 (2) 0.034 (2) −0.0001 (15) 0.0058 (16) 0.0006 (16)
C11 0.035 (2) 0.034 (2) 0.056 (3) 0.0119 (15) 0.0147 (18) 0.0088 (19)
C12 0.034 (2) 0.042 (2) 0.048 (3) 0.0069 (16) 0.0162 (18) 0.0083 (19)
C13 0.036 (2) 0.035 (2) 0.040 (2) −0.0002 (17) 0.0072 (18) 0.0029 (17)

Geometric parameters (Å, °)

Br1—C1 1.896 (4) C4—C5 1.388 (5)
S1—O3 1.422 (2) C5—C6 1.370 (5)
S1—O4 1.427 (2) C5—H5 0.9300
S1—N1 1.634 (3) C6—H6 0.9300
S1—C4 1.754 (4) C7—C12 1.370 (5)
O1—C13 1.247 (4) C7—C8 1.376 (5)
O2—C13 1.284 (4) C8—C9 1.379 (5)
O2—H2A 0.8200 C8—H8 0.9300
N1—C7 1.434 (4) C9—C10 1.374 (5)
N1—H1 0.8600 C9—H9 0.9300
C1—C2 1.371 (5) C10—C11 1.389 (5)
C1—C6 1.387 (5) C10—C13 1.472 (5)
C2—C3 1.370 (5) C11—C12 1.375 (5)
C2—H2 0.9300 C11—H11 0.9300
C3—C4 1.388 (5) C12—H12 0.9300
C3—H3 0.9300
O3—S1—O4 120.55 (15) C5—C6—C1 118.8 (4)
O3—S1—N1 106.15 (15) C5—C6—H6 120.6
O4—S1—N1 106.97 (15) C1—C6—H6 120.6
O3—S1—C4 108.90 (16) C12—C7—C8 120.2 (3)
O4—S1—C4 107.95 (16) C12—C7—N1 120.5 (3)
N1—S1—C4 105.33 (16) C8—C7—N1 119.3 (3)
C13—O2—H2A 109.5 C7—C8—C9 119.8 (3)
C7—N1—S1 119.3 (2) C7—C8—H8 120.1
C7—N1—H1 120.4 C9—C8—H8 120.1
S1—N1—H1 120.4 C10—C9—C8 120.5 (3)
C2—C1—C6 121.6 (4) C10—C9—H9 119.8
C2—C1—Br1 119.1 (3) C8—C9—H9 119.8
C6—C1—Br1 119.2 (3) C9—C10—C11 119.2 (3)
C3—C2—C1 119.3 (4) C9—C10—C13 119.7 (3)
C3—C2—H2 120.3 C11—C10—C13 121.0 (3)
C1—C2—H2 120.3 C12—C11—C10 120.1 (3)
C2—C3—C4 120.2 (3) C12—C11—H11 119.9
C2—C3—H3 119.9 C10—C11—H11 119.9
C4—C3—H3 119.9 C7—C12—C11 120.1 (3)
C5—C4—C3 119.8 (3) C7—C12—H12 119.9
C5—C4—S1 120.6 (3) C11—C12—H12 119.9
C3—C4—S1 119.4 (3) O1—C13—O2 122.6 (3)
C6—C5—C4 120.3 (4) O1—C13—C10 120.0 (3)
C6—C5—H5 119.8 O2—C13—C10 117.4 (3)
C4—C5—H5 119.8
O3—S1—N1—C7 −179.7 (2) Br1—C1—C6—C5 −176.8 (3)
O4—S1—N1—C7 −49.8 (3) S1—N1—C7—C12 −99.7 (4)
C4—S1—N1—C7 64.9 (3) S1—N1—C7—C8 79.3 (4)
C6—C1—C2—C3 −0.2 (7) C12—C7—C8—C9 3.0 (6)
Br1—C1—C2—C3 177.3 (3) N1—C7—C8—C9 −175.9 (3)
C1—C2—C3—C4 −0.5 (6) C7—C8—C9—C10 −1.5 (6)
C2—C3—C4—C5 0.8 (6) C8—C9—C10—C11 −0.9 (6)
C2—C3—C4—S1 −173.2 (3) C8—C9—C10—C13 176.9 (4)
O3—S1—C4—C5 162.7 (3) C9—C10—C11—C12 1.9 (6)
O4—S1—C4—C5 30.2 (4) C13—C10—C11—C12 −175.8 (4)
N1—S1—C4—C5 −83.8 (3) C8—C7—C12—C11 −2.0 (6)
O3—S1—C4—C3 −23.2 (3) N1—C7—C12—C11 176.9 (3)
O4—S1—C4—C3 −155.7 (3) C10—C11—C12—C7 −0.5 (6)
N1—S1—C4—C3 90.3 (3) C9—C10—C13—O1 −3.4 (6)
C3—C4—C5—C6 −0.3 (6) C11—C10—C13—O1 174.4 (3)
S1—C4—C5—C6 173.7 (3) C9—C10—C13—O2 177.8 (4)
C4—C5—C6—C1 −0.4 (6) C11—C10—C13—O2 −4.5 (5)
C2—C1—C6—C5 0.7 (7)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
O2—H2A···O1i 0.82 1.80 2.606 (4) 171
N1—H1···O4ii 0.86 2.57 3.001 (3) 112
C2—H2···O1iii 0.93 2.46 3.361 (5) 164
C3—H3···O2iv 0.93 2.53 3.314 (5) 143
C11—H11···O3v 0.93 2.58 3.395 (5) 146

Symmetry codes: (i) −x+1, −y+1, −z; (ii) x−1, y, z; (iii) x−1, −y+1/2, z+1/2; (iv) −x, y−1/2, −z+1/2; (v) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2609).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.
  2. Arshad, M. N., Khan, I. U. & Zia-ur-Rehman, M. (2008). Acta Cryst. E64, o2283–o2284. [DOI] [PMC free article] [PubMed]
  3. Arshad, M. N., Tahir, M. N., Khan, I. U., Shafiq, M. & Siddiqui, W. A. (2008). Acta Cryst. E64, o2045. [DOI] [PMC free article] [PubMed]
  4. Bruker (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Deng, X. & Mani, N. S. (2006). Green Chem 8, 835–838.
  7. Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  8. Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  9. Nan, Z.-H. & Xing, J.-D. (2006). Acta Cryst. E62, o1978–o1979.
  10. Pandya, R., Murashima, T., Tedeschi, L. & Barrett, A. G. M. (2003). J. Org. Chem 68, 8274–8276. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Supuran, C. T. & Scozzafava, A. (2000). J. Enzyme Inhib. Med. Chem.15, 597–610. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809013798/sj2609sup1.cif

e-65-o1073-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013798/sj2609Isup2.hkl

e-65-o1073-Isup2.hkl (164.4KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES