Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 25;65(Pt 5):o1116. doi: 10.1107/S1600536809014792

7-(2,4-Dichloro­phen­yl)-2-methyl­sulfanyl­pyrazolo[1,5-a]pyrimidine-3-carbonitrile

Li-rong Wen a,*, Huai-yuan Xie a, Shu-wen Wang a
PMCID: PMC2977792  PMID: 21583928

Abstract

In the mol­ecule of the title compound, C14H8Cl2N4S, all the ring atoms in the pyrazolopyrimidine system are almost coplanar, the largest deviation from the mean plane being 0.027 (2) Å for a C atom. The conformation of the methyl­sulfanyl group is anti­periplanar, with a torsion angle of −176.7 (2)°. A weak inter­molecular C—H⋯N hydrogen bond and a Cl⋯N halogen bond [Cl⋯N = 3.196 (5) Å] with a nearly linear N⋯Cl—C angle [174.2 (1)°] link the mol­ecules into a two-dimensional assembly. Face-to-face π–π stacking, with a centroid–centroid separation of 3.557 (2) Å and an angle of 7.1 (1)° between the two planes, completes the inter­molecular inter­actions in the solid state.

Related literature

For the biological activity of pyrazolo[1,5-a]pyrimidine derivatives, see: Li et al. (1995). For applications of enamino­nes, see: El-Taweei et al. (2001); Hernandez et al. (2003); Olivera et al. (2000). For bond-length data, see: Allen et al. (1987). For Cl⋯N halogen bonds, see: Chu, et al. (2001); Lommerse et al. (1996); Ramasubbu et al. (1986).graphic file with name e-65-o1116-scheme1.jpg

Experimental

Crystal data

  • C14H8Cl2N4S

  • M r = 335.20

  • Monoclinic, Inline graphic

  • a = 8.230 (2) Å

  • b = 14.656 (4) Å

  • c = 12.667 (4) Å

  • β = 108.460 (5)°

  • V = 1449.3 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.59 mm−1

  • T = 293 K

  • 0.32 × 0.26 × 0.22 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.814, T max = 0.879

  • 8252 measured reflections

  • 2965 independent reflections

  • 2181 reflections with I > 2σ(I)

  • R int = 0.032

Refinement

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.095

  • S = 1.04

  • 2965 reflections

  • 191 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.29 e Å−3

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809014792/zl2192sup1.cif

e-65-o1116-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014792/zl2192Isup2.hkl

e-65-o1116-Isup2.hkl (145.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8⋯N4i 0.93 2.61 3.474 (3) 154

Symmetry code: (i) Inline graphic.

Acknowledgments

We thank the Natural Science Foundation of Shandong Province (No. Y2006B11) for financial support.

supplementary crystallographic information

Comment

Pyrazolo[1,5-a]pyrimidine derivatives have been reported to show various biological activities such as antibacterial, insulin releasing, anti-inflammatory activities (Li et al., 1995). Enaminones have been widely used as building blocks in the synthesis of pyrazolo[1,5-a]pyrimidine derivatives (El-Taweei et al., 2001; Hernandez et al., 2003; Olivera et al., 2000). We report here the crystal structure of title compound (Fig.1), which was synthesized by reaction of 1-(2,4-dichlorophenyl)-3-dimethylamino-2-en-1-one and 3-methylsulfanyl-4-cyano-5-amino-1H-pyrazole in the presence of acetic acid.

The bond lengths and angles in this compound are within normal ranges (Allen, 2002). All the ring atoms in the pyrazolopyrimidine moiety are almost coplanar, the largest deviation from the mean plane being 0.027 (2)Å for atom C10. The dihedral angle between the pyrazolopyrimidine moiety and the benzene ring is 54.9 (5)°. The conformation of the methylsulfanyl moiety is antiperiplanar with a torsion angle C11—C12—S1—C13 of -176.7 (2)°.

In the crystal structure of the title compound, there are a weak intermolecular hydrogen bond of one phenyl hydrogen atom towards the nitrile N atom (C8—H8···N4, Table 1) and a nitrogen-chlorine donor-acceptor interaction (Chu, et al., 2001; Lommerse et al., 1996; Ramasubbu, et al., 1986) between the pyrimidinyl N atom and one of the chlorine atoms. The distance between Cl2 and N3 is 3.196 (5) Å which is definitively shorter than the sum of the corresponding van der Waals radii of Cl (1.75 Å) and N (1.55 Å). Moreover, this contact of N3 with Cl2 is nearly "head on" with N approaching Cl along the backside of C3—Cl2 with the N3···Cl2—C3 angle approximately linear 174.2 (1)° [symmetry code: -3/2 + x, 1/2 - y, -1/2 + z] (Fig. 2). These interactions loosly link the molecules into a two-dimensional assembly (Fig. 3). Face-to-face π-π stacking between the phenyl ring (C1—C6) and the pyrazol ring (C10—C12/N1/N2) in another molecule at 1/2+x, 3/2-y, 1/2+z complete the intermolecular interactions in the solid state. The centroid to centroid separation is 3.557 (2) Å and the angle between the two planes is 7.1 (1)°.

Experimental

A mixture of 1-(2,4-dichlorophenyl)-3-dimethylamino-2-en-1-one (2 mmol) and 3-methylsulfanyl-4-cyano-5-amino-1H-pyrazole (2 mmol) in glacial acetic acid (15 ml) was stirred for 12 h at room temperature. Then the mixture was evaporated by rotary evaporation to remove the acetic acid, and recrystallized from a mixture of EtOH and DMF. Yield: 77%. (m.p. 475 K).

Refinement

All H atoms were placed in calculated positions, with C—H = 0.93 or 0.96 Å, and included in the final cycles of the refinement using a riding model, with Uiso(H) set to 1.2 Ueq(C) for CH, and 1.5 Ueq(C) for CH3.

Figures

Fig. 1.

Fig. 1.

View of the title compound with 35% probability ellipsoids.

Fig. 2.

Fig. 2.

The molecular packing of the title compound viewed along the a axis. Dashed lines indicate the hydrogen bonds and N···Cl short contacts.

Fig. 3.

Fig. 3.

Diagram of two-dimensional structure linked by the hydrogen bonds and N···Cl short contacts.

Crystal data

C14H8Cl2N4S F(000) = 680
Mr = 335.20 Dx = 1.536 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 970 reflections
a = 8.230 (2) Å θ = 2.8–26.3°
b = 14.656 (4) Å µ = 0.59 mm1
c = 12.667 (4) Å T = 293 K
β = 108.460 (5)° Prism, colorless
V = 1449.3 (7) Å3 0.32 × 0.26 × 0.22 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer 2965 independent reflections
Radiation source: fine-focus sealed tube 2181 reflections with I > 2σ(I)
graphite Rint = 0.032
φ and ω scans θmax = 26.4°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −6→10
Tmin = 0.814, Tmax = 0.879 k = −16→18
8252 measured reflections l = −15→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.095 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0395P)2 + 0.5056P] where P = (Fo2 + 2Fc2)/3
2965 reflections (Δ/σ)max = 0.001
191 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.29 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.07522 (9) 1.04589 (4) 0.33961 (6) 0.0515 (2)
Cl1 0.27654 (9) 0.56767 (4) 0.47097 (6) 0.0587 (2)
Cl2 0.81796 (7) 0.72025 (5) 0.77238 (6) 0.0570 (2)
N1 0.1176 (2) 0.88388 (12) 0.44665 (15) 0.0337 (4)
N2 0.0148 (2) 0.81205 (12) 0.45471 (14) 0.0304 (4)
N4 −0.4254 (3) 0.99138 (17) 0.2170 (2) 0.0694 (8)
C1 0.3585 (3) 0.65420 (15) 0.56647 (18) 0.0351 (5)
C2 0.5304 (3) 0.65097 (16) 0.62770 (19) 0.0399 (6)
H2 0.5982 0.6025 0.6193 0.048*
C3 0.6000 (3) 0.72040 (16) 0.70121 (19) 0.0373 (5)
C4 0.4996 (3) 0.79158 (16) 0.71666 (19) 0.0385 (5)
H4 0.5468 0.8373 0.7681 0.046*
C5 0.3289 (3) 0.79383 (16) 0.65490 (19) 0.0383 (5)
H5 0.2616 0.8420 0.6648 0.046*
C6 0.2541 (3) 0.72596 (14) 0.57789 (18) 0.0317 (5)
C7 0.0708 (3) 0.73292 (15) 0.51216 (18) 0.0335 (5)
C8 −0.0531 (3) 0.66876 (16) 0.5045 (2) 0.0437 (6)
H8 −0.0243 0.6132 0.5411 0.052*
C9 −0.2230 (3) 0.68669 (18) 0.4416 (2) 0.0479 (6)
H9 −0.3036 0.6412 0.4376 0.057*
N3 −0.2771 (2) 0.76324 (14) 0.38782 (17) 0.0427 (5)
C10 −0.1555 (3) 0.82588 (15) 0.39444 (18) 0.0336 (5)
C11 −0.1611 (3) 0.91130 (15) 0.34518 (18) 0.0352 (5)
C12 0.0087 (3) 0.94280 (15) 0.38006 (18) 0.0342 (5)
C13 0.3024 (4) 1.0381 (2) 0.4068 (3) 0.0697 (9)
H13A 0.3249 1.0229 0.4838 0.105*
H13B 0.3547 1.0957 0.4012 0.105*
H13C 0.3489 0.9916 0.3714 0.105*
C14 −0.3084 (3) 0.95536 (16) 0.2741 (2) 0.0429 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0594 (4) 0.0374 (4) 0.0588 (4) 0.0004 (3) 0.0206 (3) 0.0114 (3)
Cl1 0.0602 (4) 0.0408 (4) 0.0615 (4) 0.0086 (3) −0.0002 (3) −0.0164 (3)
Cl2 0.0290 (3) 0.0678 (5) 0.0654 (5) 0.0002 (3) 0.0025 (3) 0.0056 (4)
N1 0.0313 (10) 0.0320 (10) 0.0379 (11) 0.0008 (8) 0.0110 (8) 0.0017 (8)
N2 0.0266 (9) 0.0312 (10) 0.0319 (10) 0.0020 (7) 0.0069 (7) 0.0012 (8)
N4 0.0641 (15) 0.0544 (15) 0.0648 (16) 0.0238 (12) −0.0150 (13) −0.0040 (12)
C1 0.0396 (13) 0.0294 (11) 0.0335 (12) 0.0021 (10) 0.0075 (10) 0.0003 (10)
C2 0.0361 (13) 0.0379 (13) 0.0445 (14) 0.0101 (10) 0.0113 (11) 0.0052 (11)
C3 0.0276 (11) 0.0421 (13) 0.0400 (13) −0.0003 (10) 0.0075 (10) 0.0083 (11)
C4 0.0385 (13) 0.0377 (13) 0.0347 (12) −0.0040 (10) 0.0049 (10) −0.0013 (10)
C5 0.0391 (13) 0.0346 (13) 0.0388 (13) 0.0072 (10) 0.0089 (10) −0.0002 (10)
C6 0.0309 (11) 0.0302 (11) 0.0312 (11) 0.0028 (9) 0.0056 (9) 0.0034 (9)
C7 0.0338 (12) 0.0325 (12) 0.0323 (12) 0.0048 (9) 0.0079 (10) 0.0029 (9)
C8 0.0417 (14) 0.0374 (14) 0.0475 (15) −0.0015 (11) 0.0075 (11) 0.0110 (11)
C9 0.0385 (14) 0.0461 (15) 0.0550 (16) −0.0102 (11) 0.0089 (12) 0.0053 (12)
N3 0.0289 (10) 0.0456 (12) 0.0497 (12) −0.0016 (9) 0.0070 (9) 0.0027 (10)
C10 0.0280 (11) 0.0383 (13) 0.0327 (12) 0.0045 (10) 0.0069 (9) −0.0005 (10)
C11 0.0353 (12) 0.0347 (12) 0.0319 (12) 0.0072 (10) 0.0054 (9) 0.0002 (10)
C12 0.0391 (12) 0.0320 (12) 0.0319 (12) 0.0021 (10) 0.0117 (10) 0.0001 (10)
C13 0.0535 (17) 0.0595 (19) 0.104 (3) −0.0107 (14) 0.0367 (17) 0.0076 (18)
C14 0.0450 (14) 0.0362 (13) 0.0393 (13) 0.0077 (11) 0.0016 (11) −0.0040 (11)

Geometric parameters (Å, °)

S1—C12 1.739 (2) C5—C6 1.393 (3)
S1—C13 1.796 (3) C5—H5 0.9300
Cl1—C1 1.735 (2) C6—C7 1.478 (3)
Cl2—C3 1.734 (2) C7—C8 1.368 (3)
N1—C12 1.335 (3) C8—C9 1.398 (3)
N1—N2 1.375 (2) C8—H8 0.9300
N2—C7 1.369 (3) C9—N3 1.315 (3)
N2—C10 1.383 (3) C9—H9 0.9300
N4—C14 1.135 (3) N3—C10 1.341 (3)
C1—C2 1.382 (3) C10—C11 1.393 (3)
C1—C6 1.394 (3) C11—C12 1.404 (3)
C2—C3 1.376 (3) C11—C14 1.416 (3)
C2—H2 0.9300 C13—H13A 0.9600
C3—C4 1.383 (3) C13—H13B 0.9600
C4—C5 1.375 (3) C13—H13C 0.9600
C4—H4 0.9300
C12—S1—C13 100.53 (12) N2—C7—C6 118.02 (18)
C12—N1—N2 103.65 (17) C7—C8—C9 120.0 (2)
C7—N2—N1 125.20 (17) C7—C8—H8 120.0
C7—N2—C10 121.97 (18) C9—C8—H8 120.0
N1—N2—C10 112.79 (17) N3—C9—C8 124.7 (2)
C2—C1—C6 121.5 (2) N3—C9—H9 117.6
C2—C1—Cl1 117.98 (17) C8—C9—H9 117.6
C6—C1—Cl1 120.48 (17) C9—N3—C10 115.34 (19)
C3—C2—C1 119.2 (2) N3—C10—N2 122.7 (2)
C3—C2—H2 120.4 N3—C10—C11 132.0 (2)
C1—C2—H2 120.4 N2—C10—C11 105.25 (18)
C2—C3—C4 120.9 (2) C10—C11—C12 105.43 (18)
C2—C3—Cl2 119.44 (18) C10—C11—C14 126.5 (2)
C4—C3—Cl2 119.59 (18) C12—C11—C14 128.1 (2)
C5—C4—C3 119.1 (2) N1—C12—C11 112.9 (2)
C5—C4—H4 120.4 N1—C12—S1 122.49 (17)
C3—C4—H4 120.4 C11—C12—S1 124.61 (17)
C4—C5—C6 121.8 (2) S1—C13—H13A 109.5
C4—C5—H5 119.1 S1—C13—H13B 109.5
C6—C5—H5 119.1 H13A—C13—H13B 109.5
C5—C6—C1 117.5 (2) S1—C13—H13C 109.5
C5—C6—C7 119.43 (19) H13A—C13—H13C 109.5
C1—C6—C7 123.12 (19) H13B—C13—H13C 109.5
C8—C7—N2 115.24 (19) N4—C14—C11 179.3 (3)
C8—C7—C6 126.7 (2)
C12—N1—N2—C7 177.7 (2) N2—C7—C8—C9 −0.3 (3)
C12—N1—N2—C10 −0.1 (2) C6—C7—C8—C9 177.8 (2)
C6—C1—C2—C3 −0.3 (3) C7—C8—C9—N3 −0.8 (4)
Cl1—C1—C2—C3 177.75 (18) C8—C9—N3—C10 1.3 (4)
C1—C2—C3—C4 1.8 (4) C9—N3—C10—N2 −0.9 (3)
C1—C2—C3—Cl2 −176.31 (18) C9—N3—C10—C11 176.2 (2)
C2—C3—C4—C5 −1.9 (4) C7—N2—C10—N3 −0.1 (3)
Cl2—C3—C4—C5 176.16 (18) N1—N2—C10—N3 177.8 (2)
C3—C4—C5—C6 0.6 (4) C7—N2—C10—C11 −177.85 (19)
C4—C5—C6—C1 0.9 (3) N1—N2—C10—C11 0.1 (2)
C4—C5—C6—C7 −178.7 (2) N3—C10—C11—C12 −177.4 (2)
C2—C1—C6—C5 −1.0 (3) N2—C10—C11—C12 0.0 (2)
Cl1—C1—C6—C5 −179.02 (18) N3—C10—C11—C14 1.9 (4)
C2—C1—C6—C7 178.6 (2) N2—C10—C11—C14 179.4 (2)
Cl1—C1—C6—C7 0.6 (3) N2—N1—C12—C11 0.1 (2)
N1—N2—C7—C8 −177.0 (2) N2—N1—C12—S1 −178.37 (15)
C10—N2—C7—C8 0.7 (3) C10—C11—C12—N1 −0.1 (3)
N1—N2—C7—C6 4.8 (3) C14—C11—C12—N1 −179.5 (2)
C10—N2—C7—C6 −177.55 (19) C10—C11—C12—S1 178.38 (17)
C5—C6—C7—C8 −125.1 (3) C14—C11—C12—S1 −1.0 (3)
C1—C6—C7—C8 55.3 (3) C13—S1—C12—N1 1.7 (2)
C5—C6—C7—N2 52.9 (3) C13—S1—C12—C11 −176.7 (2)
C1—C6—C7—N2 −126.7 (2)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C8—H8···N4i 0.93 2.61 3.474 (3) 154

Symmetry codes: (i) x+1/2, −y+3/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2192).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (1998). SMART Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (1999). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chu, Q., Wang, Z., Huang, Q., Yan, C. & Zhu, S. (2001). J. Am. Chem. Soc.123, 11069–11070. [DOI] [PubMed]
  5. El-Taweei, F. M. A. A. & Elangdi, M. H. (2001). J. Heterocycl. Chem.38, 981–984.
  6. Hernandez, S., Sanmantin, R., Tellitu, I. & Dominguez, E. (2003). Org. Lett.5, 1095–1098. [DOI] [PubMed]
  7. Li, J. J., Anderson, D., Burton, E. G. & Cogburn, J. N. (1995). J. Med. Chem.38, 4570–4578. [DOI] [PubMed]
  8. Lommerse, J. P. M., Stone, A. J., Taylor, R. & Allen, F. H. (1996). J. Am. Chem. Soc.118, 3108–3116.
  9. Olivera, R., SanMartin, R., Tellitu, I. & Dominguez, E. (2000). Tetrahedron Lett.41, 4353–4356.
  10. Ramasubbu, N., Parthasarathy, R. & Murray-Rust, P. (1986). J. Am. Chem. Soc.108, 4308–4314.
  11. Sheldrick, G. M. (1996). SADABS, University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536809014792/zl2192sup1.cif

e-65-o1116-sup1.cif (17.8KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809014792/zl2192Isup2.hkl

e-65-o1116-Isup2.hkl (145.5KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES