Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2009 Apr 25;65(Pt 5):o1129. doi: 10.1107/S1600536809013749

Diethyl 4-(4,5-dihydro­furan-2-yl)-3,5-di­methyl-1-phenyl-1,4-dihydro­pyrazine-2,6-dicarboxyl­ate

Jing-Yu He a, Zhi-Lin Tan a, Hong Yan a,*
PMCID: PMC2977802  PMID: 21583939

Abstract

In the title compound, C22H26N2O5, the central 1,4-dihydro­pyrazine ring adopts a boat conformation, while the benzene ring and the two disordered components of the furan ring are inclined at angles of 77.9 (5) and 61.9 (7)°. Three of the C atoms of the furan ring are disordered over two positions with occupancies of 0.655 (18) and 0.345 (18). In the crystal structure, weak inter­molecular C—H⋯O hydrogen bonds link the mol­ecules into chains propagating in [010].

Related literature

For the biological properties of 1,4-dihydro­pyrazines, see: Goto et al. (1968); Teranishi & Goto (1990). For their biomedical applications, see: Brook et al. (1992); Sit et al. (2002). For the synthesis of 1,4-dihydro­pyrazines, see: Wolfbeis (1977); Chorvat & Rorig (1988); Rodrigues et al. (2004).graphic file with name e-65-o1129-scheme1.jpg

Experimental

Crystal data

  • C22H26N2O5

  • M r = 398.45

  • Triclinic, Inline graphic

  • a = 10.069 (2) Å

  • b = 10.242 (2) Å

  • c = 12.519 (3) Å

  • α = 72.37 (3)°

  • β = 77.59 (3)°

  • γ = 63.76 (3)°

  • V = 1098.8 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.50 × 0.40 × 0.25 mm

Data collection

  • Rigaku R-AXIS RAPID IP diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.958, T max = 0.979

  • 7345 measured reflections

  • 3768 independent reflections

  • 1555 reflections with I > 2σ(I)

  • R int = 0.045

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059

  • wR(F 2) = 0.182

  • S = 0.84

  • 3768 reflections

  • 291 parameters

  • 52 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.13 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2000); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809013749/hb2937sup1.cif

e-65-o1129-sup1.cif (25.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013749/hb2937Isup2.hkl

e-65-o1129-Isup2.hkl (184.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12C⋯O5i 0.96 2.67 3.618 (5) 169

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Professor Jim Simpson of the University of Otago for extensive assistance in refining the single-crystal data and editing the manuscript. This work was supported by the National Natural Sciences Foundation (grant No. 20872009), the Natural Sciences Foundation of Beijing (grant No. 200710005002), and Key Projects in the National Science and Technology Pillar Program during the Eleventh Five-Year Plan Period (grant No. 2008ZX10001-015).

supplementary crystallographic information

Comment

The application of 1,4-dihydropyrazines in the field of biological agents and medicines has been widely investigated (Brook, et al., 1992, Sit, et al., 2002.), because 1,4-dihydropyrazine unit was found to be a component of the flavin coenzymes and several marine luciferins (Goto et al., 1968; Teranishi & Goto, 1990). Although the synthesis of 1,4-dihydropyrazines has been studied for many years (Wolfbeis 1977; Chorvat & Rorig 1988; Rodrigues et al. 2004), their photochemical properties have not been paid much attention in the literature to date.

The photochemical stability of 2,6-diethoxycarbonyl-3,5-dimethyl-1-phenyl-1,4-dihydro- pyrazine (II) was investigated in a variety of conventional solvents such as benzene, THF, acetone, ethyl acetate, ethyl nitrile, n-hexane, ether, methanol and dichloromethane. In THF, the title compound (I), was obtained in a yield of ca 5% after irradiation for 8 h with a high-pressure Hg lamp. A similar transformation also occurred by irradiation with sunlight, ultraviolet, or other lower powered light sources. The present X-ray crystal structure analysis was undertaken, to study the stereochemistry and crystal packing of (I).

In (I) (Fig. 1), the 1,4-dihydropyrazine ring (N1/C3/C2/N2/C6/C7) adopts a boat conformation: atoms C2, C3, C6 and C7 are coplanar, with atoms N1 and N2 deviating from this plane by 0.517 (4) and 0.362 (5) Å, respectively. The dihedral angle between the phenyl ring and C2/C3/C6/C7 plane is 70.46 (18)°. with those between the phenyl ring and the two disorder components of the furan ring are 77.9 (5)° and 61.9 (7)° respectively. In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into chains propagated along b axis.

Experimental

Diethyl 3,5-dimethyl-1-phenyl-1,4-dihydropyrazine-2,6-dicarboxylate, (330 mg, 1 mmol) was dissolved in dry furan (30 ml) and poured into the photolysis unit. The solution was irradiated with a 500 W Hg lamp. The reaction was monitored by TLC. After 8 h, the solvent was removed in vacuo and the crude sample was purified on a silica-gel column using an n-hexane/ethyl acetate (20:1 v/v) as eluant. Colourless blocks of (I) were obtained by slow evaporation of a n-hexane / ethyl acetate solution (3:1 v/v) in a yield of 5.2% (21 mg; m.p. 421–423 K).

Refinement

All H-atoms were positioned geometrically (C—H = 0.93–0.96Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Some cardon atoms in the furan ring refined with very anisotropic displacemet factors, indicating positional disorder. In the chosen disorder model, atoms C19, C20 and C21 were disordered over two positions with refined occupancies of 0.655 (18) and 0.345 (18). However, high atomic displacement parameters for these and their neighbouring atoms indicates that additional unresolved disorder may also be present.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing only the major disorder component of the furan ring. Displacement ellipsoids are drawn at the 30% probability level and H atoms have been omitted for clarity.

Crystal data

C22H26N2O5 Z = 2
Mr = 398.45 F(000) = 424
Triclinic, P1 Dx = 1.204 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 10.069 (2) Å Cell parameters from 7345 reflections
b = 10.242 (2) Å θ = 2.3–25.0°
c = 12.519 (3) Å µ = 0.09 mm1
α = 72.37 (3)° T = 293 K
β = 77.59 (3)° Block, colourless
γ = 63.76 (3)° 0.50 × 0.40 × 0.25 mm
V = 1098.8 (4) Å3

Data collection

Rigaku R-AXIS RAPID IP diffractometer 3768 independent reflections
Radiation source: fine-focus sealed tube 1555 reflections with I > 2σ(I)
graphite Rint = 0.045
Detector resolution: 10.00 pixels mm-1 θmax = 25.0°, θmin = 2.3°
ω scans h = −11→10
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) k = −12→12
Tmin = 0.958, Tmax = 0.979 l = −14→13
7345 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.059 H-atom parameters constrained
wR(F2) = 0.182 w = 1/[σ2(Fo2) + (0.102P)2] where P = (Fo2 + 2Fc2)/3
S = 0.84 (Δ/σ)max = 0.005
3768 reflections Δρmax = 0.17 e Å3
291 parameters Δρmin = −0.13 e Å3
52 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.034 (5)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.6304 (3) 0.7169 (3) 0.1028 (2) 0.1226 (10)
O2 0.5222 (2) 0.5632 (3) 0.19260 (19) 0.0867 (7)
O3 0.1854 (3) 0.7014 (4) 0.5774 (2) 0.1395 (12)
O4 0.2987 (3) 0.5488 (3) 0.46179 (19) 0.1043 (9)
N1 0.2832 (3) 0.7643 (3) 0.2761 (2) 0.0696 (7)
N2 0.2680 (3) 1.0189 (3) 0.2870 (4) 0.1035 (11)
C1 0.4963 (4) 1.0117 (4) 0.1529 (3) 0.1177 (15)
H1A 0.4623 1.1095 0.1661 0.177*
H1B 0.5047 1.0198 0.0735 0.177*
H1C 0.5917 0.9491 0.1810 0.177*
C2 0.3879 (4) 0.9443 (4) 0.2120 (3) 0.0866 (11)
C3 0.4005 (3) 0.8073 (4) 0.2125 (3) 0.0699 (9)
C4 0.5280 (4) 0.6958 (4) 0.1640 (3) 0.0765 (9)
C5 0.1917 (4) 0.9956 (5) 0.4888 (4) 0.1324 (17)
H5A 0.1863 1.0960 0.4653 0.199*
H5B 0.2671 0.9352 0.5399 0.199*
H5C 0.0974 0.9967 0.5258 0.199*
C6 0.2298 (4) 0.9315 (5) 0.3880 (4) 0.0951 (12)
C7 0.2464 (3) 0.7984 (4) 0.3838 (3) 0.0760 (9)
C8 0.2383 (4) 0.6822 (5) 0.4836 (4) 0.0944 (11)
C9 0.6449 (4) 0.4402 (4) 0.1523 (3) 0.1075 (13)
H9A 0.6539 0.4641 0.0707 0.129*
H9B 0.7370 0.4254 0.1762 0.129*
C10 0.6198 (5) 0.3060 (5) 0.1958 (4) 0.1389 (18)
H10A 0.7012 0.2253 0.1686 0.208*
H10B 0.5290 0.3207 0.1714 0.208*
H10C 0.6124 0.2818 0.2766 0.208*
C11 0.3014 (6) 0.4218 (5) 0.5561 (4) 0.1469 (19)
H11A 0.3477 0.4207 0.6169 0.176*
H11B 0.2005 0.4318 0.5837 0.176*
C12 0.3823 (5) 0.2857 (6) 0.5208 (4) 0.1332 (16)
H12A 0.3808 0.2031 0.5824 0.200*
H12B 0.4833 0.2739 0.4966 0.200*
H12C 0.3375 0.2880 0.4595 0.200*
C13 0.1673 (3) 0.7858 (3) 0.2185 (3) 0.0658 (8)
C14 0.1859 (3) 0.7952 (4) 0.1046 (3) 0.0800 (10)
H14 0.2763 0.7905 0.0642 0.096*
C15 0.0733 (4) 0.8114 (4) 0.0497 (3) 0.1003 (12)
H15 0.0873 0.8206 −0.0276 0.120*
C16 −0.0604 (4) 0.8142 (4) 0.1082 (4) 0.1045 (12)
H16 −0.1357 0.8220 0.0716 0.125*
C17 −0.0797 (4) 0.8053 (4) 0.2212 (4) 0.0980 (12)
H17 −0.1702 0.8096 0.2612 0.118*
C18 0.0310 (3) 0.7903 (4) 0.2771 (3) 0.0848 (10)
H18 0.0155 0.7831 0.3542 0.102*
O5 0.2634 (3) 1.2572 (3) 0.2789 (2) 0.1113 (9)
C22 0.0984 (5) 1.2576 (5) 0.1768 (4) 0.1378 (18)
H22 0.0796 1.2188 0.1262 0.165*
C19A 0.1706 (10) 1.1824 (7) 0.2786 (9) 0.098 (3) 0.655 (18)
C20A 0.1744 (15) 1.4006 (12) 0.2440 (12) 0.133 (4) 0.655 (18)
H20A 0.2337 1.4551 0.1997 0.160* 0.655 (18)
H20B 0.1250 1.4425 0.3089 0.160* 0.655 (18)
C21A 0.0607 (17) 1.4213 (11) 0.1753 (14) 0.152 (5) 0.655 (18)
H21A 0.0713 1.4796 0.0994 0.182* 0.655 (18)
H21B −0.0392 1.4690 0.2094 0.182* 0.655 (18)
C19B 0.2390 (19) 1.1784 (12) 0.2077 (18) 0.107 (6) 0.345 (18)
C20B 0.206 (4) 1.427 (3) 0.209 (3) 0.208 (17) 0.345 (18)
H20C 0.1396 1.4977 0.2540 0.250* 0.345 (18)
H20D 0.2851 1.4567 0.1676 0.250* 0.345 (18)
C21B 0.127 (3) 1.400 (2) 0.138 (2) 0.163 (12) 0.345 (18)
H21C 0.1837 1.3997 0.0645 0.196* 0.345 (18)
H21D 0.0321 1.4850 0.1274 0.196* 0.345 (18)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0867 (18) 0.118 (2) 0.146 (2) −0.0465 (16) 0.0294 (17) −0.0275 (18)
O2 0.0683 (14) 0.0740 (16) 0.1007 (17) −0.0191 (12) 0.0113 (12) −0.0256 (13)
O3 0.131 (2) 0.176 (3) 0.099 (2) −0.048 (2) 0.0251 (18) −0.063 (2)
O4 0.119 (2) 0.097 (2) 0.0760 (16) −0.0355 (16) 0.0076 (14) −0.0158 (15)
N1 0.0622 (16) 0.0669 (16) 0.0786 (18) −0.0212 (12) −0.0053 (14) −0.0247 (14)
N2 0.081 (2) 0.063 (2) 0.171 (4) −0.0093 (17) −0.037 (2) −0.048 (2)
C1 0.130 (3) 0.105 (3) 0.134 (3) −0.076 (3) −0.047 (3) 0.019 (3)
C2 0.091 (3) 0.064 (2) 0.108 (3) −0.034 (2) −0.045 (2) 0.005 (2)
C3 0.0558 (19) 0.069 (2) 0.075 (2) −0.0206 (16) −0.0101 (16) −0.0075 (17)
C4 0.064 (2) 0.082 (3) 0.078 (2) −0.0333 (19) −0.0047 (18) −0.008 (2)
C5 0.106 (3) 0.143 (4) 0.177 (4) −0.029 (3) −0.001 (3) −0.118 (4)
C6 0.068 (2) 0.087 (3) 0.127 (4) −0.017 (2) −0.011 (2) −0.044 (3)
C7 0.059 (2) 0.078 (2) 0.092 (3) −0.0144 (17) −0.0012 (17) −0.047 (2)
C8 0.082 (3) 0.100 (3) 0.092 (3) −0.020 (2) −0.003 (2) −0.040 (3)
C9 0.086 (3) 0.092 (3) 0.119 (3) −0.018 (2) 0.018 (2) −0.038 (2)
C10 0.133 (4) 0.095 (3) 0.172 (4) −0.045 (3) 0.042 (3) −0.051 (3)
C11 0.189 (5) 0.121 (4) 0.089 (3) −0.057 (4) 0.021 (3) 0.000 (3)
C12 0.153 (4) 0.125 (4) 0.113 (4) −0.059 (3) −0.020 (3) −0.009 (3)
C13 0.060 (2) 0.0530 (18) 0.083 (2) −0.0165 (14) −0.0107 (17) −0.0202 (16)
C14 0.063 (2) 0.088 (2) 0.081 (3) −0.0254 (17) −0.0066 (18) −0.0182 (19)
C15 0.083 (3) 0.124 (3) 0.086 (3) −0.034 (2) −0.022 (2) −0.018 (2)
C16 0.073 (3) 0.118 (3) 0.120 (3) −0.032 (2) −0.023 (2) −0.024 (3)
C17 0.062 (2) 0.111 (3) 0.115 (3) −0.036 (2) −0.001 (2) −0.023 (3)
C18 0.060 (2) 0.101 (3) 0.090 (2) −0.0280 (18) −0.0035 (19) −0.029 (2)
O5 0.1092 (18) 0.0695 (18) 0.166 (3) −0.0273 (15) −0.0492 (17) −0.0316 (17)
C22 0.164 (5) 0.087 (3) 0.166 (4) −0.034 (3) −0.097 (4) −0.006 (3)
C19A 0.088 (5) 0.053 (4) 0.160 (8) −0.010 (3) −0.044 (5) −0.042 (4)
C20A 0.155 (9) 0.044 (5) 0.207 (10) −0.045 (6) −0.056 (8) −0.004 (7)
C21A 0.141 (9) 0.093 (7) 0.218 (12) −0.029 (6) −0.094 (9) −0.008 (7)
C19B 0.082 (10) 0.069 (8) 0.178 (15) −0.004 (6) −0.049 (9) −0.054 (9)
C20B 0.152 (17) 0.117 (19) 0.32 (3) −0.097 (14) −0.059 (16) 0.092 (17)
C21B 0.19 (3) 0.073 (12) 0.184 (18) −0.042 (14) 0.037 (17) −0.033 (11)

Geometric parameters (Å, °)

O1—C4 1.207 (3) C12—H12A 0.9600
O2—C4 1.320 (4) C12—H12B 0.9600
O2—C9 1.452 (4) C12—H12C 0.9600
O3—C8 1.216 (4) C13—C14 1.376 (4)
O4—C8 1.316 (4) C13—C18 1.398 (4)
O4—C11 1.462 (4) C14—C15 1.373 (4)
N1—C13 1.404 (4) C14—H14 0.9300
N1—C7 1.426 (4) C15—C16 1.380 (5)
N1—C3 1.437 (4) C15—H15 0.9300
N2—C6 1.399 (5) C16—C17 1.367 (5)
N2—C2 1.433 (4) C16—H16 0.9300
N2—C19A 1.504 (7) C17—C18 1.368 (5)
N2—C19B 1.568 (15) C17—H17 0.9300
C1—C2 1.492 (5) C18—H18 0.9300
C1—H1A 0.9600 O5—C20A 1.329 (12)
C1—H1B 0.9600 O5—C19A 1.448 (8)
C1—H1C 0.9600 O5—C19B 1.488 (13)
C2—C3 1.350 (4) O5—C20B 1.59 (2)
C3—C4 1.453 (4) C22—C19B 1.357 (12)
C5—C6 1.498 (5) C22—C19A 1.433 (8)
C5—H5A 0.9600 C22—C21B 1.530 (17)
C5—H5B 0.9600 C22—C21A 1.541 (10)
C5—H5C 0.9600 C22—H22 0.9300
C6—C7 1.314 (5) C20A—C21A 1.480 (11)
C7—C8 1.458 (5) C20A—H20A 0.9700
C9—C10 1.430 (5) C20A—H20B 0.9700
C9—H9A 0.9700 C21A—H21A 0.9700
C9—H9B 0.9700 C21A—H21B 0.9700
C10—H10A 0.9600 C20B—C21B 1.460 (19)
C10—H10B 0.9600 C20B—H20C 0.9700
C10—H10C 0.9600 C20B—H20D 0.9700
C11—C12 1.420 (5) C21B—H21C 0.9700
C11—H11A 0.9700 C21B—H21D 0.9700
C11—H11B 0.9700
C4—O2—C9 118.7 (3) C14—C13—C18 118.0 (3)
C8—O4—C11 117.1 (3) C14—C13—N1 121.6 (3)
C13—N1—C7 118.2 (2) C18—C13—N1 120.4 (3)
C13—N1—C3 118.2 (3) C15—C14—C13 121.1 (3)
C7—N1—C3 111.3 (3) C15—C14—H14 119.5
C6—N2—C2 118.2 (3) C13—C14—H14 119.5
C6—N2—C19A 110.6 (6) C14—C15—C16 120.7 (4)
C2—N2—C19A 131.2 (6) C14—C15—H15 119.7
C6—N2—C19B 148.5 (9) C16—C15—H15 119.7
C2—N2—C19B 93.3 (8) C17—C16—C15 118.4 (4)
C19A—N2—C19B 37.9 (5) C17—C16—H16 120.8
C2—C1—H1A 109.5 C15—C16—H16 120.8
C2—C1—H1B 109.5 C16—C17—C18 121.6 (3)
H1A—C1—H1B 109.5 C16—C17—H17 119.2
C2—C1—H1C 109.5 C18—C17—H17 119.2
H1A—C1—H1C 109.5 C17—C18—C13 120.2 (3)
H1B—C1—H1C 109.5 C17—C18—H18 119.9
C3—C2—N2 114.5 (3) C13—C18—H18 119.9
C3—C2—C1 125.7 (4) C20A—O5—C19A 102.0 (6)
N2—C2—C1 119.4 (4) C20A—O5—C19B 104.9 (6)
C2—C3—N1 116.4 (3) C19A—O5—C19B 39.8 (6)
C2—C3—C4 125.7 (3) C20A—O5—C20B 19.4 (15)
N1—C3—C4 117.7 (3) C19A—O5—C20B 113.8 (11)
O1—C4—O2 121.2 (3) C19B—O5—C20B 103.7 (12)
O1—C4—C3 125.7 (3) C19B—C22—C19A 41.9 (7)
O2—C4—C3 113.1 (3) C19B—C22—C21B 89.5 (15)
C6—C5—H5A 109.5 C19A—C22—C21B 102.7 (12)
C6—C5—H5B 109.5 C19B—C22—C21A 105.4 (7)
H5A—C5—H5B 109.5 C19A—C22—C21A 99.8 (6)
C6—C5—H5C 109.5 C21B—C22—C21A 27.0 (11)
H5A—C5—H5C 109.5 C19B—C22—H22 111.8
H5B—C5—H5C 109.5 C19A—C22—H22 130.1
C7—C6—N2 115.8 (4) C21B—C22—H22 121.4
C7—C6—C5 128.6 (5) C21A—C22—H22 130.1
N2—C6—C5 115.3 (4) C22—C19A—O5 106.0 (6)
C6—C7—N1 117.6 (4) C22—C19A—N2 114.1 (6)
C6—C7—C8 123.3 (4) O5—C19A—N2 108.2 (5)
N1—C7—C8 118.9 (3) O5—C20A—C21A 112.4 (8)
O3—C8—O4 122.4 (4) O5—C20A—H20A 109.1
O3—C8—C7 125.8 (4) C21A—C20A—H20A 109.1
O4—C8—C7 111.8 (3) O5—C20A—H20B 109.1
C10—C9—O2 110.0 (3) C21A—C20A—H20B 109.1
C10—C9—H9A 109.7 H20A—C20A—H20B 107.9
O2—C9—H9A 109.7 C20A—C21A—C22 101.2 (7)
C10—C9—H9B 109.7 C20A—C21A—H21A 111.5
O2—C9—H9B 109.7 C22—C21A—H21A 111.5
H9A—C9—H9B 108.2 C20A—C21A—H21B 111.5
C9—C10—H10A 109.5 C22—C21A—H21B 111.5
C9—C10—H10B 109.5 H21A—C21A—H21B 109.4
H10A—C10—H10B 109.5 C22—C19B—O5 107.9 (10)
C9—C10—H10C 109.5 C22—C19B—N2 114.6 (12)
H10A—C10—H10C 109.5 O5—C19B—N2 103.0 (11)
H10B—C10—H10C 109.5 C21B—C20B—O5 92.0 (15)
C12—C11—O4 110.0 (4) C21B—C20B—H20C 113.3
C12—C11—H11A 109.7 O5—C20B—H20C 113.3
O4—C11—H11A 109.7 C21B—C20B—H20D 113.3
C12—C11—H11B 109.7 O5—C20B—H20D 113.3
O4—C11—H11B 109.7 H20C—C20B—H20D 110.6
H11A—C11—H11B 108.2 C20B—C21B—C22 118.7 (18)
C11—C12—H12A 109.5 C20B—C21B—H21C 107.6
C11—C12—H12B 109.5 C22—C21B—H21C 107.6
H12A—C12—H12B 109.5 C20B—C21B—H21D 107.6
C11—C12—H12C 109.5 C22—C21B—H21D 107.6
H12A—C12—H12C 109.5 H21C—C21B—H21D 107.1
H12B—C12—H12C 109.5
C6—N2—C2—C3 33.1 (4) C14—C13—C18—C17 −0.7 (5)
C19A—N2—C2—C3 −147.6 (4) N1—C13—C18—C17 −177.4 (3)
C19B—N2—C2—C3 −147.0 (5) C19B—C22—C19A—O5 61.0 (10)
C6—N2—C2—C1 −139.4 (3) C21B—C22—C19A—O5 −13.7 (15)
C19A—N2—C2—C1 39.8 (6) C21A—C22—C19A—O5 −41.1 (12)
C19B—N2—C2—C1 40.5 (5) C19B—C22—C19A—N2 −58.0 (10)
N2—C2—C3—N1 7.5 (4) C21B—C22—C19A—N2 −132.6 (11)
C1—C2—C3—N1 179.5 (3) C21A—C22—C19A—N2 −160.1 (7)
N2—C2—C3—C4 −166.2 (3) C20A—O5—C19A—C22 42.6 (11)
C1—C2—C3—C4 5.8 (5) C19B—O5—C19A—C22 −56.4 (9)
C13—N1—C3—C2 96.3 (3) C20B—O5—C19A—C22 26.4 (16)
C7—N1—C3—C2 −45.5 (4) C20A—O5—C19A—N2 165.4 (7)
C13—N1—C3—C4 −89.5 (3) C19B—O5—C19A—N2 66.4 (9)
C7—N1—C3—C4 128.7 (3) C20B—O5—C19A—N2 149.2 (13)
C9—O2—C4—O1 2.2 (5) C6—N2—C19A—C22 −126.8 (7)
C9—O2—C4—C3 −178.4 (3) C2—N2—C19A—C22 53.9 (9)
C2—C3—C4—O1 −11.4 (5) C19B—N2—C19A—C22 52.9 (9)
N1—C3—C4—O1 175.0 (3) C6—N2—C19A—O5 115.4 (6)
C2—C3—C4—O2 169.1 (3) C2—N2—C19A—O5 −63.9 (8)
N1—C3—C4—O2 −4.5 (4) C19B—N2—C19A—O5 −64.9 (10)
C2—N2—C6—C7 −33.5 (5) C19A—O5—C20A—C21A −25.3 (13)
C19A—N2—C6—C7 147.1 (4) C19B—O5—C20A—C21A 15.6 (16)
C19B—N2—C6—C7 146.8 (9) C20B—O5—C20A—C21A 104 (4)
C2—N2—C6—C5 140.0 (3) O5—C20A—C21A—C22 0.7 (14)
C19A—N2—C6—C5 −39.4 (5) C19B—C22—C21A—C20A −18.3 (17)
C19B—N2—C6—C5 −39.7 (10) C19A—C22—C21A—C20A 24.3 (13)
N2—C6—C7—N1 −7.5 (4) C21B—C22—C21A—C20A −74 (3)
C5—C6—C7—N1 −180.0 (3) C19A—C22—C19B—O5 −59.3 (12)
N2—C6—C7—C8 168.5 (3) C21B—C22—C19B—O5 50.5 (17)
C5—C6—C7—C8 −3.9 (6) C21A—C22—C19B—O5 28.3 (19)
C13—N1—C7—C6 −95.6 (4) C19A—C22—C19B—N2 54.7 (13)
C3—N1—C7—C6 46.2 (4) C21B—C22—C19B—N2 164.5 (13)
C13—N1—C7—C8 88.2 (3) C21A—C22—C19B—N2 142.4 (9)
C3—N1—C7—C8 −130.0 (3) C20A—O5—C19B—C22 −28.3 (19)
C11—O4—C8—O3 −0.6 (6) C19A—O5—C19B—C22 62.6 (12)
C11—O4—C8—C7 178.3 (3) C20B—O5—C19B—C22 −48 (2)
C6—C7—C8—O3 16.8 (6) C20A—O5—C19B—N2 −149.9 (8)
N1—C7—C8—O3 −167.2 (3) C19A—O5—C19B—N2 −58.9 (12)
C6—C7—C8—O4 −162.0 (3) C20B—O5—C19B—N2 −169.8 (13)
N1—C7—C8—O4 14.0 (4) C6—N2—C19B—C22 −57.1 (17)
C4—O2—C9—C10 177.9 (3) C2—N2—C19B—C22 123.1 (12)
C8—O4—C11—C12 −174.4 (4) C19A—N2—C19B—C22 −57.7 (13)
C7—N1—C13—C14 162.1 (3) C6—N2—C19B—O5 59.8 (14)
C3—N1—C13—C14 23.0 (4) C2—N2—C19B—O5 −120.0 (10)
C7—N1—C13—C18 −21.2 (4) C19A—N2—C19B—O5 59.2 (11)
C3—N1—C13—C18 −160.4 (3) C20A—O5—C20B—C21B −81 (4)
C18—C13—C14—C15 1.2 (5) C19A—O5—C20B—C21B −25 (2)
N1—C13—C14—C15 177.9 (3) C19B—O5—C20B—C21B 16 (2)
C13—C14—C15—C16 −1.9 (5) O5—C20B—C21B—C22 16 (3)
C14—C15—C16—C17 2.1 (6) C19B—C22—C21B—C20B −43 (3)
C15—C16—C17—C18 −1.6 (6) C19A—C22—C21B—C20B −3(3)
C16—C17—C18—C13 0.9 (5) C21A—C22—C21B—C20B 84 (3)

Hydrogen-bond geometry (Å, °)

D—H···A D—H H···A D···A D—H···A
C12—H12C···O5i 0.96 2.67 3.618 (5) 169

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2937).

References

  1. Brook, D. J. R., Curtis Haltiwanger, R. & Koch, T. H. (1992). J. Am. Chem. Soc.114, 6017–6023.
  2. Chorvat, R. J. & Rorig, K. J. (1988). J. Org. Chem.53, 5779–5781.
  3. Goto, T., Inoue, S. & Sugiura, S. (1968). Tetrahedron Lett.36, 3873–3876. [DOI] [PubMed]
  4. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  5. Rigaku (2000). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  6. Rigaku/MSC (2000). CrystalStructure Rigaku/MSC, The Woodlands, Texas, USA.
  7. Rodrigues, A., Ferreira, P. M. T. & Monteiro, L. S. (2004). Tetrahedron, 60, 8489–8496.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Sit, S. Y., Huang, Y., Antal-Zimanyi, I., Ward, S. & Poindexter, G. S. (2002). Bioorg. Med. Chem. Lett.12, 337–340. [DOI] [PubMed]
  10. Teranishi, K. & Goto, T. (1990). Bull. Chem. Soc. Jpn, 63, 3132–3140.
  11. Wolfbeis, O. S. (1977). Synthesis, pp. 136–138.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809013749/hb2937sup1.cif

e-65-o1129-sup1.cif (25.7KB, cif)

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809013749/hb2937Isup2.hkl

e-65-o1129-Isup2.hkl (184.7KB, hkl)

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES